JPWO2006059505A1 - Magnetic attraction type non-contact transfer device - Google Patents

Magnetic attraction type non-contact transfer device Download PDF

Info

Publication number
JPWO2006059505A1
JPWO2006059505A1 JP2006547756A JP2006547756A JPWO2006059505A1 JP WO2006059505 A1 JPWO2006059505 A1 JP WO2006059505A1 JP 2006547756 A JP2006547756 A JP 2006547756A JP 2006547756 A JP2006547756 A JP 2006547756A JP WO2006059505 A1 JPWO2006059505 A1 JP WO2006059505A1
Authority
JP
Japan
Prior art keywords
magnetic
magnetic attraction
type non
attraction type
contact transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006547756A
Other languages
Japanese (ja)
Other versions
JP4802332B2 (en
Inventor
望充 小森
望充 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2006547756A priority Critical patent/JP4802332B2/en
Publication of JPWO2006059505A1 publication Critical patent/JPWO2006059505A1/en
Application granted granted Critical
Publication of JP4802332B2 publication Critical patent/JP4802332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • H02N15/02Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for by Foucault currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manipulator (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

コイル(14)が巻かれて先部に磁極を形成する磁性体(12)と、磁性体(12)に組み込まれ磁極によって吸引される対象物(16)の変位を測定する変位計(15)と、変位計(15)の出力を入力としコイル(14)に流れる電流を制御して対象物(16)の位置を制御する制御装置(28)とを備えた磁気吸着素子(10)を1又は2以上有し、変位計(15)と磁性体(12)を一体化して、磁気吸引型非接触搬送装置全体をコンパクト化した。A magnetic body (12) around which a coil (14) is wound to form a magnetic pole at the tip, and a displacement gauge (15) for measuring the displacement of an object (16) incorporated in the magnetic body (12) and attracted by the magnetic pole. And a controller (28) for controlling the position of the object (16) by controlling the current flowing through the coil (14) by using the output of the displacement gauge (15) as an input. Alternatively, it has two or more, and the displacement gauge (15) and the magnetic body (12) are integrated to make the entire magnetic attraction type non-contact transfer device compact.

Description

本発明は、電磁石を用いて物体を吸引し、浮上させて搬送又は回転させる磁気吸引型非接触搬送装置に関する。 The present invention relates to a magnetic attraction type non-contact transporting device that attracts an object using an electromagnet, floats it, and transports or rotates it.

近年、磁気浮上技術を応用したものとして、モータの磁気軸受、磁気浮上式鉄道、非接触型搬送装置等が注目され、実用化されている。中でも、例えば、日本国特開平6−46592号公報や特開平7−123528号公報にそれぞれ記載されているような停止保持装置や磁気浮上搬送装置は、搬送物を非接触状態で保持するため、機械的なマニピュレータと異なり摩擦による摩耗や、潤滑の問題がなくなるという利点がある。これは真空中やクリーンルーム内で対象物を、メンテナンスフリーで処理するのに適している。 2. Description of the Related Art In recent years, magnetic bearings for motors, magnetic levitation railways, non-contact type carrier devices, and the like have been attracting attention and put to practical use as applications of the magnetic levitation technology. Among them, for example, the stop holding device and the magnetic levitation transfer device described in JP-A-6-46592 and JP-A-7-123528, respectively, hold a conveyed object in a non-contact state, Unlike mechanical manipulators, it has the advantage of eliminating frictional wear and lubrication problems. This is suitable for maintenance-free processing of objects in vacuum or in clean rooms.

しかしながら、前記特許公報記載の技術あるいはその他の文献に記載されている技術においては、対象物の位置を直接検知するセンサーが、対象物の下方又は側方に設けられている。この理由は、上部に磁石を備えこの磁石によって対象物を吸引する方式の磁気浮上装置においては、上部に対象物の位置を検知するセンサーがあると磁石の邪魔になり、センサーによっては磁気の影響を受けることがあるからと考えられるが、磁石とセンサーを別々に配置すると、配線等が複雑化して装置が大型化するという問題がある。また、対象物の移動範囲が広いと、多数のセンサーを必要とする。 However, in the technique described in the above patent publication or the technique described in other documents, a sensor that directly detects the position of the target object is provided below or on the side of the target object. The reason for this is that in a magnetic levitation device in which a magnet is provided on the top and the object is attracted by this magnet, a sensor that detects the position of the object at the top interferes with the magnet, and depending on the sensor, the effect of magnetism However, if the magnet and the sensor are separately arranged, there is a problem that the wiring and the like become complicated and the device becomes large. Further, if the moving range of the object is wide, many sensors are required.

本発明はかかる事情に鑑みてなされたもので、センサー(変位計)と磁石を一体化して装置をコンパクト化し、例えば、対象物を遠方まで移送する場合であっても、多数のセンサーを必要としない磁気吸引型非接触搬送装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and requires a large number of sensors even if a device (displacement meter) and a magnet are integrated to make the device compact and, for example, an object is transported to a long distance. An object of the present invention is to provide a magnetic attraction type non-contact transfer device that does not.

前記目的に沿う本発明に係る磁気吸引型非接触搬送装置は、コイルが巻かれて先部に磁極を形成する磁性体と、前記磁性体に組み込まれ前記磁極によって吸引される対象物の変位を測定する変位計と、該変位計の出力を入力とし前記コイルに流れる電流を制御して前記対象物の位置を制御する制御装置とを備えた磁気吸着素子を1又は2以上有する。この磁気吸引型非接触搬送装置においては、コイルに電流を流して磁性体を磁化し、対象物(上部の一部又は全部が磁性物からできている)を吸引する。この吸引状態の対象物の位置を変位計で測定し、コイルを流れる電流を制御し、磁極(磁石)による吸引力と対象物の重量をバランスさせて対象物の位置を制御する。なお、磁極による吸引力は磁極からの距離の二乗に反比例し、重力は対象物の変位によっては変化しないので、磁極から対象物までの距離は容易に制御できる。
このように、本発明に係る磁気吸引型非接触搬送装置は、変位計が磁性体に組み込まれているので、全体をコンパクトにすることができる。そして、このような磁気吸着素子を複数組み合わせることによって、複雑な形状の対象物であっても、その搬送や位置制御、場合によって回転制御も行なうことができる。
A magnetic attraction type non-contact transfer apparatus according to the present invention which meets the above-mentioned object, is a magnetic body around which a coil is wound to form a magnetic pole, and a displacement of an object incorporated in the magnetic body and attracted by the magnetic pole. It has one or more magnetic attraction elements each including a displacement meter for measurement and a controller for controlling the position of the object by controlling the current flowing through the coil by using the output of the displacement meter as an input. In this magnetic attraction type non-contact transfer device, an electric current is passed through a coil to magnetize a magnetic substance, and an object (a part or all of the upper portion is made of a magnetic substance) is attracted. The position of the object in this attracted state is measured by a displacement meter, the current flowing through the coil is controlled, and the position of the object is controlled by balancing the attractive force of the magnetic poles (magnets) and the weight of the object. The attraction force by the magnetic pole is inversely proportional to the square of the distance from the magnetic pole, and the gravity does not change depending on the displacement of the object, so the distance from the magnetic pole to the object can be easily controlled.
As described above, in the magnetic attraction type non-contact transfer device according to the present invention, since the displacement gauge is incorporated in the magnetic body, the entire device can be made compact. By combining a plurality of such magnetic attraction elements, even an object having a complicated shape can be conveyed, position-controlled, and in some cases rotation-controlled.

本発明に係る磁気吸引型非接触搬送装置において、前記変位計は前記磁性体の内部(例えは、中央部)に形成され、少なくともその下部が開放した空洞部に一体的に組み込まれ、前記磁極の直下にある前記対象物の変位を直接検知するのがよい。このように磁気吸引型非接触搬送装置を構成することによって、対象物の直上に変位計が存在し、対象物の変位をより正確に測定できる。ここで、変位計としては、電磁波、超音波、光、磁気、静電容量を利用したものいずれでも使用できる。なお、仮に変位計として磁気センサー(例えば、センサーコイルのインピーダンスの変化から距離を測定するタイプ)を使用しても、磁性体の周囲に巻いているコイルを流れる電流には関係なく対象物が落下しないように制御することはできる。 In the magnetic attraction type non-contact transfer device according to the present invention, the displacement gauge is formed inside (for example, a central portion) of the magnetic body, and at least a lower portion of the displacement gauge is integrally incorporated into an open cavity portion, It is preferable to directly detect the displacement of the target object directly below. By configuring the magnetic attraction type non-contact transfer device in this way, the displacement gauge is present immediately above the object, and the displacement of the object can be measured more accurately. Here, as the displacement meter, any one using electromagnetic waves, ultrasonic waves, light, magnetism, or electrostatic capacity can be used. Even if a magnetic sensor (for example, a type that measures the distance from the change in the impedance of the sensor coil) is used as the displacement meter, the target object will fall regardless of the current flowing through the coil wound around the magnetic body. You can control not to.

そして、前記変位計は前記磁性体とは隙間を有して配置されているのがよい。更には、前記変位計は、該変位計を囲み、該変位計と隙間を有して又は密着して高透磁率のケースに収納されて、前記空洞部に配置することもできる。これらによって、変位計がコイルに電流を流すことによる磁場の影響を受け難くなり、より正確な変位の測定ができる。 The displacement meter is preferably arranged with a gap from the magnetic body. Further, the displacement meter may be placed in the cavity, enclosing the displacement meter, having a gap or closely contacting with the displacement meter, housed in a case of high magnetic permeability. As a result, the displacement meter is less likely to be affected by the magnetic field caused by passing a current through the coil, and more accurate displacement measurement can be performed.

本発明に係る磁気吸引型非接触搬送装置において、前記磁性体の内側又は外側に永久磁石を組み込むこともできる。この場合、コイルによって磁性体に発生する磁極の方向と永久磁石の磁極の方向を合わせておくと、コイルに流す電流を減らすことができ、省電力化を図ることができる。なお、この場合、永久磁石は、対象物を吸着保持できる磁力より小さくしておくのがよい。これによって、コイルを通電することによって発生する磁力と永久磁石の磁力とが合算して対象物に加わることになる。 In the magnetic attraction type non-contact transfer device according to the present invention, a permanent magnet may be incorporated inside or outside the magnetic body. In this case, if the direction of the magnetic pole generated in the magnetic body by the coil and the direction of the magnetic pole of the permanent magnet are matched, the current flowing through the coil can be reduced and power saving can be achieved. In this case, the permanent magnet is preferably smaller than the magnetic force capable of attracting and holding the object. As a result, the magnetic force generated by energizing the coil and the magnetic force of the permanent magnet are added and added to the object.

本発明に係る磁気吸引型非接触搬送装置において、前記磁性体の内又は外には、前記対象物に回転トルクを与える補助コイルを設けることもできる。これによって対象物に回転トルクを与えることができ、対象物の位置及び速度等の回転制御を行うことができる。この場合、1つの前記磁気吸着素子を用い、前記対象物は磁性物からなる球体、円柱又は円筒やそれ以外の軸対象の物体(例えば、角柱、角錐、角錐台)等であるのがよい。ここで、この対象物を磁性物からなる球体又はその他の軸対象物体とした場合には、対象物を磁気で宙づりした状態で回転させることができる。更に、この対象物を球体とした場合には、その表面に模様を記載して、例えば地球儀等の飾り物とすることができる。 In the magnetic attraction type non-contact transfer device according to the present invention, an auxiliary coil that applies a rotational torque to the object may be provided inside or outside the magnetic body. With this, a rotation torque can be applied to the object, and rotation control of the position and speed of the object can be performed. In this case, it is preferable that one magnetic attraction element is used and the target object is a sphere, a cylinder or a cylinder made of a magnetic material, or other axial target objects (for example, a prism, a pyramid, a truncated pyramid) and the like. Here, when the object is a spherical body made of a magnetic material or another axial object, the object can be rotated while being suspended magnetically. Further, when the object is a sphere, a pattern can be written on the surface of the object to make an ornament such as a globe.

そして、本発明に係る磁気吸引型非接触搬送装置において、前記磁気吸着素子をロボットハンドのアームの先部に設けることもできる。これによって、ロボットハンドのアームを用いて対象物を任意の場所に移動させることができる他、複数のロボットハンドを用いることによって対象物の角度や姿勢も自由に制御できる。 Further, in the magnetic attraction type non-contact transfer device according to the present invention, the magnetic attraction element may be provided at the tip of the arm of the robot hand. Thereby, the object can be moved to an arbitrary place by using the arm of the robot hand, and the angle and posture of the object can be freely controlled by using the plurality of robot hands.

また、本発明の磁気吸引型非接触搬送装置において、複数の前記磁気吸着素子が共通の架台に設けられ、前記磁気吸着素子の中間には、前記対象物の上側に設けられた磁石とは同極の磁極を有ししかもその磁極が下方に向いた吸着防止用磁石を設けることも可能である。これによって、対象物が下からの荷重や衝撃を受けた場合に、吸着防止用磁石が対象物に設けられている磁極と反発し、対象物が磁気吸着素子に吸着されて衝突するのを防止できる。 Further, in the magnetic attraction type non-contact transfer device of the present invention, a plurality of the magnetic attraction elements are provided on a common mount, and the magnetic attraction elements are provided in the middle with the magnet provided on the upper side of the object. It is also possible to provide an adsorption preventing magnet having a magnetic pole of a pole and having the magnetic pole facing downward. As a result, when the target object receives a load or impact from below, the attraction prevention magnet repels the magnetic poles provided on the object and prevents the object from being attracted and collided by the magnetic attraction element. it can.

本発明の第1の実施例に係る磁気吸引型非接触搬送装置に用いる磁気吸着素子の構造を示す説明図である。It is explanatory drawing which shows the structure of the magnetic attraction element used for the magnetic attraction type non-contact conveyance apparatus which concerns on the 1st Example of this invention. 同磁気吸引型非接触搬送装置の電気回路の説明図である。It is explanatory drawing of the electric circuit of the same magnetic attraction type non-contact conveyance apparatus. 電流と磁気吸引力との関係を示すグラフである。It is a graph which shows the relationship between an electric current and magnetic attraction. 対象物と磁極との間のギャップと磁極の吸引力との関係を示すグラフである。It is a graph which shows the relationship between the gap between an object and a magnetic pole, and the attraction force of a magnetic pole. 変位目標値を変えた場合の時間とギャップとの関係を示すグラフである。It is a graph which shows the relationship between time and a gap when a displacement target value is changed. (A)、(B)はそれぞれ本発明の第2の実施例に係る磁気吸引型非接触搬送装置の磁気吸着素子の部分断面図である。(A) And (B) is a partial sectional view of the magnetic attraction element of the magnetic attraction type non-contact conveyance apparatus which concerns on the 2nd Example of this invention, respectively. (A)は本発明の第3の実施例に係る磁気吸引型非接触搬送装置の説明図であり、(B)は図7(A)のA−A矢視断面図である。(A) is an explanatory view of a magnetic attraction type non-contact transfer device according to a third embodiment of the present invention, and (B) is a sectional view taken along the line AA of FIG. 7(A).

続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1に示すように、本発明の第1の実施例に係る磁気吸引型非接触搬送装置は、磁気吸着素子10を備えている。磁気吸着素子10は、内側に環状の空洞部11が形成された磁性体の一例である鉄心12と、鉄心12中央の磁極鉄心部13を取り囲む空洞部11に設けられたコイル14と、磁極鉄心部13の中央部に埋め込まれた変位計の一例である渦電流センサー15とを有している。以下、これらについて詳しく説明する。なお、渦電流センサー15は、磁極鉄心部13の軸心に対して偏心して配置することもできる。
Next, an embodiment embodying the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
As shown in FIG. 1, the magnetic attraction type non-contact transfer apparatus according to the first embodiment of the present invention includes a magnetic attraction element 10. The magnetic attraction element 10 includes an iron core 12 which is an example of a magnetic body in which an annular hollow portion 11 is formed, a coil 14 provided in the hollow portion 11 surrounding a magnetic pole iron core portion 13 at the center of the iron core 12, and a magnetic pole iron core. It has an eddy current sensor 15 which is an example of a displacement gauge embedded in the center of the portion 13. These will be described in detail below. The eddy current sensor 15 can also be arranged eccentrically with respect to the axis of the magnetic pole core 13.

鉄心12は、飽和磁束密度の高い鉄材料で形成され、この実施例では中央の磁極鉄心部13を中心として断面円形に形成されている。コイル14には直流を流すので、鉄心12内には渦電流は流れることは殆どなく、必ずしも積層鉄心でなくてもよい。また、この実施例においては、鉄心12は断面円形としているが、E字形鉄心片を積み重ねて構成してもよい。
コイル14は、対象物16の変位の変動性に対する応答性を高めるために、太い導体を用い、低インピーダンスとするのがよく、例えば、その時定数を1/2000〜1/100秒とするのが好ましい。このコイル14と鉄心12によって電磁石17が形成されている。コイル14に通電すると、磁極鉄心部13の下端及びその外側の筒状鉄心部13aの下端に磁極(中央磁極と環状磁極)が形成される。
The iron core 12 is formed of an iron material having a high saturation magnetic flux density, and in this embodiment, the iron core 12 is formed in a circular cross section with the magnetic pole iron core portion 13 at the center as the center. Since a direct current is passed through the coil 14, almost no eddy current flows in the iron core 12, and the laminated core is not necessarily required. In addition, although the iron core 12 has a circular cross section in this embodiment, it may be configured by stacking E-shaped iron core pieces.
The coil 14 is preferably made of a thick conductor and has a low impedance in order to improve the responsiveness to the variability of the displacement of the object 16, for example, its time constant is set to 1/2000 to 1/100 seconds. preferable. An electromagnet 17 is formed by the coil 14 and the iron core 12. When the coil 14 is energized, magnetic poles (central magnetic pole and annular magnetic pole) are formed at the lower end of the magnetic pole core 13 and the lower end of the cylindrical core 13a outside thereof.

渦電流センサー15は、図1の部分拡大図に示すように、中央に棒状部19を、その周囲に筒状部20を、上部に棒状部19と筒状部20の上端を連結するヨーク部21を有するセンサー用コア22と、棒状部19に巻回されたコイル23とを有し、このコイル23に図2に示すコントローラ24から高周波電流を流し、対象物16の変位によって変化するコイル23のインピーダンスを測定し、これを距離に換算する構造となっている。このセンサー用コア22はこの実施例では、高周波特性の良いフェライトコア等の焼結コアを使用しているが、コイル23に流す高周波(例えば、10〜200kHz)に対して損失や発熱を起こしにくい材料であれば、他の磁性材料を使用することもできる。 As shown in a partially enlarged view of FIG. 1, the eddy current sensor 15 has a rod portion 19 in the center, a tubular portion 20 around it, and a yoke portion that connects the rod portion 19 and the upper end of the tubular portion 20 to the upper portion. A sensor core 22 having 21 and a coil 23 wound around the rod-shaped portion 19, and a high-frequency current is passed from the controller 24 shown in FIG. 2 to the coil 23, and the coil 23 changes according to the displacement of the object 16. The impedance is measured and converted into distance. In this embodiment, the sensor core 22 uses a sintered core such as a ferrite core having good high frequency characteristics. However, loss or heat generation is unlikely to occur with respect to a high frequency (for example, 10 to 200 kHz) applied to the coil 23. Other magnetic materials can be used as long as they are materials.

センサー用コア22は、磁極鉄心部13の先側の下部が開放した円柱状空洞部25に埋設されているが、周囲の磁極鉄心部13とは隙間を有して配置され、この隙間部分には樹脂26が充填されている。中央の棒状部19の下端及び周囲の筒状部20の下端の位置は、磁極鉄心部13の下端と一致し、センサー用コア22が磁極鉄心部13の下端、即ち、磁極から露出している。この実施例ではセンサー用コア22の下端は磁極から物理的に露出しているが、表面に樹脂等を塗布する場合も、センサー用コア22が、磁極鉄心部13の磁極の下端から磁気的に露出していることになり、本発明の権利範囲に含まれる。 The sensor core 22 is embedded in a cylindrical hollow portion 25 whose lower portion on the front side of the magnetic pole core portion 13 is open, but is arranged with a gap from the surrounding magnetic pole core portion 13, and in this gap portion. Is filled with resin 26. The positions of the lower end of the central rod-shaped portion 19 and the lower end of the surrounding tubular portion 20 coincide with the lower end of the magnetic pole core portion 13, and the sensor core 22 is exposed from the lower end of the magnetic pole core portion 13, that is, the magnetic pole. .. In this embodiment, the lower end of the sensor core 22 is physically exposed from the magnetic pole. However, when the surface is coated with resin or the like, the sensor core 22 is magnetically exposed from the lower end of the magnetic pole of the magnetic pole core 13. It is exposed and is included in the scope of rights of the present invention.

また、この実施例においては、円柱状空洞部25は磁極鉄心部13の下部にのみ形成しているが、図1に破線eで示すように、磁極鉄心部13を上下に貫通することもでき、これによって、鉄心加工が容易となると共に、渦電流センサー15が磁場の影響を受けにくくなるという利点がある。また、渦電流センサー15の周囲に透磁率の高い材料で形成されたケースを設けることもでき、この場合、このケースを渦電流センサー15に密着させて、又は隙間を有して配置することができ、周囲からの磁束がこのケースを通過し、渦電流センサー15への磁場の影響が更に小さくなる。なお、このケースは円柱状空洞部25に配置されている。 Further, in this embodiment, the cylindrical hollow portion 25 is formed only in the lower portion of the magnetic pole iron core portion 13, but the magnetic pole iron core portion 13 may be vertically penetrated as shown by a broken line e in FIG. As a result, there is an advantage that the iron core is easily processed and the eddy current sensor 15 is less likely to be affected by the magnetic field. In addition, a case formed of a material having a high magnetic permeability can be provided around the eddy current sensor 15, and in this case, the case can be arranged in close contact with the eddy current sensor 15 or with a gap. As a result, the magnetic flux from the surroundings passes through this case, and the influence of the magnetic field on the eddy current sensor 15 is further reduced. It should be noted that this case is arranged in the cylindrical hollow portion 25.

図2には、この磁気吸引型非接触搬送装置に用いる磁気吸着素子10の制御装置28を示すが、電磁石17に設けられた渦電流センサー15のコイル23に接続される前記コントーローラ24を有し、コントローラ24からのアナログ信号(即ち、対象物16の変位信号)をA/Dコンバータ29で変換してコンピュータ(計算機)30にその信号を送っている。一方、コンピュータ30では、対象物16の設定変位(基準高さh)と対象物16の変位信号とから、PD制御又はPID制御を行って、デジタル出力を発生し、これをD/Aコンバータ31でアナログ信号に変換してパワーアンプ32で増幅し、電磁石17のコイル14に通電している。 FIG. 2 shows a control device 28 of the magnetic attraction element 10 used in this magnetic attraction type non-contact transfer device, which has the controller 24 connected to the coil 23 of the eddy current sensor 15 provided in the electromagnet 17. The analog signal from the controller 24 (that is, the displacement signal of the object 16) is converted by the A/D converter 29 and sent to the computer (computer) 30. On the other hand, in the computer 30, PD control or PID control is performed from the set displacement (reference height h) of the target 16 and the displacement signal of the target 16 to generate a digital output, and this is output to the D/A converter 31. Is converted into an analog signal, amplified by the power amplifier 32, and the coil 14 of the electromagnet 17 is energized.

なお、図3に、この電磁石17の中央磁極(磁極鉄心部13)の先端から例えば直下1mmの位置での吸引力(N)と励磁電流(A)との関係を示すが、励磁電流に吸引力は比例する。また、図4には、同一電磁石17を用いて励磁電流を0.06Aとした場合の、電磁石17の中央磁極の先端と対象物16とのギャップ(mm:隙間)と吸引力(N)との関係を示したもので、吸引力は、(ギャップ長+定数)の自乗に反比例して小さくなる。
従って、前記したギャップは渦電流センサー15で測定されるので、磁性物体からなる対象物16(又は磁気吸着素子10)の高さ位置に外乱が発生し急に対象物16が相対的に上昇又は下降した(変位x)場合、これに比例させて電磁石17の電流を増加させても吸引力が追いつかないので、比例要素Pに、変位xの微分要素Dを加えて制御するのがよい。更に、微分要素Dを加えるだけでは外乱に対して敏感に応答するので、変位xの積分要素Iも考慮して制御するPID制御を行うのがよく、これによって、対象物16の変位xを一定の範囲に落ち着かせることができる。なお、この制御系の係数を決定するには、周知の最適レギュレータ理論を適用するのがよい。
Note that FIG. 3 shows the relationship between the attraction force (N) and the exciting current (A) at a position 1 mm directly below the tip of the central magnetic pole (magnetic pole core portion 13) of the electromagnet 17, but the exciting current Power is proportional. Further, FIG. 4 shows the gap (mm: gap) between the tip of the center magnetic pole of the electromagnet 17 and the object 16 and the attractive force (N) when the excitation current is 0.06 A using the same electromagnet 17. The suction force decreases in inverse proportion to the square of (gap length+constant).
Therefore, since the above-mentioned gap is measured by the eddy current sensor 15, a disturbance occurs at the height position of the object 16 (or the magnetic adsorption element 10) made of a magnetic object, and the object 16 suddenly rises relatively or. When it is lowered (displacement x), the attracting force cannot catch up even if the current of the electromagnet 17 is increased in proportion thereto, so it is preferable to add the derivative element D of the displacement x to the proportional element P to control. Furthermore, since the response to the disturbance is sensitive only by adding the differential element D, it is preferable to perform the PID control in which the integral element I of the displacement x is also taken into consideration, whereby the displacement x of the object 16 is kept constant. You can calm down into the range. In order to determine the coefficient of this control system, it is preferable to apply the well-known optimal regulator theory.

対象物16の変位を変える場合には、コンピュータ30の予め決められている変位x(ギャップ)の基準値を変更することになる。この基準値を変えると、その差分に応じて対象物16が上昇又は下降し、再設定された所定の変位で保持される(図5参照)。この状態で、磁気吸着素子10が取付けられた磁気吸引型非接触搬送装置を例えば水平移動させると、対象物16と電磁石17の中央磁極の距離が一瞬長くなろうとするので、電磁石17の力で制御され対象物16の重力とバランスしながら水平移動することになる。なお、磁気吸引型非接触搬送装置を制御系が応答できる速度範囲で、磁気吸引型非接触搬送装置が上昇、下降、又は斜め移動する場合も、対象物16は電磁石17に吸引されながら移動する。また、対象物16と電磁石17の中央磁極の距離は、電磁石17の磁力及び対象物16の重量に対応して必然的に最小値と最大値を有する制御可能変位領域が存在する。
例えば、対象物16をテーブルの上に載置する場合には、テーブルの上に載る対象物16が前記した制御可能変位領域にあることを確認した後、徐々に対象物16の変位を下げることによって行う。また、テーブルの上にある対象物16をつり上げる場合には、逆の操作をすることになる。
When changing the displacement of the object 16, the predetermined reference value of the displacement x (gap) of the computer 30 is changed. When this reference value is changed, the object 16 moves up or down according to the difference and is held at the reset predetermined displacement (see FIG. 5). In this state, when the magnetic attraction type non-contact transfer device to which the magnetic attraction element 10 is attached is horizontally moved, for example, the distance between the object 16 and the central magnetic pole of the electromagnet 17 is about to increase for a moment. It is controlled and moves horizontally while balancing the gravity of the object 16. In addition, even when the magnetic attraction type non-contact type conveying device moves up, down, or obliquely within a speed range in which the control system can respond to the magnetic attraction type non-contact type conveying device, the object 16 moves while being attracted by the electromagnet 17. .. Further, the distance between the object 16 and the central magnetic pole of the electromagnet 17 necessarily has a controllable displacement region having a minimum value and a maximum value corresponding to the magnetic force of the electromagnet 17 and the weight of the object 16.
For example, when the object 16 is placed on the table, after confirming that the object 16 placed on the table is in the controllable displacement area, the displacement of the object 16 is gradually reduced. Done by Further, when the object 16 on the table is lifted, the reverse operation is performed.

続いて、図6(A)、(B)を参照しながら、本発明の第2の実施例に係る磁気吸引型非接触搬送装置の磁気吸着素子35について説明するが、第1の実施例に使用した磁気吸着素子10と同一の構成要素は同一の符号を用いてその詳しい説明を省略する。
図6に示すように、磁気吸着素子35は、鉄心12の周囲に環状の永久磁石36が設けられている。この永久磁石36の下端の磁極は、鉄心12の外側筒37の下端の磁極と同一となって、丁度、電磁石17の磁気を増加する方向に永久磁石36が配置されている。なお、電磁石17の励磁電流を0とした場合、この永久磁石36の強さだけでは、対象物16を引き上げることができない強さの永久磁石36を使用している。これによって、対象物16をつり上げる場合には、この永久磁石36からの磁束が電磁石17の磁束に加わり、励磁電流を減らすことができる。
なお、この永久磁石の配置位置は、永久磁石の磁束が電磁石17の磁束に重畳できるような位置であれば、鉄心12の内部や途中位置であってもよい。
Next, the magnetic attraction element 35 of the magnetic attraction type non-contact transfer apparatus according to the second embodiment of the present invention will be described with reference to FIGS. The same components as those of the magnetic attraction element 10 used are designated by the same reference numerals, and detailed description thereof will be omitted.
As shown in FIG. 6, in the magnetic attraction element 35, an annular permanent magnet 36 is provided around the iron core 12. The magnetic pole at the lower end of the permanent magnet 36 is the same as the magnetic pole at the lower end of the outer cylinder 37 of the iron core 12, and the permanent magnet 36 is arranged in the direction in which the magnetism of the electromagnet 17 is increased. When the exciting current of the electromagnet 17 is set to 0, the strength of the permanent magnet 36 is not enough to pull up the object 16 and the permanent magnet 36 is used. Thus, when the object 16 is lifted, the magnetic flux from the permanent magnet 36 is added to the magnetic flux of the electromagnet 17, and the exciting current can be reduced.
The position of the permanent magnet may be inside or in the middle of the iron core 12 as long as the magnetic flux of the permanent magnet can be superimposed on the magnetic flux of the electromagnet 17.

また、電磁石17の外側(内側でもよい)に、回転磁界を発生させる補助コイル38を設けることもできる。この補助コイル38の構造は誘導モータのステータの構造と同一であって、例えば、インバータ等によって周波数を制御された交流を流すと、これに応じて対象物に回転トルクが加わる。対象物が例えば、球体である場合には、これに回転を与えることができる。この場合、回転体(球体)の回転軸心が決まらない場合には、回転体の上部のみを磁性体とするか、又は回転体の上部に電磁石17の中央磁極に吸着される永久磁石を配置しておいてもよい。
なお、この磁気吸着素子35には支持ケース12aを介して雄ねじ39が設けられて、磁気吸引型非接触搬送装置の取付けフレーム(例えば、磁気吸引型非接触搬送装置の一例であるロボットハンドのアームの先端)に固定できる構造となっている。
Further, an auxiliary coil 38 that generates a rotating magnetic field may be provided outside (or inside) the electromagnet 17. The structure of the auxiliary coil 38 is the same as the structure of the stator of the induction motor. For example, when an alternating current whose frequency is controlled by an inverter or the like is passed, a rotating torque is applied to the object in response. If the object is, for example, a sphere, it can be given rotation. In this case, when the rotation axis of the rotating body (sphere) is not determined, only the upper portion of the rotating body is made to be a magnetic body, or a permanent magnet attracted to the central magnetic pole of the electromagnet 17 is arranged above the rotating body. You may keep it.
The magnetic attraction element 35 is provided with a male screw 39 via the support case 12a, and a mounting frame of the magnetic attraction type non-contact type conveying device (for example, an arm of a robot hand which is an example of the magnetic attraction type non-contact type conveying device). It has a structure that can be fixed to the tip.

続いて、図7を参照しながら、本発明の第3の実施例に係る磁気吸引型非接触搬送装置40について説明する。
図7に示すように、この実施例に係る磁気吸引型非接触搬送装置40は、搬送架台41と、その下部の4隅に設けられている磁気吸着素子42とを有している。この磁気吸着素子42の構造は、先に説明した磁気吸着素子10、35と実質同一である。従って、それぞれの磁気吸着素子42について独立に制御装置を有している。
なお、搬送対象物43には、磁気吸着素子42に対応する位置に磁着物の一例である鉄柱44〜47が設けられている。この鉄柱44〜47の表面は同一高さにあって、それぞれ滑らかな平面を形成している。
Subsequently, a magnetic attraction type non-contact transfer device 40 according to a third embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 7, the magnetic attraction type non-contact transfer device 40 according to this embodiment has a transfer frame 41 and magnetic attraction elements 42 provided at the four corners of the lower part thereof. The structure of the magnetic attraction element 42 is substantially the same as that of the magnetic attraction elements 10 and 35 described above. Therefore, each magnetic attraction element 42 has a control device independently.
It should be noted that the object 43 to be conveyed is provided with iron columns 44 to 47, which are examples of magnetic objects, at positions corresponding to the magnetic attraction elements 42. The surfaces of the iron columns 44 to 47 are at the same height and form smooth flat surfaces.

また、この磁気吸引型非接触搬送装置40においては、隣り合う磁気吸着素子42の中間部には磁極が下方に向いた吸着防止磁石50〜53が設けられている。一方、搬送対象物43の上側には、この吸着防止磁石50〜53に対応する位置に、永久磁石54〜57が設けられている。永久磁石54〜57と、対応する吸着防止磁石50〜53の極性は同極となってお互いが反発するようになっている。吸着防止磁石50〜53は永久磁石であるのが好ましいが、電磁石であってもよい。なお、吸着防止磁石50〜53と永久磁石54〜57のそれぞれの露出する磁極は全部同一の磁極(例えば、N極)とするのがよい。
吸着防止磁石50〜53の先端は、磁気吸着素子42の先端より距離Lだけ突出しているのが好ましい。これによって、搬送対象物43が急上昇した場合であっても、吸着防止磁石50〜53が永久磁石54〜57と反発するので、鉄柱44〜47が磁気吸着素子42に衝突吸着することはない。なお、吸着防止磁石50〜53と永久磁石54〜57との反発力が大きすぎると、磁気吸着素子42によって鉄柱44〜47(即ち、搬送対象物43)が吸着されないので、吸着防止磁石50〜53が永久磁石54〜57に当接する又は近接する位置(例えば0〜4mm)では反発力が強く、それを超える位置では、磁気吸着素子42と鉄柱44〜47との吸着力の方が強くなるように、距離L及びその磁石の強さを調整するのがよい。なお、吸着防止磁石50〜53を電磁石として、それぞれ渦電流センサー15で鉄柱44〜47までの距離を測定し、吸着防止磁石50〜53の電流を制御してもよい。
Further, in the magnetic attraction type non-contact transfer device 40, attraction preventing magnets 50 to 53 having magnetic poles directed downward are provided in the intermediate portions of the adjacent magnetic attraction elements 42. On the other hand, permanent magnets 54 to 57 are provided on the upper side of the object to be transported 43 at positions corresponding to the attraction preventing magnets 50 to 53. The polarities of the permanent magnets 54 to 57 and the corresponding attraction preventing magnets 50 to 53 are the same, and repel each other. The adsorption prevention magnets 50 to 53 are preferably permanent magnets, but may be electromagnets. It is preferable that all the exposed magnetic poles of the attraction preventing magnets 50 to 53 and the permanent magnets 54 to 57 are the same magnetic pole (for example, N pole).
The tips of the attraction preventing magnets 50 to 53 preferably project a distance L from the tips of the magnetic attraction element 42. As a result, even when the object 43 to be transported suddenly rises, the attraction preventing magnets 50 to 53 repel the permanent magnets 54 to 57, so that the iron columns 44 to 47 do not collide with the magnetic attraction element 42 and attract. If the repulsive force between the attraction preventing magnets 50 to 53 and the permanent magnets 54 to 57 is too large, the magnetic attraction element 42 does not attract the iron columns 44 to 47 (that is, the object 43 to be conveyed). The repulsive force is strong at a position where 53 is in contact with or close to the permanent magnets 54 to 57 (for example, 0 to 4 mm), and at a position exceeding 53, the attractive force between the magnetic attraction element 42 and the iron columns 44 to 47 is stronger. Thus, the distance L and the strength of the magnet may be adjusted. The attraction preventing magnets 50 to 53 may be used as electromagnets, and the eddy current sensor 15 may measure the distances to the iron columns 44 to 47 to control the currents of the attraction preventing magnets 50 to 53.

この実施例に係る磁気吸引型非接触搬送装置40において、吸着防止磁石50〜53及び永久磁石54〜57を省略し、各磁気吸着素子42に鉄柱44〜47を吸引させ、渦電流センサー15によって各鉄柱44〜47の変位を適正に保って、搬送対象物43をつり上げることもできる。この場合、磁気吸引型非接触搬送装置40の移動に沿って、搬送対象物43も移動することになる。この場合、鉄柱44〜47の一部又は全部に永久磁石を使用することもでき、これによって、磁気吸着素子42を流れる電流を減らすことができる。
なお、搬送対象物43は、この実施例においては、特別に作られたキャリッジからなって、内部に、例えば、放射性物質、半導体又はその装置、その他の化学物質等が配置されている。
また、前記実施例においては、磁気吸着素子が1つ又は4つの場合で説明したが、その他の個数の磁気吸着素子を用いる場合も本発明は適用される。
更には、前記実施例においては、変位計として渦電流センサーを使用したが、光学的な距離計、超音波や電波を利用した距離計、場合によって静電容量を利用した距離計であっても本発明は適用される。また、対象物は磁性物からなる球体又はその他の軸対象物体であるのが好ましいが、本発明は以上の形状には限定されず、箱状物や籠状物であってもよい。
そして、本発明においては、発明の理解を容易にするため、具体的数字を用いて説明したが、本発明はこれらの数字には限定されるものではない。
In the magnetic attraction type non-contact transfer device 40 according to this embodiment, the attraction preventing magnets 50 to 53 and the permanent magnets 54 to 57 are omitted, and the magnetic attraction elements 42 are caused to attract the iron columns 44 to 47, and the eddy current sensor 15 is used. It is also possible to lift the object 43 to be transported while appropriately maintaining the displacement of each of the iron columns 44 to 47. In this case, the conveyance target 43 also moves along with the movement of the magnetic attraction type non-contact conveyance device 40. In this case, permanent magnets may be used for some or all of the iron columns 44 to 47, which can reduce the current flowing through the magnetic attraction element 42.
It should be noted that, in this embodiment, the object to be transported 43 is composed of a specially made carriage, and inside thereof, for example, a radioactive substance, a semiconductor or its device, other chemical substances, etc. are arranged.
Further, in the above-described embodiment, the case where the number of magnetic attraction elements is one or four has been described, but the present invention is also applicable to the case where other numbers of magnetic attraction elements are used.
Further, although the eddy current sensor is used as the displacement meter in the above-mentioned embodiment, an optical range finder, a range finder using ultrasonic waves or radio waves, and a range finder utilizing electrostatic capacitance in some cases may be used. The invention applies. Further, the object is preferably a spherical body made of a magnetic material or another axial object, but the present invention is not limited to the above shape and may be a box-shaped object or a cage-shaped object.
In the present invention, specific numbers are used to facilitate understanding of the present invention, but the present invention is not limited to these numbers.

本発明に係る磁気吸引型非接触搬送装置は、対象物の変位を測定する変位計が磁性体内に組み込まれているので、装置全体をコンパクトに構成できる。従って、本発明に係る磁気吸引型非接触搬送装置を用いて、宙づり状態の対象物(例えば、地球や月模型)を有する装飾物を提供できるだけでなく、タンクやチャンバー等内に収納された対象物を外部から位置制御や移動制御をすることができ、半導体の製造装置、化学や生物に関する実験装置、宇宙開発の分野で利用可能である。 In the magnetic attraction type non-contact transfer device according to the present invention, since the displacement gauge for measuring the displacement of the object is incorporated in the magnetic body, the entire device can be made compact. Therefore, by using the magnetic attraction type non-contact transfer device according to the present invention, it is possible not only to provide a decoration having a suspended object (for example, the earth or a moon model) but also an object stored in a tank, a chamber, or the like. It can be used to control the position and movement of objects from the outside, and can be used in the fields of semiconductor manufacturing equipment, chemical and biological experimental equipment, and space development.

Claims (9)

コイルが巻かれて先部に磁極を形成する磁性体と、前記磁性体に組み込まれ前記磁極によって吸引される対象物の変位を測定する変位計と、該変位計の出力を入力とし前記コイルに流れる電流を制御して前記対象物の位置を制御する制御装置とを備えた磁気吸着素子を1又は2以上有することを特徴とする磁気吸引型非接触搬送装置。 A magnetic body that is wound with a coil to form a magnetic pole at the tip, a displacement meter that is incorporated in the magnetic body and that measures the displacement of an object that is attracted by the magnetic pole, and the output of the displacement meter is input to the coil. A magnetic attraction type non-contact transfer device comprising one or two or more magnetic attraction elements provided with a control device for controlling the flowing current to control the position of the object. 請求項1記載の磁気吸引型非接触搬送装置において、前記変位計は前記磁性体の内部に形成され、少なくともその下部が開放した空洞部に一体的に組み込まれ、前記磁極の直下にある前記対象物の変位を直接検知することを特徴とする磁気吸引型非接触搬送装置。 2. The magnetic attraction type non-contact transfer device according to claim 1, wherein the displacement gauge is formed inside the magnetic body, is integrally incorporated in a hollow portion at least a lower portion of which is open, and is directly under the magnetic pole. A magnetic attraction type non-contact transfer device characterized by directly detecting the displacement of an object. 請求項2記載の磁気吸引型非接触搬送装置において、前記変位計は、前記磁性体とは隙間を有して配置されていることを特徴とする磁気吸引型非接触搬送装置。 The magnetic attraction type non-contact type conveying device according to claim 2, wherein the displacement gauge is arranged with a gap from the magnetic body. 請求項3記載の磁気吸引型非接触搬送装置において、前記変位計は、隙間を有して又は密着して高透磁率のケースに収納されて、前記空洞部に配置されていることを特徴とする磁気吸引型非接触搬送装置。 4. The magnetic attraction type non-contact transfer apparatus according to claim 3, wherein the displacement gauge is housed in a case having a high permeability with a gap or in close contact, and is arranged in the cavity. Magnetic attraction type non-contact transfer device. 請求項1〜4のいずれか1項に記載の磁気吸引型非接触搬送装置において、前記磁性体の内側又は外側に永久磁石が組み込まれていることを特徴とする磁気吸引型非接触搬送装置。 The magnetic attraction type non-contact conveyance device according to any one of claims 1 to 4, wherein a permanent magnet is incorporated inside or outside the magnetic body. 請求項1〜5のいずれか1項に記載の磁気吸引型非接触搬送装置において、前記磁性体の内又は外には、前記対象物に回転トルクを与える補助コイルが設けられていることを特徴とする磁気吸引型非接触搬送装置。 The magnetic attraction type non-contact conveyance device according to any one of claims 1 to 5, wherein an auxiliary coil that applies a rotational torque to the object is provided inside or outside the magnetic body. Magnetic attraction type non-contact transfer device. 請求項6記載の磁気吸引型非接触搬送装置において、1つの前記磁気吸着素子を用い、前記対象物は磁性物からなる球体又はその他の軸対象物体であることを特徴とする磁気吸引型非接触搬送装置。 The magnetic attraction type non-contact transfer apparatus according to claim 6, wherein one magnetic attraction element is used, and the target object is a spherical body made of a magnetic material or another axial target object. Transport device. 請求項1〜7のいずれか1項に記載の磁気吸引型非接触搬送装置において、前記磁気吸着素子は、ロボットハンドのアームの先部に設けられていることを特徴とする磁気吸引型非接触搬送装置。 The magnetic attraction type non-contact transfer device according to any one of claims 1 to 7, wherein the magnetic attraction element is provided at a tip of an arm of a robot hand. Transport device. 請求項1〜7のいずれか1項に記載の磁気吸引型非接触搬送装置において、複数の前記磁気吸着素子が共通の架台に設けられ、前記磁気吸着素子の中間には、前記対象物の上側に設けられた磁石とは同極の磁極を有ししかもその磁極が下方に向いた吸着防止用磁石が設けられていることを特徴とする磁気吸引型非接触搬送装置。 The magnetic attraction type non-contact conveyance device according to any one of claims 1 to 7, wherein a plurality of the magnetic attraction elements are provided on a common mount, and the magnetic attraction elements have an upper side of the object in the middle thereof. A magnetic attraction type non-contact transfer device having a magnetic pole having the same pole as that of the magnet provided in the above, and further provided with an attraction preventing magnet having the magnetic pole facing downward.
JP2006547756A 2004-11-30 2005-11-18 Magnetic suction type non-contact transfer device Active JP4802332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547756A JP4802332B2 (en) 2004-11-30 2005-11-18 Magnetic suction type non-contact transfer device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004346842 2004-11-30
JP2004346842 2004-11-30
PCT/JP2005/021273 WO2006059505A1 (en) 2004-11-30 2005-11-18 Magnetic attraction noncontact conveyer
JP2006547756A JP4802332B2 (en) 2004-11-30 2005-11-18 Magnetic suction type non-contact transfer device

Publications (2)

Publication Number Publication Date
JPWO2006059505A1 true JPWO2006059505A1 (en) 2008-06-05
JP4802332B2 JP4802332B2 (en) 2011-10-26

Family

ID=36564940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006547756A Active JP4802332B2 (en) 2004-11-30 2005-11-18 Magnetic suction type non-contact transfer device

Country Status (2)

Country Link
JP (1) JP4802332B2 (en)
WO (1) WO2006059505A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129650B (en) * 2014-07-18 2017-04-19 华南理工大学 Positioning, conveying and feeding device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262802A (en) * 1989-03-31 1990-10-25 Toshiba Corp Levitation type carrier
JPH04236172A (en) * 1991-01-18 1992-08-25 Masafumi Yano Space holding device using electrostatic power or magnetic force
JPH04260534A (en) * 1991-02-18 1992-09-16 Ebara Corp Superconductivity type lifting device
JPH06179524A (en) * 1992-07-18 1994-06-28 Ebara Corp Magnetic levitation vacuum conveyance device
JP2001295842A (en) * 2000-04-14 2001-10-26 Mitsubishi Electric Corp Magnetic bearing device
JP2002140116A (en) * 2000-11-01 2002-05-17 Toshin Denki Kk Coating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286303A (en) * 1991-03-15 1992-10-12 Kanetetsuku Kk Magnetic levitation device
JP3205623B2 (en) * 1992-12-25 2001-09-04 株式会社荏原製作所 Magnetic levitation transfer device
JP3456307B2 (en) * 1995-06-30 2003-10-14 株式会社ニコン Magnetic levitation stage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262802A (en) * 1989-03-31 1990-10-25 Toshiba Corp Levitation type carrier
JPH04236172A (en) * 1991-01-18 1992-08-25 Masafumi Yano Space holding device using electrostatic power or magnetic force
JPH04260534A (en) * 1991-02-18 1992-09-16 Ebara Corp Superconductivity type lifting device
JPH06179524A (en) * 1992-07-18 1994-06-28 Ebara Corp Magnetic levitation vacuum conveyance device
JP2001295842A (en) * 2000-04-14 2001-10-26 Mitsubishi Electric Corp Magnetic bearing device
JP2002140116A (en) * 2000-11-01 2002-05-17 Toshin Denki Kk Coating system

Also Published As

Publication number Publication date
JP4802332B2 (en) 2011-10-26
WO2006059505A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US7859157B2 (en) Magnetic levitation system
JP4543181B2 (en) Non-contact transfer device by superconducting magnetic levitation
US4983869A (en) Magnetic bearing
US8836190B2 (en) Magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
JPH0626808A (en) Sensor target
JP2017514446A (en) Device for holding, positioning and / or moving objects
US5980193A (en) Magnetically levitated robot and method of increasing levitation force
JP4802332B2 (en) Magnetic suction type non-contact transfer device
Takase et al. Basic study on magnetic levitation system using superconducting coil
Hossain et al. Development of a cost effective magnetic levitation system using PIC12F683 microcontroller and photo sensor
JP2547405B2 (en) Magnetic levitation carrier
TWM473861U (en) Magnetic levitation rotary device
JPWO2005039019A1 (en) Actuator
CN112324802A (en) Radial magnetic suspension bearing without position sensor
KR100878619B1 (en) Levitation rotation apparatus using electromagnet and rotation method thereof
RAHMAN et al. Suspension characteristics of differentially operated AC magnetic suspension system using magnetic resonant coupling
JP2004293598A (en) Magnetic bearing
Sun et al. Magnetic suspension system by flux path control using rotary actuator
JPS61202406A (en) Magnetic levitation apparatus
WO2023028949A1 (en) Magnetic bearing
Xu et al. Modeling and Validation of Diamagnetic Rotor Levitated by Permanent Magnetics
JP2519537Y2 (en) Magnetic bearing control circuit
JP3864227B2 (en) Repulsive magnetic levitation unit and transport system using this unit
Iida et al. Realization of diamagnetic levitation of column-shaped graphite
JPH0739015A (en) Conveyance device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150