JPWO2006073134A1 - Tubing body and heat exchanger using the same - Google Patents

Tubing body and heat exchanger using the same Download PDF

Info

Publication number
JPWO2006073134A1
JPWO2006073134A1 JP2006550876A JP2006550876A JPWO2006073134A1 JP WO2006073134 A1 JPWO2006073134 A1 JP WO2006073134A1 JP 2006550876 A JP2006550876 A JP 2006550876A JP 2006550876 A JP2006550876 A JP 2006550876A JP WO2006073134 A1 JPWO2006073134 A1 JP WO2006073134A1
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
heat exchanger
tubular body
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006550876A
Other languages
Japanese (ja)
Inventor
昭彦 高野
昭彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Valeo Thermal Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corp filed Critical Valeo Thermal Systems Japan Corp
Publication of JPWO2006073134A1 publication Critical patent/JPWO2006073134A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/18Double-walled pipes; Multi-channel pipes or pipe assemblies
    • F16L9/19Multi-channel pipes or pipe assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

第1流路201と、第1流路の周囲に位置する第2流路202とを備えた管体200において、当該管体は、第2流路を設けるとともに第1流路を構成する当該管体の内面211を断片的に設けた複数の押出し部材210を接合してなる構成の管体である。また、複数の押出し部材は、ろう材をクラッドしたプレート体220を間に挟みつつ組み付けて、そのろう材にて接合した。かかる管体は、冷凍サイクル1の熱交換器100を構成する部材として利用する。In the tubular body 200 including the first flow path 201 and the second flow path 202 positioned around the first flow path, the tubular body includes the second flow path and the first flow path. This is a tubular body configured by joining a plurality of pushing members 210 each having an inner surface 211 of the tubular body. Further, the plurality of extruded members were assembled with the brazing material clad plate body 220 sandwiched therebetween and joined by the brazing material. Such a tube is used as a member constituting the heat exchanger 100 of the refrigeration cycle 1.

Description

本発明は、複数の流路を備えた管体とこの管体を用いた熱交換器に関する。  The present invention relates to a tubular body having a plurality of flow paths and a heat exchanger using the tubular body.

冷媒を循環する圧縮式の冷凍サイクルは、高圧側の冷媒と低圧側の冷媒とを熱交換することにより、その冷凍効率を向上させることが可能である。一般に、このような熱交換を行う熱交換器は、複数の流路を備えた管体を用いて構成されている。下記特許文献1及び2には、この種の熱交換器が開示されている。
特許文献1 特開2001−91103号公報
特許文献2 特開2004−116911号公報
さて、冷凍サイクルは、設置スペースの節約や、製造コストの更なる低減が求められており、前述したように高圧側の冷媒と低圧側の冷媒とを熱交換する熱交換器についても、簡素な構成であるとともに、より優れた性能を有するものが望まれている。
特に近年では、冷媒としてCOを採用し、放熱器の内部の圧力が冷媒の臨界点を上まわる冷凍サイクルが使用されている。このような超臨界冷凍サイクルは、非常に高い耐圧性を要し、前述した熱交換器についても、熱交換効率を向上するとともに、かかる冷媒の圧力に絶え得る構成が要求される。
一般に、熱交換器の構成部材とされる管体は、押出し成形にて製造される。超臨界冷凍サイクルの場合、管体は、耐圧性を確保するべく複数の小さな流路が密集した断面形状とするのが望ましい。ところが、そのような形状の管体は、押出し成形が困難又は不可能になるという問題がある。すなわち、押出し成形の型には、流路を成形する部分を支える繋が必要であり、それらが密集していると、流路と流路の間が埋まらなくなるという不都合が生じる訳である。熱交換器の製造現場においては、このような管体を効率よく製造する構成が求められている。
本発明は、かかる事情に鑑みてなされたものであり、その目的は、現状の製造技術を踏まえつつ、複数の流路が合理的に設けられた管体とこれを用いてなる熱交換器を提供することである。
A compression-type refrigeration cycle that circulates refrigerant can improve its refrigeration efficiency by exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant. Generally, a heat exchanger that performs such heat exchange is configured using a tubular body having a plurality of flow paths. Patent Documents 1 and 2 below disclose this type of heat exchanger.
Patent Document 1 Japanese Patent Application Laid-Open No. 2001-91103 Patent Document 2 Japanese Patent Application Laid-Open No. 2004-116911 Now, the refrigeration cycle is required to save installation space and further reduce manufacturing costs. The heat exchanger that exchanges heat between the refrigerant and the refrigerant on the low-pressure side is also desired to have a simple configuration and higher performance.
Particularly in recent years, a refrigeration cycle that employs CO 2 as a refrigerant and in which the pressure inside the radiator exceeds the critical point of the refrigerant has been used. Such a supercritical refrigeration cycle requires very high pressure resistance, and the above-described heat exchanger is also required to have a configuration that can improve the heat exchange efficiency and be able to withstand the pressure of the refrigerant.
Generally, a tubular body that is a constituent member of a heat exchanger is manufactured by extrusion molding. In the case of a supercritical refrigeration cycle, it is desirable that the tube has a cross-sectional shape in which a plurality of small flow paths are densely packed to ensure pressure resistance. However, the tubular body having such a shape has a problem that extrusion molding becomes difficult or impossible. That is, it is necessary for the extrusion mold to support the portion for forming the flow path. If they are densely packed, there is a disadvantage that the gap between the flow paths cannot be filled. In the manufacturing site of a heat exchanger, the structure which manufactures such a pipe body efficiently is calculated | required.
The present invention has been made in view of such circumstances, and an object thereof is to provide a tubular body in which a plurality of flow paths are rationally provided and a heat exchanger using the same, based on the current manufacturing technology. Is to provide.

本願第1請求項に記載した発明は、第1流路と、前記第1流路の周囲に位置する第2流路とを備えた管体において、当該管体は、前記第2流路を設けるとともに前記第1流路を構成する当該管体の内面を断片的に設けた複数の押出し部材を接合してなる構成の管体である。
本願第2請求項に記載した発明は、請求項1において、前記複数の押出し部材は、ろう材をクラッドしたプレート体を間に挟みつつ組み付けて、前記ろう材にて接合した構成の管体である。
本願第3請求項に記載した発明は、請求項2において、前記プレート体には、当該管体の外面に当接する外面当接部を設けた構成の管体である。
本願第4請求項に記載した発明は、請求項2又は3において、前記プレート体には、前記第1流路を構成する当該管体の内面に当接する内面当接部を設けた構成の管体である。
本願第5請求項に記載した発明は、冷媒を循環する圧縮式の冷凍サイクルに用いられ、高圧側の前記冷媒と低圧側の前記冷媒とを熱交換する熱交換器において、当該熱交換器は、請求項1乃至4のいずれか記載の管体を用いてなり、前記第1流路には高圧側の前記冷媒を流通し、前記第2流路には低圧側の前記冷媒を流通する構成の熱交換器である。
本願第6請求項に記載した発明は、請求項5において、前記冷凍サイクルは、高圧側の圧力が前記冷媒の臨界点を超える構成の熱交換器である。
The invention described in the first claim of the present application is a tubular body including a first flow path and a second flow path positioned around the first flow path, and the tubular body includes the second flow path. And a tubular body having a structure in which a plurality of extruded members each having an inner surface of the tubular body constituting the first flow path are provided.
The invention described in claim 2 of the present application is the tubular body according to claim 1, wherein the plurality of extruded members are assembled by sandwiching a plate body clad with a brazing material and joined with the brazing material. is there.
The invention described in claim 3 of the present application is the tube body according to claim 2, wherein the plate body is provided with an outer surface abutting portion that abuts against an outer surface of the tube body.
The invention described in claim 4 of the present application is the tube according to claim 2 or 3, wherein the plate body is provided with an inner surface abutting portion that abuts against an inner surface of the tube body constituting the first flow path. Is the body.
The invention described in claim 5 of the present application is used in a compression-type refrigeration cycle in which a refrigerant is circulated. The heat exchanger exchanges heat between the refrigerant on the high pressure side and the refrigerant on the low pressure side. A configuration using the pipe body according to any one of claims 1 to 4, wherein the refrigerant on the high-pressure side is circulated through the first flow path, and the refrigerant on the low-pressure side is circulated through the second flow path. It is a heat exchanger.
The invention described in claim 6 of the present application is the heat exchanger according to claim 5, wherein the refrigeration cycle is configured such that the pressure on the high pressure side exceeds the critical point of the refrigerant.

図1は、本発明の実施例に係り、冷凍サイクルを示す説明図である。
図2は、本発明の実施例に係り、熱交換器の側面断面を示す説明図である。
図3は、本発明の実施例に係り、(a)は管体の断面形状を示す説明図、(b)はその分解説明図である。
図4は、本発明の実施例に係り、(a)は管体の断面形状を示す説明図、(b)はその分解説明図である。
図5は、本発明の実施例に係り、(a)は管体の断面形状を示す説明図、(b)はその分解説明図である。
図6は、本発明の実施例に係り、管体の側面を示す説明図である。
図7は、本発明の実施例に係り、(a)は管体の断面形状を示す説明図、(b)はその分解説明図である。
図8は、本発明の実施例に係り、(a)はプレート体の正面形状を示す説明図、(b)はプレート体の側面形状を示す説明図、(c)はプレート体の上面形状を示す説明図である。
図9は、本発明の実施例に係り、(a)は管体の断面形状を示す説明図、(b)はその分解説明図である。
図10は、本発明の実施例に係り、(a)は管体の断面形状を示す説明図、(b)はその分解説明図である。
図11は、本発明の実施例に係り、熱交換器の側面断面を示す説明図である。
FIG. 1 is an explanatory diagram showing a refrigeration cycle according to an embodiment of the present invention.
FIG. 2 is an explanatory view showing a side cross section of the heat exchanger according to the embodiment of the present invention.
FIG. 3 is related to the Example of this invention, (a) is explanatory drawing which shows the cross-sectional shape of a tubular body, (b) is the decomposition | disassembly explanatory drawing.
4A and 4B relate to an embodiment of the present invention, in which FIG. 4A is an explanatory view showing a cross-sectional shape of a tubular body, and FIG. 4B is an exploded explanatory view thereof.
5A and 5B relate to an embodiment of the present invention, in which FIG. 5A is an explanatory view showing a cross-sectional shape of a tubular body, and FIG. 5B is an exploded explanatory view thereof.
FIG. 6 is an explanatory view showing a side surface of a tubular body according to the embodiment of the present invention.
7A and 7B relate to an embodiment of the present invention, in which FIG. 7A is an explanatory view showing a cross-sectional shape of a tubular body, and FIG. 7B is an exploded explanatory view thereof.
8A and 8B relate to an embodiment of the present invention, in which FIG. 8A is an explanatory view showing a front shape of a plate body, FIG. 8B is an explanatory view showing a side shape of the plate body, and FIG. It is explanatory drawing shown.
9A and 9B relate to an embodiment of the present invention, in which FIG. 9A is an explanatory view showing a cross-sectional shape of a tubular body, and FIG. 9B is an exploded explanatory view thereof.
10A and 10B relate to an embodiment of the present invention, in which FIG. 10A is an explanatory view showing a cross-sectional shape of a tubular body, and FIG. 10B is an exploded explanatory view thereof.
FIG. 11 is an explanatory view showing a side cross section of a heat exchanger according to an embodiment of the present invention.

以下に、本発明の実施例を図面に基づいて説明する。図1に示す圧縮式の冷凍サイクル1は、自動車に搭載される車内冷房用のものであり、冷媒を圧縮する圧縮機2と、圧縮機2で圧縮された冷媒を冷却する放熱器3と、放熱器3で冷却された冷媒を減圧して膨張する減圧機4と、減圧機4で減圧された冷媒を蒸発するエバポレータ5と、エバポレータ5から流出する冷媒を気層と液層とに分離して気層の冷媒を圧縮機2へ送るアキュムレータ6と、高圧側の冷媒と低圧側の冷媒を熱交換する熱交換器100とを備えている。
熱交換器100は、放熱器3から減圧機4へ流れる高圧側の冷媒と、アキュムレータ6から圧縮機2へ流れる低圧側の冷媒とを熱交換するものである。冷媒としては、COを採用しており、放熱器3の内部の圧力は、気温等の使用条件により、冷媒の臨界点を上まわる。尚、図中の黒矢印は、高圧側の冷媒が流れる方向を示している。白矢印は、低圧側の冷媒が流れる方向を示している。
図2に示すように、本例の熱交換器100は、第1流路201及び複数の第2流路202を備えた管体200を用いてなるものである。管体200の一方の端部には、第1流路201の入口部300と、第2流路202の出口部600が設けられている。また、管体200の他方の端部には、第1流路201の出口部400と、第2流路202の入口部500が設けられている。
第1流路201の入口部300から流入した高圧側の冷媒、及び第2流路202の入口部500から流入した低圧側の冷媒は、熱交換をしつつ管体200の内部を対向方向に流通し、各出口部400,600からそれぞれ流出する。
本例の第1流路201の入口部300及び出口部400は、第1流路201を連通したタンク体310,410に継手320,420を設けてなるものである。また、本例の第2流路202の入口部500及び出口部600は、複数の第2流路202を連通したタンク体510,610に継手520,620を設けてなるものである。管体200の端部は、第2流路を削除する加工が施されており、第2流路202を連通したタンク体510,610は、その削除した部位に装着されている。
図3に示すように、本例の管体200は、その中心に位置する第1流路201と、第1流路201の周囲に位置する複数の第2流路202とを備えたアルミ合金製のものである。第2流路202は、その流路断面積が第1流路201よりも小さいものであり、第1流路201を取り囲むように円形配列されている。
この管体200は、第2流路202を設けるとともに第1流路201を構成する当該管体200の内面211を断片的に設けた複数の押出し部材210を接合してなるものである。すなわち、押出し部材210の断面形状は、管体200の断面形状を、第1流路201を含む面にて分割した形状となっている。
各押出し部材210は、所定の接合面212を互いにろう付けして接合されている。接合面212の間には、シート状のろう材213を挟み込み、ろう付けは、その組み付け体を炉中で過熱処理して行われる。或いは、誘電過熱ろう付けにてろう付けすることも可能である。
本例の管体200は、その断面形状をそのまま押出し成形しようとすると、押出し成形の型に対するメタルの流動性の制約が大きくなる故に、成形が困難又は不可能となる。この点、本例によれば、複数の押出し部材210にそれぞれ第1流路201を構成する当該管体200の内面211を断片的に設け、これを接合して第1流路201を構成するので、押出し成形による形状の制約が確実に緩和され、設計の自由度を向上することができる。尚、図例では2つの押出し部材を接合して管体200を構成したが、或いは、必要に応じて3つ又はそれ以上の押出し部材を接合して構成することも可能である。
このように本例の管体200は、超臨界状態となる冷媒に応じて所要の耐圧性を確保するべく合理的に構成してなるものであり、自動車に搭載される超臨界冷凍サイクルの熱交換器を構成する部材として極めて好適に利用することができる。尚、本例における各部の構成は、特許請求の範囲に記載した技術的範囲において適宜に設計変更が可能であり、図例したものに限定されないことは勿論である。例えば、図例では2つの押出し部材210を接合して管体200を構成したが、或いは、必要に応じて3つ又はそれ以上の押出し部材を接合して構成することも可能である。
次に、本発明の第2実施例を図4に基づいて説明する。本例の場合、複数の押出し部材210は、ろう材をその両面にクラッドしたプレート体220を間に挟みつつ組み付けて、プレート体220のろう材にて接合した。その他の構成は、前述した実施例と同様である。このような構成によると、プレート体220が補強部材として作用するので、管体200の耐圧性を確実に向上することができる。尚、プレート体220には、冷媒の良好な流れを確保するべく適宜間隔で孔を設けてもよい。
次に、本発明の第3実施例を図5乃至図6に基づいて説明する。本例のプレート体220は、管体200の外面に当接する外面当接部221を設けたものである。外面当接部221は、プレート体220の幅方向端部を折り曲げてなるものである。また、この外面当接部221は、プレート体220の長手方向に亘り、各押出し部材210に交互に当接するように設けられている(図6参照)。押出し部材210は、外面当接部221をカシメることにより、正確且つ強固に組みつけられる。外面当接部221は、管体200の外面にろう付けされる。その他の基本構成は、前述した実施例と同様である。このような外面当接部221によれば、管体200の耐圧性を更に向上することが可能である。
次に、本発明の第4実施例を図7及び図8に基づいて説明する。本例のプレート体220は、第1流路201を構成する当該管体200の内面211に当接する内面当接部222を設けたものである。内面当接部222は、プレート体220の要所を切り起こしてなるものである。また、この内面当接部222は、プレート体220の長手方向に亘り、各押出し部材210に交互に当接するように設けられている(図8参照)。押出し部材210は、内面当接部222にて位置合わせすることにより、正確に組み付けられる。内面当接部222は、第1流路201を構成する当該管体200の内面211にろう付けされる。その他の基本構成は、前述した実施例と同様である。このような外面当接部221によれば、管体200の耐圧性を更に向上することが可能である。プレート体220には、外面当接部221及び内面当接部222を両方設けることも可能である。尚、内面当接部222の形状は、任意に設定可能である。例えば図9に示すように、プレート体220を曲成して設けることも可能である。
次に、本発明の第5実施例を図10に基づいて説明する。本例の管体200は、複数の第1流路201を備えたものである。押出し部材210の断面形状は、管体200の断面形状を、複数の第1流路201を含む面にて分割した形状となっている。その他の構成は前述した実施例と同様である。このように、複数の第1流路201を備えた管体200を構成することも可能である。
次に、本発明の第6実施例を図11に基づいて説明する。本例の熱交換器100の場合、第1流路201の入口部300及び出口部400は、第1流路201に連通されたパイプである。第1流路201の両端部は、それぞれ閉鎖部材330,340にて閉鎖されている。第1流路201の入口部300及び出口部400を構成するパイプは、前述した押出し部材210に挟み込んでろう付けされている。また、本例の第2流路202の入口部500及び出口部600は、各タンク体510,610にそれぞれ外部コネクタ800,700を接続するものである。また、第1流路201の入口部300及び出口部400の先端部は、各タンク体610,510に固定されている。
第2流路202の出口部600に接続されるコネクタ700は、放熱器3から冷媒を流入する配管710と、圧縮機2へ冷媒を流出する配管720とをブロック体730に固定してなるものである。また、第2流路202の入口部500に接続されるコネクタ800は、減圧機4へ冷媒を流出する配管810と、アキュムレータ6から冷媒を流入する配管820とをブロック体830に固定してなるものである。このように、管体200に冷媒をもたらす構成は、適宜に設計変更が可能であり、特に限定されるものではない。
Embodiments of the present invention will be described below with reference to the drawings. A compression refrigeration cycle 1 shown in FIG. 1 is for in-vehicle cooling mounted in an automobile, and includes a compressor 2 that compresses refrigerant, a radiator 3 that cools refrigerant compressed by the compressor 2, A decompressor 4 that expands by decompressing the refrigerant cooled by the radiator 3, an evaporator 5 that evaporates the refrigerant decompressed by the decompressor 4, and a refrigerant that flows out of the evaporator 5 are separated into a gas layer and a liquid layer. And an accumulator 6 for sending the refrigerant in the gas layer to the compressor 2 and a heat exchanger 100 for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant.
The heat exchanger 100 exchanges heat between the high-pressure refrigerant flowing from the radiator 3 to the decompressor 4 and the low-pressure refrigerant flowing from the accumulator 6 to the compressor 2. As the refrigerant, CO 2 is adopted, and the pressure inside the radiator 3 exceeds the critical point of the refrigerant depending on the use conditions such as the temperature. In addition, the black arrow in a figure has shown the direction through which the refrigerant | coolant of a high voltage | pressure side flows. A white arrow indicates a direction in which the low-pressure side refrigerant flows.
As shown in FIG. 2, the heat exchanger 100 of this example uses a tubular body 200 including a first flow path 201 and a plurality of second flow paths 202. At one end of the tube body 200, an inlet portion 300 of the first flow path 201 and an outlet portion 600 of the second flow path 202 are provided. In addition, an outlet portion 400 of the first flow path 201 and an inlet portion 500 of the second flow path 202 are provided at the other end of the tube body 200.
The refrigerant on the high-pressure side flowing in from the inlet portion 300 of the first flow path 201 and the refrigerant on the low-pressure side flowing in from the inlet section 500 of the second flow path 202 make the inside of the tube body 200 in the facing direction while exchanging heat. It flows out and flows out from each exit part 400 and 600, respectively.
The inlet part 300 and the outlet part 400 of the first flow path 201 in this example are formed by providing joints 320 and 420 to tank bodies 310 and 410 communicating with the first flow path 201. In addition, the inlet portion 500 and the outlet portion 600 of the second flow path 202 of the present example are formed by providing joints 520 and 620 on tank bodies 510 and 610 communicating with the plurality of second flow paths 202. The end of the tube body 200 is processed to delete the second flow path, and the tank bodies 510 and 610 communicating with the second flow path 202 are attached to the deleted portion.
As shown in FIG. 3, the tubular body 200 of the present example includes an aluminum alloy including a first flow path 201 located at the center thereof and a plurality of second flow paths 202 located around the first flow path 201. It is made of. The second channel 202 has a channel cross-sectional area smaller than that of the first channel 201 and is circularly arranged so as to surround the first channel 201.
The tubular body 200 is formed by joining a plurality of pushing members 210 provided with the second flow path 202 and provided with the inner surface 211 of the tubular body 200 constituting the first flow path 201 in pieces. That is, the cross-sectional shape of the extrusion member 210 is a shape obtained by dividing the cross-sectional shape of the tubular body 200 on the surface including the first flow path 201.
Each pushing member 210 is joined by brazing predetermined joining surfaces 212 to each other. A sheet-like brazing material 213 is sandwiched between the joining surfaces 212, and the brazing is performed by overheating the assembly in a furnace. Alternatively, it is possible to braze by dielectric overheating brazing.
When the cross-sectional shape of the tubular body 200 of this example is to be extruded as it is, the restriction on the fluidity of the metal with respect to the extrusion mold increases, so that the molding becomes difficult or impossible. In this regard, according to the present example, the plurality of pushing members 210 are each provided with the inner surface 211 of the pipe body 200 constituting the first flow path 201 in pieces, and the first flow paths 201 are formed by joining them. Therefore, the restriction of the shape due to extrusion molding is surely eased, and the degree of freedom in design can be improved. In the example shown in the drawing, the two extruded members are joined to form the tube body 200. Alternatively, three or more extruded members may be joined as necessary.
As described above, the tubular body 200 of this example is rationally configured to ensure the required pressure resistance according to the refrigerant that is in the supercritical state, and the heat of the supercritical refrigeration cycle installed in the automobile. It can be used very suitably as a member constituting the exchanger. In addition, it is needless to say that the configuration of each part in this example can be appropriately changed in design within the technical scope described in the claims, and is not limited to the illustrated example. For example, in the example shown in the figure, the two extruded members 210 are joined to form the tubular body 200. Alternatively, three or more extruded members may be joined as necessary.
Next, a second embodiment of the present invention will be described with reference to FIG. In the case of the present example, the plurality of extruded members 210 are assembled with the brazing material clad on both sides of the plate body 220 with the brazing material sandwiched therebetween, and joined by the brazing material of the plate body 220. Other configurations are the same as those in the above-described embodiment. According to such a configuration, since the plate body 220 acts as a reinforcing member, the pressure resistance of the tube body 200 can be reliably improved. It should be noted that the plate body 220 may be provided with holes at appropriate intervals to ensure a good flow of the refrigerant.
Next, a third embodiment of the present invention will be described with reference to FIGS. The plate body 220 of this example is provided with an outer surface contact portion 221 that contacts the outer surface of the tube body 200. The outer surface abutting part 221 is formed by bending an end part in the width direction of the plate body 220. Further, the outer surface abutting portions 221 are provided so as to abut against the pushing members 210 alternately in the longitudinal direction of the plate body 220 (see FIG. 6). The pushing member 210 is assembled accurately and firmly by crimping the outer surface contact portion 221. The outer surface contact portion 221 is brazed to the outer surface of the tube body 200. Other basic configurations are the same as those in the above-described embodiment. According to such an outer surface contact portion 221, the pressure resistance of the tube body 200 can be further improved.
Next, a fourth embodiment of the present invention will be described with reference to FIGS. The plate body 220 of this example is provided with an inner surface abutting portion 222 that abuts on the inner surface 211 of the tube body 200 constituting the first flow path 201. The inner surface abutting portion 222 is formed by cutting and raising a main part of the plate body 220. In addition, the inner surface abutting portion 222 is provided so as to abut on the pushing members 210 alternately in the longitudinal direction of the plate body 220 (see FIG. 8). The pushing member 210 is accurately assembled by positioning at the inner surface contact portion 222. The inner surface abutting portion 222 is brazed to the inner surface 211 of the tube body 200 constituting the first flow path 201. Other basic configurations are the same as those in the above-described embodiment. According to such an outer surface contact portion 221, the pressure resistance of the tube body 200 can be further improved. It is also possible to provide both the outer surface contact portion 221 and the inner surface contact portion 222 on the plate body 220. In addition, the shape of the inner surface contact portion 222 can be arbitrarily set. For example, as shown in FIG. 9, it is also possible to bend the plate body 220.
Next, a fifth embodiment of the present invention will be described with reference to FIG. The tubular body 200 in this example includes a plurality of first flow paths 201. The cross-sectional shape of the extruding member 210 is a shape obtained by dividing the cross-sectional shape of the tubular body 200 on a surface including the plurality of first flow paths 201. Other configurations are the same as those in the above-described embodiment. As described above, it is possible to configure the tube body 200 including the plurality of first flow paths 201.
Next, a sixth embodiment of the present invention will be described with reference to FIG. In the case of the heat exchanger 100 of this example, the inlet part 300 and the outlet part 400 of the first flow path 201 are pipes communicated with the first flow path 201. Both ends of the first flow path 201 are closed by closing members 330 and 340, respectively. The pipes constituting the inlet part 300 and the outlet part 400 of the first flow path 201 are sandwiched and brazed by the above-described pushing member 210. In addition, the inlet portion 500 and the outlet portion 600 of the second flow path 202 in this example connect the external connectors 800 and 700 to the tank bodies 510 and 610, respectively. Further, the leading end portions of the inlet portion 300 and the outlet portion 400 of the first flow path 201 are fixed to the tank bodies 610 and 510.
The connector 700 connected to the outlet portion 600 of the second flow path 202 is formed by fixing a pipe 710 for flowing refrigerant from the radiator 3 and a pipe 720 for flowing refrigerant to the compressor 2 to the block body 730. It is. Further, the connector 800 connected to the inlet portion 500 of the second flow path 202 is formed by fixing a pipe 810 for flowing out the refrigerant to the decompressor 4 and a pipe 820 for flowing in the refrigerant from the accumulator 6 to the block body 830. Is. Thus, the structure which brings the refrigerant into the tube body 200 can be appropriately changed in design, and is not particularly limited.

本発明の管体は、複数の流路が合理的に構成されたものであり、冷凍サイクルの熱交換器を構成する部材として極めて好適に利用することができる。また、この管体を用いてなる熱交換器は、冷凍サイクルに利用することができる。  The tubular body of the present invention has a plurality of rationally configured flow paths, and can be used very suitably as a member constituting a heat exchanger of a refrigeration cycle. Moreover, the heat exchanger using this tubular body can be used for a refrigeration cycle.

Claims (6)

第1流路と、前記第1流路の周囲に位置する第2流路とを備えた管体において、
当該管体は、前記第2流路を設けるとともに前記第1流路を構成する当該管体の内面を断片的に設けた複数の押出し部材を接合してなることを特徴とする管体。
In a tubular body comprising a first flow path and a second flow path located around the first flow path,
The tubular body is formed by joining a plurality of extruded members provided with the second flow path and the inner surface of the tubular body constituting the first flow path in pieces.
前記複数の押出し部材は、ろう材をクラッドしたプレート体を間に挟みつつ組み付けて、前記ろう材にて接合したことを特徴とする請求項1記載の管体。  2. The pipe body according to claim 1, wherein the plurality of pushing members are assembled with the brazing material clad with a plate body sandwiched therebetween and joined by the brazing material. 前記プレート体には、当該管体の外面に当接する外面当接部を設けたことを特徴とする請求項2記載の管体。  The tube body according to claim 2, wherein the plate body is provided with an outer surface abutting portion that abuts on an outer surface of the tube body. 前記プレート体には、前記第1流路を構成する当該管体の内面に当接する内面当接部を設けたことを特徴とする請求項2又は3記載の管体。  The tube body according to claim 2 or 3, wherein the plate body is provided with an inner surface abutting portion that abuts against an inner surface of the tube body constituting the first flow path. 冷媒を循環する圧縮式の冷凍サイクルに用いられ、高圧側の前記冷媒と低圧側の前記冷媒とを熱交換する熱交換器において、
当該熱交換器は、請求項1乃至4のいずれか記載の管体を用いてなり、
前記第1流路には高圧側の前記冷媒を流通し、前記第2流路には低圧側の前記冷媒を流通することを特徴とする熱交換器。
In a heat exchanger that is used in a compression refrigeration cycle that circulates a refrigerant, and exchanges heat between the refrigerant on the high-pressure side and the refrigerant on the low-pressure side,
The heat exchanger uses the pipe body according to any one of claims 1 to 4,
The heat exchanger according to claim 1, wherein the refrigerant on the high pressure side is circulated through the first flow path, and the refrigerant on the low pressure side is circulated through the second flow path.
前記冷凍サイクルは、高圧側の圧力が前記冷媒の臨界点を超えることを特徴とする請求項5記載の熱交換器。  6. The heat exchanger according to claim 5, wherein in the refrigeration cycle, a pressure on a high pressure side exceeds a critical point of the refrigerant.
JP2006550876A 2005-01-07 2005-12-27 Tubing body and heat exchanger using the same Pending JPWO2006073134A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005003230 2005-01-07
JP2005003230 2005-01-07
PCT/JP2005/024251 WO2006073134A1 (en) 2005-01-07 2005-12-27 Tube body and heat exchanger formed by using the same

Publications (1)

Publication Number Publication Date
JPWO2006073134A1 true JPWO2006073134A1 (en) 2008-06-12

Family

ID=36647613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006550876A Pending JPWO2006073134A1 (en) 2005-01-07 2005-12-27 Tubing body and heat exchanger using the same

Country Status (2)

Country Link
JP (1) JPWO2006073134A1 (en)
WO (1) WO2006073134A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090260586A1 (en) * 2006-09-19 2009-10-22 Behr Gmbh & Co. Kg Heat exchanger for an internal combustion engine
ES2335953B1 (en) * 2007-08-13 2010-10-25 Valeo Termico, S.A. HEAT EXCHANGER FOR GASES, AND ITS CORRESPONDING MANUFACTURING PROCEDURE.
JP4987685B2 (en) * 2007-12-19 2012-07-25 三菱電機株式会社 Double tube heat exchanger, method for manufacturing the same, and heat pump system including the same
JP2011085315A (en) * 2009-10-15 2011-04-28 Calsonic Kansei Corp Heat exchanger
WO2016144912A2 (en) * 2015-03-06 2016-09-15 Energy Recovery Technology, Inc. Energy recovery in air conditioning and other energy producing systems
US20220243987A1 (en) * 2021-02-02 2022-08-04 Pratt & Whitney Cannada Corp. Heat exchanger and associated method of assembly
DE102021209341A1 (en) 2021-08-25 2023-03-02 Mahle International Gmbh heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127187U (en) * 1981-01-27 1982-08-07
JPS60114698A (en) * 1983-11-28 1985-06-21 Nippon Denso Co Ltd Heat exchanger
JPH05115934A (en) * 1991-10-28 1993-05-14 Furukawa Alum Co Ltd Manufacture of flattened tube for heat exchanger
JP2000097589A (en) * 1998-09-24 2000-04-04 Showa Alum Corp Tube for heat exchanger
JP2002181466A (en) * 2000-10-25 2002-06-26 Eaton Fluid Power Gmbh Air conditioner having internal heat exchanger, and heat exchanger tube
JP2003071532A (en) * 2001-09-05 2003-03-11 Showa Denko Kk Method for manufacturing flattened tube and flattened tube manufactured by the same method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127187U (en) * 1981-01-27 1982-08-07
JPS60114698A (en) * 1983-11-28 1985-06-21 Nippon Denso Co Ltd Heat exchanger
JPH05115934A (en) * 1991-10-28 1993-05-14 Furukawa Alum Co Ltd Manufacture of flattened tube for heat exchanger
JP2000097589A (en) * 1998-09-24 2000-04-04 Showa Alum Corp Tube for heat exchanger
JP2002181466A (en) * 2000-10-25 2002-06-26 Eaton Fluid Power Gmbh Air conditioner having internal heat exchanger, and heat exchanger tube
JP2003071532A (en) * 2001-09-05 2003-03-11 Showa Denko Kk Method for manufacturing flattened tube and flattened tube manufactured by the same method

Also Published As

Publication number Publication date
WO2006073134A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JPWO2006073134A1 (en) Tubing body and heat exchanger using the same
JP2007333304A (en) Heat exchanger
EP2602578A1 (en) Heat exchanger and refrigeration and air conditioning device
EP2738507B1 (en) Heat exchanger
US20050011637A1 (en) Heat exchanger and tube for heat exchanger
CN109844439B (en) Heat exchanger and refrigeration system using the same
WO2007013439A1 (en) Heat exchanger
WO2002025189A1 (en) Heat exchanger and method of manufacturing the heat exchanger
JP2002340485A (en) Heat exchanger for vehicle
WO2014147919A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
CN109328291B (en) Heat exchanger and refrigerating apparatus using the same
EP1726907A1 (en) Heat exchanger
JP4140549B2 (en) Cooler
EP1479993A2 (en) Heat exchanger
JP2002098424A (en) Refrigerating cycle
EP3828490B1 (en) Joint
WO2006073136A1 (en) Heat exchanger
JP6821057B2 (en) Finless heat exchanger and refrigeration cycle equipment
KR101149725B1 (en) A heat exchanger
JP2004162993A (en) Heat exchanger
JP2005127611A (en) Heat exchanger
US20210131735A1 (en) Heat exchanger
JPWO2006073135A1 (en) Heat exchange tube, heat exchanger, and refrigeration cycle
JP2011099632A (en) Cold storage heat exchanger
EP4036507A1 (en) Plate-fin heat exchanger and refrigeration system using same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100917