JPWO2006087786A1 - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
JPWO2006087786A1
JPWO2006087786A1 JP2007503526A JP2007503526A JPWO2006087786A1 JP WO2006087786 A1 JPWO2006087786 A1 JP WO2006087786A1 JP 2007503526 A JP2007503526 A JP 2007503526A JP 2007503526 A JP2007503526 A JP 2007503526A JP WO2006087786 A1 JPWO2006087786 A1 JP WO2006087786A1
Authority
JP
Japan
Prior art keywords
laser
solar cell
manufacturing
type electrode
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007503526A
Other languages
Japanese (ja)
Inventor
高明 岩田
高明 岩田
尚史 冨永
尚史 冨永
公一 筈見
公一 筈見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2006087786A1 publication Critical patent/JPWO2006087786A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

メンテナンスが容易な製造装置を用いることが可能であると共に、電気的なリークが生じ難い太陽電池の製造方法を提供することを目的とする。この発明の太陽電池の製造方法では、パルス幅が100nsec以下のパルスレーザビームを用いて、結晶シリコン系太陽電池のP型電極形成領域とN型電極形成領域とを電気的に絶縁加工し、PN分離を実現する。また、YAGレーザまたはYVO4レーザ装置を用いて上記パルスレーザビームを得ることにより、廉価で、メンテナンスが容易であると共に、設置スペースをとらないレーザ装置を用いて太陽電池を製造することができる。It is an object of the present invention to provide a method for manufacturing a solar cell that can use a manufacturing apparatus that can be easily maintained and that is less likely to cause electrical leakage. In the solar cell manufacturing method of the present invention, the P-type electrode formation region and the N-type electrode formation region of the crystalline silicon solar cell are electrically insulated using a pulse laser beam having a pulse width of 100 nsec or less, and PN Achieve separation. Further, by obtaining the pulse laser beam using a YAG laser or a YVO4 laser device, a solar cell can be manufactured using a laser device that is inexpensive, easy to maintain, and does not take up installation space.

Description

この発明は太陽電池の製造方法に関するものであり、特に結晶シリコン系太陽電池のp型電極とn型電極とを電気的に絶縁する方法に関するものである。   The present invention relates to a method for manufacturing a solar cell, and more particularly to a method for electrically insulating a p-type electrode and an n-type electrode of a crystalline silicon solar cell.

シリコンを用いたシリコン太陽電池の製造方法において、p型電極とn型電極とを電気的に絶縁する工程(PN分離)として、ウエットエッチングやプラズマエッチングを用いた方法がよく知られている。しかしながら、上記方法は長時間を要する、あるいはエッチング処理のためにシリコンウエハを積み重ねる処理前後の移載工程でシリコンウエハが割れ易いため、上記エッチングの代替としてレーザを用いるものが提案されている。PN分離に使われるレーザとしては、エキシマレーザを用いるもの(例えば、特許文献1参照。)、またはQスイッチYAGレーザを用いるもの(例えば、特許文献2参照。)が報告されている。   In a method for manufacturing a silicon solar cell using silicon, a method using wet etching or plasma etching is well known as a step of electrically insulating a p-type electrode and an n-type electrode (PN separation). However, since the above method takes a long time or the silicon wafer is easily broken in the transfer process before and after the process of stacking the silicon wafers for the etching process, a method using a laser as an alternative to the etching has been proposed. As a laser used for PN separation, a laser using an excimer laser (for example, refer to Patent Document 1) or a laser using a Q-switched YAG laser (for example, refer to Patent Document 2) has been reported.

米国特許第4989059号明細書(第6頁、Fig1)US Pat. No. 4,898,059 (page 6, FIG. 1) 特開平5−75148号公報(第2−3頁、図1)Japanese Patent Laid-Open No. 5-75148 (page 2-3, FIG. 1)

PN分離にレーザを使用するにあたって、上記レーザとして特許文献1に示されたエキシマレーザを用いた場合、有害なガスを用いるのでメンテナンスが容易でなく、装置が大型化し、スペースをとるという問題点があった。また、レーザとして特許文献2に示されたQスイッチYAGレーザ(波長1.06[μm]、パルス幅200[μsec]、エネルギー密度108[W/cm2])を用いた場合、廉価だがパルス幅が長く、熱加工になりやすいという問題があった。また、この場合、従来のエッチング方法やエキシマレーザを用いた場合に比べて、電気的絶縁が十分でないという問題点があった。When using an excimer laser disclosed in Patent Document 1 as a laser for the PN separation, since harmful gas is used, maintenance is not easy, the apparatus becomes large, and space is taken up. there were. Further, when the Q-switched YAG laser (wavelength 1.06 [μm], pulse width 200 [μsec], energy density 10 8 [W / cm 2 ]) disclosed in Patent Document 2 is used as the laser, it is inexpensive but pulsed. There was a problem that the width was long and heat processing was likely to occur. Further, in this case, there is a problem that electrical insulation is not sufficient as compared with the case of using a conventional etching method or excimer laser.

この発明は上記のような問題点を解決するためになされたものであり、メンテナンスが容易な製造装置を用いることが可能であると共に、電気的なリークが生じ難い太陽電池の製造方法を提供するものである。   The present invention has been made to solve the above-described problems, and provides a method for manufacturing a solar cell in which a manufacturing apparatus that can be easily maintained can be used and electrical leakage is unlikely to occur. Is.

この発明に係る太陽電池の製造方法は、パルス幅が100[nsec]以下のパルスレーザビームを用いて、結晶シリコン系太陽電池のp型電極形成領域とn型電極形成領域とを電気的に絶縁加工し、PN分離するものである。   The method for manufacturing a solar cell according to the present invention electrically insulates the p-type electrode formation region and the n-type electrode formation region of the crystalline silicon solar cell using a pulse laser beam having a pulse width of 100 [nsec] or less. It is processed and PN separated.

この発明によれば、レーザのパルス幅を短くすることにより、エキシマレーザのような短波長のものを選ばなくても効果的な加工ができる。すなわち、短パルスであることにより熱加工になりにくく、つまり加工点に熱がたまりにくく、加工部分周辺のシリコンが溶融しないので、p型電極形成領域とn型電極形成領域とをより確実に電気的に絶縁できる、といった顕著な効果を奏する。   According to the present invention, by shortening the pulse width of the laser, effective processing can be performed without selecting a short wavelength one such as an excimer laser. In other words, the short pulse hardly causes thermal processing, that is, heat hardly accumulates at the processing point, and silicon around the processing portion does not melt, so that the p-type electrode formation region and the n-type electrode formation region are more reliably electrically connected. It has the remarkable effect that it can be insulated.

本発明の実施の形態1による太陽電池の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of the solar cell by Embodiment 1 of this invention. 本発明の実施の形態1に係わるレーザによるPN分離の加工例を示す図である。It is a figure which shows the example of a process of PN separation by the laser concerning Embodiment 1 of this invention. 本発明の実施の形態1による太陽電池の製造方法において用いるレーザの波形を従来のレーザ波形と比較して示す図である。It is a figure which shows the waveform of the laser used in the manufacturing method of the solar cell by Embodiment 1 of this invention compared with the conventional laser waveform. 本発明の実施の形態1に係わる太陽電池セルの等価回路を示す回路構成図である。It is a circuit block diagram which shows the equivalent circuit of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わるPN分離レーザ加工を実施したレーザのパルス幅とダイオード電流との関係を示す図である。It is a figure which shows the relationship between the pulse width and diode current of the laser which implemented PN isolation | separation laser processing concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わるレーザ溝加工形状を示す図である。It is a figure which shows the laser groove processing shape concerning Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 シリコンウエハ、2 N+層、3 反射防止膜、4 Al電極、5,6 Ag電極、7 P+層、8 レーザ加工溝、9a,9b 角切落し部分、11 光起電流源、12 ダイオード、13 直列抵抗 、14 並列抵抗。DESCRIPTION OF SYMBOLS 1 Silicon wafer, 2 N + layer, 3 Anti-reflective film, 4 Al electrode, 5, 6 Ag electrode, 7 P + layer, 8 Laser processing groove | channel, 9a, 9b Corner cut-off part, 11 Photovoltaic current source, 12 Diode, 13 series resistance, 14 parallel resistance.

実施の形態1.
図1(a)〜(f)は本発明の実施の形態1による太陽電池の製造方法を示す工程図であり、各工程におけるシリコンウエハの横断面を示している。
まず、p型の結晶シリコンインゴットを所定の厚さ(300[μm]程度)にスライシングし、ウエハ1を形成する(図1(a))
次に、上記ウエハ表面のダメージ層に対してダメージエッチング(最大で約20[μm])と、光電流の増大を目的とした反射率の低減のためピラミッド状のテクスチャーエッチングを行う。さらに、上記ウエハに対し、オキシ塩化リンを用いて表面にリンを拡散し、N+層2を形成する。また、反射率を低減させるため、ウエハの上面に対して反射防止膜3を形成する(図1(b))。
次に、ウエハの下面にAl電極4とAg電極5とからなるp型電極を作成する。p型電極を作るために、AlペーストとAgペーストとを用い、それぞれ所定のパターンにスクリーン印刷し、乾燥させる(図1(c)(d))。
ウエハ1の上面に対しても同様に、Ag電極6からなるn型電極を作るために、Agペーストを所定のパターンにスクリーン印刷し、乾燥させる(図1(d))。
ウエハ1の両面のペーストが乾燥した後、各々焼成することによって、ウエハ下面のAlペーストからp型シリコンウエハ内に拡散されたAl原子は、N+層2を相殺してp型シリコンウエハ1内にP+層7を形成する。その結果、N+PP+接合が形成され、ウエハの下面には、Al電極4とAg電極5とからなるp型電極が、上面にはAg電極6からなるn型電極が形成される(図1(e))。
次に、パルス幅が100[nsec]以下の(例えば10〜40[nsec])短パルスLD励起固体レーザ(波長1064[nm]〜355[nm])を用いて、上記ウエハ下面のp型電極周辺部に沿ってレーザビームを照射し(繰り返し周波数10[kHz]〜100[kHz])、溝(幅20〜40[μm]、深さ数[μm]〜50[μm])8を形成する。これにより、ウエハ上面のn型電極形成領域とウエハ下面のp型電極形成領域とが電気的に絶縁され、PN分離が実現する((図1(f))。
上記までの工程で、太陽電池セルが完成する。これを基に複数の太陽電池セルを並べて構成し、モジュール化することによって太陽電池モジュールが完成する。
Embodiment 1 FIG.
FIGS. 1A to 1F are process diagrams showing a method for manufacturing a solar cell according to Embodiment 1 of the present invention, and show cross sections of a silicon wafer in each process.
First, a p-type crystalline silicon ingot is sliced to a predetermined thickness (about 300 [μm]) to form a wafer 1 (FIG. 1A).
Next, damage etching (maximum of about 20 [μm]) is performed on the damaged layer on the wafer surface, and pyramidal texture etching is performed to reduce reflectance for the purpose of increasing photocurrent. Further, phosphorus is diffused on the surface of the wafer using phosphorus oxychloride to form the N + layer 2. In order to reduce the reflectance, an antireflection film 3 is formed on the upper surface of the wafer (FIG. 1B).
Next, a p-type electrode composed of an Al electrode 4 and an Ag electrode 5 is formed on the lower surface of the wafer. In order to make a p-type electrode, an Al paste and an Ag paste are used, screen-printed in predetermined patterns, respectively, and dried (FIGS. 1C and 1D).
Similarly, in order to form an n-type electrode composed of the Ag electrode 6 on the upper surface of the wafer 1, Ag paste is screen-printed in a predetermined pattern and dried (FIG. 1D).
After the paste on both sides of the wafer 1 is dried, each of them is baked, so that Al atoms diffused into the p-type silicon wafer from the Al paste on the lower surface of the wafer cancel the N + layer 2 in the p-type silicon wafer 1. Then, the P + layer 7 is formed. As a result, an N + PP + junction is formed, and a p-type electrode composed of an Al electrode 4 and an Ag electrode 5 is formed on the lower surface of the wafer, and an n-type electrode composed of an Ag electrode 6 is formed on the upper surface (FIG. 1 (e)).
Next, using a short pulse LD pumped solid state laser (wavelength 1064 [nm] to 355 [nm]) having a pulse width of 100 [nsec] or less (for example, 10 to 40 [nsec]), the p-type electrode on the lower surface of the wafer is used. A laser beam is irradiated along the periphery (repetition frequency: 10 [kHz] to 100 [kHz]) to form a groove (width 20 to 40 [μm], depth number [μm] to 50 [μm]) 8. . As a result, the n-type electrode formation region on the upper surface of the wafer and the p-type electrode formation region on the lower surface of the wafer are electrically insulated, and PN separation is realized ((f) in FIG. 1).
The solar battery cell is completed through the above steps. Based on this, a plurality of solar cells are arranged side by side and modularized to complete a solar cell module.

なお、上記実施の形態では、上記レーザによる加工は、図1(f)、図2(f−1)に示すように、ウエハ下面のp型電極周辺部を溝加工するものを示したが、図2(f−2)に示すように、ウエハ上面のn型電極周辺部を溝加工してもよい。また、図2(f−3)、(f−4)に示すように、ウエハ1の角部を切落す加工としてもよい。9a、9bがレーザによる角切落し部分である。   In the above-described embodiment, the processing by the laser has shown that the peripheral portion of the p-type electrode on the lower surface of the wafer is grooved as shown in FIGS. 1 (f) and 2 (f-1). As shown in FIG. 2F-2, a groove may be formed on the periphery of the n-type electrode on the upper surface of the wafer. Further, as shown in FIGS. 2 (f-3) and (f-4), a process of cutting off the corner of the wafer 1 may be performed. Reference numerals 9a and 9b are corner cut-out portions by the laser.

また、上記実施の形態では、短パルスLD励起固体レーザからのレーザビームを用いたが、パルス幅が100[nsec]以下のパルスレーザビームであれば、使用するレーザはLD励起固体レーザに限らず、他のレーザ装置であっても良い。
本実施の形態では、Nd:YAG(ネオジウムを活性原子として添加したYAGレーザ)もしくはNd:YVO4(ネオジウムを活性原子として添加したYVO4レーザ)の基本波、またはNd:YAGもしくはNd:YVO4の第3高調波を用いてそれぞれ実際の加工を行った結果、良好に電気的絶縁されていることを確認した。
In the above embodiment, the laser beam from the short-pulse LD-pumped solid-state laser is used. However, the laser to be used is not limited to the LD-pumped solid-state laser as long as the pulse width is 100 [nsec] or less. Other laser devices may be used.
In this embodiment, the fundamental wave of Nd: YAG (YAG laser added with neodymium as an active atom) or Nd: YVO 4 (YVO 4 laser added with neodymium as an active atom), or Nd: YAG or Nd: YVO 4 As a result of performing actual processing using the third harmonic, it was confirmed that electrical insulation was satisfactorily achieved.

図3は本発明の太陽電池の製造方法において用いるレーザの波形Aを従来のレーザ波形Bと比較して示す図である。従来のレーザ波形Bのパルス幅は100[nsec]より大きい波形を用いているのに対して、本発明に係わるレーザ波形Aはパルス幅が小さく、100[nsec]以下である。したがって、ピークパワーは従来よりも大きく、10[kw]程度以上である。
以下に、太陽電池セルの電気的特性と、加工に用いるレーザビームのパルス幅との関係を説明する。
太陽電池セルの電気的特性は図4に示す等価回路によって説明することができる。等価回路は光起電流源11(IL)、ダイオード12、直列抵抗13(rs)、並列抵抗14(rsh)からなり、直列抵抗13(rs)は太陽電池表面のオーミック損失、並列抵抗14(rsh)はリーケージ電流(Ish)による損失を表している。PN分離が良好におこなわれたかどうかは並列抵抗14(rsh)を求めるか、逆バイアスをかけたときのリーケージ電流(Ish)を求めればよい。逆バイアスをかけたときのリーケージ電流(Ish)は小さければ小さいほどリークが少ないことを表し、電気的絶縁ができたかどうか判断することができる。そこで、PN分離のための溝加工工程(図1(f))で用いるレーザのパルス幅を変えて電気的特性を比較した。
FIG. 3 is a diagram showing a laser waveform A used in the solar cell manufacturing method of the present invention in comparison with a conventional laser waveform B. The pulse width of the conventional laser waveform B is larger than 100 [nsec], whereas the laser waveform A according to the present invention has a small pulse width of 100 [nsec] or less. Therefore, the peak power is larger than the conventional one and is about 10 [kW] or more.
Below, the relationship between the electrical characteristic of a photovoltaic cell and the pulse width of the laser beam used for a process is demonstrated.
The electrical characteristics of the solar battery cell can be explained by an equivalent circuit shown in FIG. The equivalent circuit comprises a photovoltaic current source 11 (I L ), a diode 12, a series resistor 13 (r s ), and a parallel resistor 14 (r sh ). The series resistor 13 (r s ) is an ohmic loss on the solar cell surface, and is connected in parallel. The resistor 14 (r sh ) represents a loss due to the leakage current (I sh ). Whether or not the PN separation is satisfactorily performed can be determined by obtaining the parallel resistance 14 (r sh ) or the leakage current (I sh ) when reverse bias is applied. The smaller the leakage current (I sh ) when reverse bias is applied, the smaller the leakage, and it can be determined whether or not electrical insulation has been achieved. Therefore, the electrical characteristics were compared by changing the pulse width of the laser used in the groove processing step for PN separation (FIG. 1 (f)).

図5にレーザのパルス幅と逆バイアス(−1[V])をかけたときのリーケージ電流(Ish)との関係を示す。
良好な電気的絶縁を得るにはリーケージ電流(Ish)が0.1[A]以下となることが必要であり、図5より、パルス幅が100[nsec]以下で電気的絶縁が良好であることがわかる。一方、パルス幅が大きく、100μsec以上になるとリーケージ電流(Ish)は0.6[A]以上となり、電気的絶縁が悪くなる。
レーザ加工したウエハを観察した結果、このような条件で加工すると加工部近傍で溶融が起きていることがわかり、このことが電気的絶縁を悪くしていると推察される。
FIG. 5 shows the relationship between the pulse width of the laser and the leakage current (I sh ) when reverse bias (−1 [V]) is applied.
In order to obtain good electrical insulation, the leakage current (I sh ) needs to be 0.1 [A] or less, and from FIG. 5, the electrical insulation is good when the pulse width is 100 [nsec] or less. I know that there is. On the other hand, when the pulse width is large and 100 μsec or more, the leakage current (I sh ) becomes 0.6 [A] or more, resulting in poor electrical insulation.
As a result of observing the laser-processed wafer, it is understood that melting occurs in the vicinity of the processed portion when processed under such conditions, which is presumed to deteriorate the electrical insulation.

以上の検討により、熱加工を防いで電気的絶縁性の良いPN分離を行うには、従来示されたエキシマレーザを用いる方法、すなわちレーザ波長を短くする方法の他に、レーザのパルス幅を100[nsec]以下にすることが有効であることを本発明で初めて実際に明らかにした。   From the above examination, in order to prevent thermal processing and perform PN separation with good electrical insulation, in addition to the conventional method using an excimer laser, that is, the method of shortening the laser wavelength, the pulse width of the laser is set to 100. For the first time in the present invention, it has been clarified that it is effective to set the [nsec] or less.

なお、図5はYAGレーザの基本波を用いた場合の結果であるが、第3高調波を用いた場合も、パルス幅が100[nsec]以下で、リーケージ電流(Ish)が0.1[A]以下となり、電気的絶縁が良好に行われることが確認できた。高調波にするとエネルギーが増えるので、利用できる加工材料の選択の範囲が広がる利点がある。また、ビームを小さく絞れるので微細な加工も可能となる利点がある。なお、基本波を用いれば装置構成が簡単になる効果がある。FIG. 5 shows the result when the fundamental wave of the YAG laser is used. Even when the third harmonic is used, the pulse width is 100 [nsec] or less and the leakage current (I sh ) is 0.1. [A] It was as follows, and it was confirmed that electrical insulation was performed satisfactorily. Since harmonics increase energy, there is an advantage that the range of available processing materials can be selected. Further, since the beam can be narrowed down, there is an advantage that fine processing is possible. Note that the use of the fundamental wave has the effect of simplifying the device configuration.

電気的絶縁の良否を左右するもうひとつのパラメータとして、照射エネルギーがあげられる。照射エネルギーが低いと加工不十分になり、逆にエネルギーが高すぎると溶融が起きて電気的絶縁がよくならない。レーザ波長が1064[nm](基本波)の場合も355[nm](第3高調波)の場合も、電気的絶縁が良好に行えるための加工条件は、1パルス当り、かつ単位面積あたりの照射エネルギーが10〜30[J/(Pulse・cm2)]であった。Irradiation energy is another parameter that determines the quality of electrical insulation. If the irradiation energy is low, the processing becomes insufficient. Conversely, if the energy is too high, melting occurs and electrical insulation is not improved. In both cases where the laser wavelength is 1064 [nm] (fundamental wave) and 355 [nm] (third harmonic), the processing conditions for good electrical insulation are per pulse and per unit area. The irradiation energy was 10 to 30 [J / (Pulse · cm 2 )].

以上のことより、使用するレーザビームは、パルス幅が100[nsec]以下のパルスレーザビームであり、かつ溶融が起きない範囲の照射エネルギー密度であることが必要である。このような条件を満たせば、基本波を用いて加工しても、第n次高調波(n≧2)を用いて加工してもよい。   From the above, the laser beam to be used must be a pulse laser beam having a pulse width of 100 [nsec] or less and an irradiation energy density in a range where melting does not occur. If such a condition is satisfied, processing may be performed using the fundamental wave or processing using the nth harmonic (n ≧ 2).

また、照射スポットを重ねて溝加工を行うときのスポットの重なり率は60%以上になるような加工速度がよい。   Further, the processing rate is good so that the overlapping rate of the spots when the grooves are processed by overlapping the irradiation spots is 60% or more.

また、レーザによる溝加工の加工軌跡は、例えば、図6(a)(b)に示すように、「井」型や「口」型など、直線を組み合わせた形状にすることにより、レーザ加工装置の駆動系を単純な構成にすることができる。   Further, as shown in FIGS. 6 (a) and 6 (b), for example, as shown in FIG. 6A and FIG. The drive system can be made simple.

Claims (4)

パルス幅が100nsec以下のパルスレーザビームを用いて、結晶シリコン系太陽電池のP型電極形成領域とN型電極形成領域とを電気的に絶縁加工し、PN分離することを特徴とする太陽電池の製造方法。 Using a pulsed laser beam with a pulse width of 100 nsec or less, a P-type electrode formation region and an N-type electrode formation region of a crystalline silicon solar cell are electrically insulated and PN separated. Production method. 固定レーザ装置を用いて上記パルスレーザビームを得ることを特徴とする請求項1記載の太陽電池の製造方法。 2. The method of manufacturing a solar cell according to claim 1, wherein the pulsed laser beam is obtained using a fixed laser device. 固体レーザ装置は、YAGレーザまたはYVO4レーザであり、基本波を用いて絶縁加工することを特徴とする請求項2記載の太陽電池の製造方法。Solid-state laser device is a YAG laser or a YVO 4 laser, a method for manufacturing a solar cell according to claim 2, characterized in that the insulating treatment by using the fundamental. 固体レーザ装置は、YAGレーザまたはYVO4レーザであり、第n次高調波(n≧2)を用いて絶縁加工することを特徴とする請求項2記載の太陽電池の製造方法。Solid-state laser device is a YAG laser or a YVO 4 laser, a method for manufacturing a solar cell according to claim 2, characterized in that the insulating treatment by using the n-th harmonic (n ≧ 2).
JP2007503526A 2005-02-17 2005-02-17 Manufacturing method of solar cell Pending JPWO2006087786A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002456 WO2006087786A1 (en) 2005-02-17 2005-02-17 Solar cell manufacturing method

Publications (1)

Publication Number Publication Date
JPWO2006087786A1 true JPWO2006087786A1 (en) 2008-07-03

Family

ID=36916202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007503526A Pending JPWO2006087786A1 (en) 2005-02-17 2005-02-17 Manufacturing method of solar cell

Country Status (2)

Country Link
JP (1) JPWO2006087786A1 (en)
WO (1) WO2006087786A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090091562A (en) * 2008-02-25 2009-08-28 엘지전자 주식회사 Colar cell and mehtod for manufacturing the same
JP2010010493A (en) * 2008-06-27 2010-01-14 Sharp Corp Solar cell and method of manufacturing the same
JP2011009663A (en) * 2009-06-29 2011-01-13 Kyocera Corp Method and apparatus for manufacturing solar cell element
JP5388761B2 (en) * 2009-08-28 2014-01-15 京セラ株式会社 Solar cell element manufacturing method and solar cell element manufacturing apparatus
US8912431B2 (en) 2009-09-29 2014-12-16 Kyocera Corporation Solar cell element and solar cell module
JP2011151192A (en) * 2010-01-21 2011-08-04 Sharp Corp Solar cell, solar cell with interconnector, and manufacturing method thereof
JP5436276B2 (en) * 2010-03-11 2014-03-05 三菱電機株式会社 Manufacturing method of solar cell
KR101668402B1 (en) * 2011-03-30 2016-10-28 한화케미칼 주식회사 Method for manufacturing solar cell
KR101708240B1 (en) * 2011-06-08 2017-02-20 엘지전자 주식회사 Solar cell and wafer etching appratus thereof
KR20130057285A (en) * 2011-11-23 2013-05-31 삼성에스디아이 주식회사 Photovoltaic device and manufacturing method for the same
MY170332A (en) * 2012-10-04 2019-07-17 Shinetsu Chemical Co Solar cell manufacturing method
WO2014188773A1 (en) * 2013-05-21 2014-11-27 信越化学工業株式会社 Method for manufacturing solar cell, and solar cell
JPWO2015064354A1 (en) * 2013-11-01 2017-03-09 パナソニックIpマネジメント株式会社 Solar cell
JP5909662B2 (en) * 2014-04-22 2016-04-27 パナソニックIpマネジメント株式会社 Solar cell module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312815A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Manufacture of thin-film solar cell
JP2002198546A (en) * 2000-12-27 2002-07-12 Kyocera Corp Formation method for solar cell element
JP2002231986A (en) * 2001-02-07 2002-08-16 Mitsubishi Heavy Ind Ltd Method for manufacturing integrated thin film solar battery
JP4286488B2 (en) * 2001-02-21 2009-07-01 キヤノンマシナリー株式会社 Substrate cutting method
US6524880B2 (en) * 2001-04-23 2003-02-25 Samsung Sdi Co., Ltd. Solar cell and method for fabricating the same
JP4078137B2 (en) * 2002-07-04 2008-04-23 三菱重工業株式会社 How to set the laser beam pulse width

Also Published As

Publication number Publication date
WO2006087786A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JPWO2006087786A1 (en) Manufacturing method of solar cell
JP6633709B2 (en) Manufacturing method and structure of solar cell
JP5289764B2 (en) Solar cell and method for manufacturing the same
US9768343B2 (en) Damage free laser patterning of transparent layers for forming doped regions on a solar cell substrate
KR101384853B1 (en) Laser processing methods for photovoltaic solar cells
JP6111249B2 (en) High throughput laser ablation process and structure for forming contact holes in solar cells
US9508886B2 (en) Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
US20120178203A1 (en) Laser annealing for aluminum doping and formation of back-surface field in solar cell contacts
RU2555212C2 (en) Heterojunction photovoltaic cell having back contact
JPWO2014188773A1 (en) Solar cell manufacturing method and solar cell
KR101532721B1 (en) Spatially selective laser annealing applications in high-efficiency solar cells
JP2013520821A (en) Method for forming selective contacts
EP2819181A1 (en) Laser annealing applications in high-efficiency solar cells
CN113380926B (en) Manufacturing method of heterojunction solar cell and heterojunction solar cell
JP5436276B2 (en) Manufacturing method of solar cell
JP2013105850A (en) Method for manufacturing solar cell
WO2014128113A1 (en) Method for forming metal silicide layers
JP2012138553A (en) Solar cell element and manufacturing method of the same
JPH07176499A (en) Light emitting apparatus
Woolridge Characterization and Optimization of Laser-doped Selective Emitters for Applications in Silicon Solar Cells
JPH0515073B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117