JPWO2005012310A1 - Use of thienopyridine compounds in perfumery and novel thienopyridine compounds - Google Patents

Use of thienopyridine compounds in perfumery and novel thienopyridine compounds Download PDF

Info

Publication number
JPWO2005012310A1
JPWO2005012310A1 JP2005512610A JP2005512610A JPWO2005012310A1 JP WO2005012310 A1 JPWO2005012310 A1 JP WO2005012310A1 JP 2005512610 A JP2005512610 A JP 2005512610A JP 2005512610 A JP2005512610 A JP 2005512610A JP WO2005012310 A1 JPWO2005012310 A1 JP WO2005012310A1
Authority
JP
Japan
Prior art keywords
pyridine
tetrahydrothieno
methyl
formula
thienopyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005512610A
Other languages
Japanese (ja)
Other versions
JP4517381B2 (en
Inventor
真紀 安田
真紀 安田
秀明 高岡
秀明 高岡
久仁生 石本
久仁生 石本
行成 星田
行成 星田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soda Aromatic Co Ltd
Original Assignee
Soda Aromatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soda Aromatic Co Ltd filed Critical Soda Aromatic Co Ltd
Publication of JPWO2005012310A1 publication Critical patent/JPWO2005012310A1/en
Application granted granted Critical
Publication of JP4517381B2 publication Critical patent/JP4517381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0069Heterocyclic compounds
    • C11B9/0096Heterocyclic compounds containing at least two different heteroatoms, at least one being nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Fodder In General (AREA)
  • Seasonings (AREA)
  • Cosmetics (AREA)
  • Fats And Perfumes (AREA)

Abstract

本発明は、チエノピリジン系化合物を添加してなる新規な香料組成物、食品、飼料および香粧品を提供する。本発明は下記一般式I(式中、R1〜R6はHまたはCH3またはCH2CH3を表す。)で示される化合物の香料への使用に関する発明である。The present invention provides a novel fragrance composition, food, feed and cosmetic product to which a thienopyridine compound is added. The present invention relates to the use of a compound represented by the following general formula I (wherein R1 to R6 represent H, CH3, or CH2CH3) for a fragrance.

Description

本発明は、香料成分や香気増強剤として有用なチエノピリジン系化合物を添加してなる香料組成物とその使用に関するものである。また、本発明は該チエノピリジン系化合物において、新規な化合物に関するものであり、さらには新規チエノピリジン系化合物のうち、5−アルキル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンの製造方法に関するものである。  The present invention relates to a fragrance composition obtained by adding a thienopyridine compound useful as a fragrance component or an aroma enhancer, and its use. The present invention also relates to a novel compound among the thienopyridine compounds, and among the novel thienopyridine compounds, 5-alkyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2 -C] relates to a method for producing pyridine.

従来、食品等の香気や香味を増強させたり、食品等に特徴的な香気を付与させるためには、食品等に香料や天然抽出物を添加している。例えば、コーヒーの香気を増強させたり、コーヒーに特徴的な香気を付与させるためには、コーヒーに穀類、豆類または殻果類の乾留留出物を添加する方法(特許文献1参照)、コーヒー抽出液をポーラス型イオン交換樹脂に通液させ、脱着濃縮した抽出液をコーヒーに添加する方法(特許文献2参照)、および調合香料をコーヒーに添加するなどの方法が知られている。しかしながら今まで、ある一種類の化合物の添加で、コーヒーに強く特徴的な焙煎香気を付与できるような化合物は報告されておらず、また現在使用されている調合香料、コーヒー抽出物またはその他天然抽出物では、深煎りコーヒーのように強く特徴的な焙煎感のある香気をコーヒーに付与することができなかった。
また従来、チエノピリジン系化合物として、4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,3−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4,6−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、および4,7−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンが知られているが、これらのチエノピリジン系化合物はいずれも医薬品などの部分構造としてか、もしくは合成中間体であって、当該化合物自体の香料などへの使用は、全く示唆されていなかった。
日本特開2000−333635号公報 日本特開2000−166474号公報 国際公開WO99/54303号公報 国際公開WO99/33804号公報
Conventionally, in order to enhance the aroma and flavor of food and the like, or to impart a characteristic aroma to food and the like, a fragrance and a natural extract are added to the food and the like. For example, in order to enhance the aroma of coffee or impart a characteristic aroma to coffee, a method of adding a distillate of cereals, beans or shellfish to coffee (see Patent Document 1), coffee extraction There are known a method in which a liquid is passed through a porous ion exchange resin, and a desorbed and concentrated extract is added to coffee (see Patent Document 2), and a blended fragrance is added to coffee. However, to date, no compound has been reported that can add a strong and characteristic roasting aroma to coffee with the addition of a single compound, and currently used blended fragrances, coffee extracts or other natural ingredients. In the extract, it was not possible to impart a strong and characteristic roasting fragrance to coffee as in deep roasted coffee.
Conventionally, as the thienopyridine-based compound, 4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2,3-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 4- Methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 6-methyl-4, 5,6,7-tetrahydrothieno [3,2-c] pyridine, 4,6-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, and 4,7-dimethyl-4 , 5,6,7-tetrahydrothieno [3,2 c] Pyridine is known, but these thienopyridine compounds are either partial structures such as pharmaceuticals or synthetic intermediates, and the use of the compounds themselves in perfumes is not suggested at all. It was.
Japanese Unexamined Patent Publication No. 2000-333635 Japanese Unexamined Patent Publication No. 2000-166474 International Publication No. WO99 / 54303 International Publication WO99 / 33804

本発明の目的は、特に飲食品に有用な新規香料組成物を提供することであり、より具体的には、チエノピリジン系化合物を添加した香料組成物および、それを添加した食品、飼料、香粧品を提供することである。さらには、香料化合物や合成原料などに有用な新規チエノピリジン系化合物を提供すること、また、更にそれら新規チエノピリジン系化合物のうち、特に5−アルキル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンの製造方法を提供することにある。
本発明者らは、コーヒーに深煎りコーヒーのような強く特徴的な焙煎感を与えうる香気化合物について鋭意研究を進めていたところ、高焙煎コーヒー豆の抽出物から、今までにない特徴的焙煎香気を付与することの可能な新規チエノピリジン系化合物を見いだし、本発明を完成するに至った。
すなわち、本発明は下記の一般式I
[一般式I]

Figure 2005012310
(式中、R1〜R6はHまたはCHまたはCHCHを表す。)で示されるチエノピリジン系化合物の少なくとも1種を添加してなる香料組成物である。
また、本発明におけるチエノピリジン系化合物は新規の化合物を含む。すなわち、本発明の新規化合物は下記の一般式II
[一般式II]
Figure 2005012310
(式中、R1〜R6は、HまたはCHまたはCHCHを表す。ただし、R1からR6のすべてがH、R2がCHでその他がH、RがCHでその他がH、R4がCHでその他がH、R5がCHでその他がH、R6がCHでその他がH、R1とR4がCHでその他がH、R2とR4がCHでその他がH、およびR5とR6がCHでその他がHのものは除く。)で示されるチエノピリジン系化合物である。
さらには、本発明の新規チエノピリジン系化合物は、下記の化学式I
[化学式I]
Figure 2005012310
で示される3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、および下記の化学式II
[化学式II]
Figure 2005012310
で示される2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンである。
また、本発明の他の好ましい態様は、これらのチエノピリジン系化合物を添加してなる香料組成物を添加してなる食品、飼料および香粧品である。
更にそれら新規チエノピリジン系化合物のうち、特に下記の一般式III
[一般式III]
Figure 2005012310
(式中、R3は、CH またはCH CH を表す。)で示される、5−アルキル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンは、下記の反応式Iにより容易に製造することが出来る。
[反応式I]
Figure 2005012310
(式中、R3は、CHまたはCHCHのいずれかを表す。)
具体的に、上記の反応式Iにおいて、式(1)で示される1−アルキル−4−ピペリドンと式(2)の示されるピルビックアルデヒドジメチルアセタールを、塩基の存在下に反応させて式(3)で示される化合物を得、次いでこれを脱水反応させて式(4)で示される化合物とし、これに水素添加して式(5)で示される化合物を得た後に、チオフェン化することにより、式(6)で示される5−アルキル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンを製造することができる。
また、更に2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンや5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンは、それ自体公知の方法[国際公開WO99/33804号公報]で入手可能な2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンや4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンを、下記の反応式IIのようにメチル化することにより、容易に製造することが出来る。
[反応式II]
Figure 2005012310
(式中R6はCH又はHを表す。)
本発明のチエノピリジン系化合物は、今までにない特徴的焙煎香気および香気増強効果を有している。したがって、このチエノピリジン系化合物を有効香気成分とした香料組成物および香気増強剤を提供することができる。また、これらのこのチエノピリジン系化合物や香料組成物を食品、飲料、飼料および香粧品に添加することによって、それらの香気を増強することができる。更にそれら新規チエノピリジン系化合物のうち、特に5−アルキル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンは、有機合成の手法により容易に製造することが出来る。An object of the present invention is to provide a novel fragrance composition particularly useful for foods and drinks, and more specifically, a fragrance composition to which a thienopyridine compound is added, and foods, feeds and cosmetics to which the fragrance composition is added. Is to provide. Furthermore, the present invention provides a novel thienopyridine compound useful as a perfume compound or a synthetic raw material, and among these novel thienopyridine compounds, particularly 5-alkyl-3-methyl-4,5,6,7-tetrahydro. The object is to provide a method for producing thieno [3,2-c] pyridine.
The inventors of the present invention have been diligently researching on aroma compounds that can give coffee a strong and characteristic roasting feeling like deep roasted coffee. The present inventors have found a novel thienopyridine-based compound capable of imparting a roasting fragrance and completed the present invention.
That is, the present invention provides the following general formula I
[General Formula I]
Figure 2005012310
(Wherein, R1-R6 represent. H or CH 3 or CH 2 CH 3) a perfume composition obtained by adding at least one thienopyridine compounds represented by.
Further, the thienopyridine compound in the present invention includes a novel compound. That is, the novel compound of the present invention has the following general formula II
[General Formula II]
Figure 2005012310
(Wherein, R1-R6 represents H or CH 3 or CH 2 CH 3. However, all the R1 to R6 is H, R2 is other in CH 3 is H, R 3 is other in CH 3 is H, R4 other is H in CH 3, R5 is other other is H, R6 is other other is H, R1 and R4 are CH 3 with CH 3 is H, R2 and R4 are CH 3 with CH 3 H and, R5 and R6 are CH 3 and the others are H.).
Furthermore, the novel thienopyridine compound of the present invention has the following chemical formula I
[Formula I]
Figure 2005012310
3,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by the formula:
[Chemical Formula II]
Figure 2005012310
2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine.
Moreover, the other preferable aspect of this invention is the foodstuff, feed, and cosmetics which add the fragrance | flavor composition formed by adding these thienopyridine type compounds.
Further, among these novel thienopyridine compounds, in particular the following general formula III
[General Formula III]
Figure 2005012310
(Wherein R 3 represents CH 3 or CH 2 CH 3 ), 5-alkyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine is It can be easily produced according to the following reaction formula I.
[Reaction Formula I]
Figure 2005012310
(Wherein, R3 represents either CH 3 or CH 2 CH 3.)
Specifically, in the above reaction formula I, 1-alkyl-4-piperidone represented by the formula (1) and pyruvic aldehyde dimethyl acetal represented by the formula (2) are reacted in the presence of a base to form the formula ( By obtaining a compound represented by 3), then dehydrating it to obtain a compound represented by formula (4), and hydrogenating this to obtain a compound represented by formula (5), followed by thiophenation. 5-alkyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by the formula (6) can be produced.
Further, 2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine and 5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine 2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine or 4,5,6,7 available by a method known per se [WO99 / 33804]. -Tetrahydrothieno [3,2-c] pyridine can be easily produced by methylation as shown in Reaction Formula II below.
[Reaction Formula II]
Figure 2005012310
(Wherein R 6 represents CH 3 or H)
The thienopyridine compound of the present invention has an unprecedented characteristic roasting aroma and aroma enhancing effect. Therefore, the fragrance | flavor composition and fragrance | flavor enhancer which used this thienopyridine type compound as an active aroma component can be provided. Further, by adding these thienopyridine compounds and fragrance compositions to foods, beverages, feeds and cosmetics, their aroma can be enhanced. Furthermore, among these novel thienopyridine compounds, in particular, 5-alkyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine can be easily produced by means of organic synthesis. .

本発明者らは、焙煎コーヒー豆を有機溶剤にて抽出し、抽出された抽出液を濃縮し、得られた溶剤抽出物を蒸留し、蒸留された蒸留液を酸・アルカリにより液−液分配した後、これをシリカゲルカラムクロマトグラフィー処理することで、チエノピリジン系化合物が約20%まで濃縮された成分を得ることができることを見いだした。
本発明の新規チエノピリジン系化合物は、下記の一般式II
[一般式II]

Figure 2005012310
(式中、R1〜R6は、HまたはCHまたはCHCHを表す。ただし、R1からR6のすべてがH、R2がCHでその他がH、R3がCHでその他がH、R4がCHでその他がH、R5がCHでその他がH、R6がCHでその他がH、R1とR4がCHでその他がH、R2とR4がCHでその他がH、およびR5とR6がCHでその他がHのものは除く。)で示されるチエノピリジン系化合物である。
また、本発明の香料組成物は、下記の一般式I
[一般式I]
Figure 2005012310
(式中、R1〜R6は、HまたはCHまたはCHCHを表す。)で示されるチエノピリジン系化合物を1種または2種以上含有する香料組成物である。
本発明の上記式で示されるチエノピリジン系化合物としてより具体的には、例えば、7−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,4−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,6−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,7−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3,4−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3,6−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3,7−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5,6−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5,7−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6,7−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2−エチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3−エチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4−エチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5−エチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6−エチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、7−エチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2−エチル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2−エチル−4−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2−エチル−5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2−エチル−6−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2−エチル−7−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3−エチル−2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3−エチル−4−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3−エチル−5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3−エチル−6−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3−エチル−7−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4−エチル−2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4−エチル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4−エチル−5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4−エチル−6−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4−エチル−7−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5−エチル−2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5−エチル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5−エチル−4−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5−エチル−6−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5−エチル−7−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6−エチル−2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6−エチル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6−エチル−4−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6−エチル−5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6−エチル−7−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、7−エチル−2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、7−エチル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、7−エチル−4−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、7−エチル−5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、7−エチル−6−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,3−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,4−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,5−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,6−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,7−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3,4−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3,5−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3,6−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3,7−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4,5−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4,6−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4,7−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5,6−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5,7−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、および6,7−ジエチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン等が挙げられ、これらは新規化合物である。
また、4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,3−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、6−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、4,6−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、および4,7−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンは化合物としては公知であるが、香料への用途は本発明者らの研究によって初めて見いだされたものである。
本発明のこれらのチエノピリジン系化合物は、特に飲食物に添加することで強く特徴的な焙煎香気を付与することができる。
本発明の上記チエノピリジン系化合物の中でも、特に注目すべき化合物として、下記の化学式I
[化学式I]
Figure 2005012310
で示される、3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンと、下記の化学式II
[化学式II]
Figure 2005012310
で示される、2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンと、下記の化学式III
[化学式III]
Figure 2005012310
で示される5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンを挙げることができる。これらの化合物は、特に焙煎香気を増強する効果が大きい。
本発明のチエノピリジン系化合物は、焙煎コーヒー豆に含まれている成分であり、コーヒーオイルから、次のようにして得ることができる。使用するコーヒー豆は、焙煎度が高いものがより好ましく、例えば、エスプレッソ用やアイスコーヒー用などの深煎り豆を使用することが好ましい。本発明におけるコーヒーオイルは、焙煎豆を圧搾して得られるプレスオイルでもよいが、焙煎コーヒー豆から液体ないし超臨界の二酸化炭素抽出するか、もしくは有機溶剤で抽出することもできる。
コーヒーオイルの溶剤抽出に用いられる有機溶剤としては、例えば、ヘキサン、ジエチルエーテル、酢酸エチル、およびエタノールなどが挙げられ、中でも酢酸エチルやエタノールなど、極性の高い溶剤が好ましく用いられる。また、使用される溶剤の量は、コーヒー豆の質量比で2〜5倍量程度であり、十分にコーヒー中の成分を抽出するためには、3回程度の繰り返し抽出を実施することが望ましい。抽出法としては、浸漬抽出および撹拌抽出等が用いられる。
このようにして得られた溶剤抽出液から溶剤を留去して得られた溶剤抽出物は、単蒸留または薄膜蒸留等により減圧蒸留することによって、揮発性成分を得ることができる。蒸留条件は蒸留法により異なるが、このチエノピリジン系化合物は高沸点化合物であるため、単蒸留の場合、蒸留釜加熱温度を150〜250℃とし、そして圧力を67〜13Pa程度とすることが好ましい。なお、蒸留工程を省略して溶剤抽出物をそのまま液−液分配することも可能であるが、液−液分配の前に溶剤抽出物を蒸留し、揮発性成分を抽出する方が好ましい。
得られた揮発性成分は、1規定塩酸とジエチルエーテルで液−液分配し、その塩酸層を水酸化ナトリウム水溶液で中和し、弱アルカリ性にした後に、再度ジエチルエーテルで液−液分配したジエチルエーテル層を回収・濃縮して、揮発成分中のチエノピリジン系化合物を濃縮すことができる。
さらに、得られたチエノピリジン系化合物濃縮成分を、シリカゲルカラムクロマトグラフィーに供することで、チエノピリジン系化合物濃度を約20質量%まで濃縮することができる。なお溶出溶剤としては、ヘキサン100容積%〜ジエチルエーテル100容積%までの適当なグラジェントを用いることで、効率的に目的のチエノピリジン系化合物を濃縮することができる。クロマトグラフィー分画物中、チエノピリジン系化合物はジエチルエーテル100容積%の画分に溶出するため、この画分を分取することにより、チエノピリジン系化合物が濃縮された試料を得ることができる。
本発明のチエノピリジン系化合物は、必ずしもそれ自体を単離精製する必要はなく、前記のチエノピリジン濃縮成分をチエノピリジン系化合物として使用することもできる。例えば、これらチエノピリジン系化合物濃縮成分は、香気増強剤として使用することができ、また、他の香料材料と調合された香料組成物として使用することもできる。このように、本発明のチエノピリジン系化合物は、化合物として使用することもでき、他の香料材料と調合された香料組成物として使用することもできる。
本発明の好ましい態様において、香料組成物としては、下記の一般式I
[一般式I]
Figure 2005012310
(式中、R1〜R6はHまたはCHまたはCHCHを表す。)で示されるチエノピリジン系化合物の少なくとも1種を添加してなる香料組成物が挙げられる。
本発明のチエノピリジン系化合物や香料組成物が添加される好適な使用対象品としては、特に香ばしさなどの焙煎香気が求められる、コーヒー、ココアなどの嗜好飲料、クッキーなどの焼き菓子、ソース、たれなどの調味料、およびスープなどの調理食品などの飲食物が挙げられる。また、本発明のチエノピリジン系化合物や香料組成物は、焙煎しない飲食物に添加しても、風味にアクセントを与えたり風味を増強させることができる。
その他、食品以外にも、本発明のチエノピリジン系化合物や香料組成物は、香粧品に添加し香気にアクセントを与えたり、その特徴を生かし、燃料ガス用付臭剤、炭酸ガス消火剤用付臭剤および犯罪対策用付臭剤への利用も可能である。
本発明のチエノピリジン系化合物濃縮成分を他の香料と調合する場合は、香料組成物の総量に対してチエノピリジン系化合物の濃度が約0.01%〜0.001%の割合で配合することが好ましい。また、食品への添加量は、添加する食品の性質や目的に応じて適宜決定されるが、通常はチエノピリジン系化合物が食品に約0.01ppm〜1ppm程度の範囲内で含有されることが好ましく、より好ましくは0.01ppm〜0.1ppmである。また、芳香剤などの香粧品への添加量も適宜決定されるが、通常0.2ppb〜0.5ppm程度の範囲で含有されることが好ましい。また、燃料ガス用付臭剤として使用する場合は、通常20〜60mg/m3程度の添加が好ましい。
次に、それら新規チエノピリジン系化合物のうち、特に下記の一般式III
[一般式III]
Figure 2005012310
(式中、R3は、CHまたはCHCHを表す。)で示される、5−アルキル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンの有機合成の手法による製造について説明する。その合成ルートは、以下に示す反応式Iのとおりである。
[反応式I]
Figure 2005012310
(式中、R3は、CHまたはCHCHのいずれかを表す。)
上記反応式Iの第一工程において、式(1)で示される1−アルキル−4−ピペリドンと式(2)で示されるピルビックアルデヒドジメチルアセタールとを、塩基の存在下で反応させることにより、式(3)で示される化合物が主成分として得られる。
式(1)の1−アルキル−4−ピペリドンに対して、式(2)のピルビックアルデヒドジメチルアセタールの使用量は、好ましくは0.5から2当量であり、より好ましくは0.9から1.2当量である。
この際に用いられる塩基としては、通常アルドール縮合に用いることができるものなら限定はないが、特にはリチウムジイソプロピルアミドが好ましく用いられる。その塩基の使用量は、上記式(1)の1−アルキル−4−ピペリドンに対して、好ましくは0.5から2当量であり、より好ましくは0.9から1.2当量である。
上記第一工程の反応温度は、好ましくは−80から50℃であり、反応の選択性および目的物の安定性の点でより好ましい反応温度は−80から−50℃である。
反応溶媒としては通常アルドール縮合に用いることができるものなら限定はないが、特にはTHFが好ましく用いられる。その反応溶媒の使用量は、上記式(1)の1−アルキル−4−ピペリドンに対して、好ましくは3から50重量倍であり、より好ましくは5から15重量倍である。
また、式(1)の1−メチル−4−ピペリドンを、一旦シリルエノールエーテルとした後、ルイス酸存在下で反応させる向山アルドール反応を用いることも可能である。
上記反応式Iの第二工程において、式(3)の化合物はシリカゲルカラムなどにより精製してから用いても、そのまま精製せずに用いても良い。次に、式(3)の化合物を脱水反応させることにより、式(4)で示される化合物が得られる。脱水は、一般的に用いられる酸およびアルカリを用いた方法を用いることも出来るが、ピリジン溶媒中にチオニルクロリドを反応させることにより、高選択的かつ高収率で目的物の式(4)の化合物が得られる。
反応に用いられるチオニルクロリドの使用量は、式(3)の化合物に対して、好ましくは1から10当量であり、より好ましくは1.5から5当量である。また、溶媒のピリジンの使用量は、チオニルクロリドに対して、好ましくは2から40当量であり、より好ましくは10から20当量である。
上記第二工程の反応温度は、好ましくは−10から50℃であり、より好ましくは−5℃から10℃である。上記式(4)の反応物は、それ自体公知の方法である蒸留やシリカゲルカラムクロマトグラフィーなどによって精製することができる。
次に、上記反応式Iの第三工程において、式(4)の化合物を水素添加反応することにより、式(5)の化合物が得られる。第三工程の反応で用いられる触媒としては、Pd−C、Pd−AlおよびPd−BaSOなどのPd系の触媒が好ましく、特に5%Pd−Cが好ましく使われる。触媒の使用量は、上記式(4)の化合物に対して好ましくは0.01〜2重量倍使用され、反応速度の面からより好ましくは0.1から1重量倍使用される。
第三工程の反応に用いられる溶媒としては、メタノール、エタノールおよび酢酸エチル等が挙げられるが、特にエタノールが好ましく使用される。溶媒の使用量は、式(4)の化合物に対して好ましくは1から50重量倍であり、より好ましくは5から20重量倍使用される。
第三工程において、反応温度は好ましくは0から200℃であり、通常は室温程度で十分に反応が進行する。また、反応圧力は好ましくは常圧から0.5MPaであり、通常は常圧で十分に反応が進行する。
式(5)の化合物は、反応後は触媒を濾過して溶媒を濃縮することにより、次の反応に用いることが出来るが、それ自体公知の方法である蒸留やシリカゲルカラムクロマトグラフィーなどによって精製することができる。
次に、上記反応式Iの第四工程において、式(5)の化合物は、一旦脱アセタール化反応して1,4−ジカルボニル化合物とした後に、Paal法によりチオフェン化することも可能であるが、アセタールのまま直接チオフェン化することにより、工業的にはより有利に目的物である式(6)の化合物を得ることができる。
チオフェン化剤としては、Paal法チオフェン化で使用されるP、PおよびPなどの無機硫黄化合物や、ローソン試薬〔2,4−ビス(4−メトキシフェニル)−1,2,3,4−ジチアジホスフェタン2,4−ジスルフィド〕などが用いられ、反応選択性の高さや取扱の容易さなどから、ローソン試薬が好ましく使用される。ローソン試薬の使用量は、式(5)の化合物に対して、好ましくは1から5当量であり、より好ましくは2から3当量である。
第四工程における反応溶媒としては、トルエン、キシレン、ベンゼン、ヘキサン、DMEおよびクロロホルムなどが挙げられるが、特にトルエンが好ましく用いられる。溶媒使用量は、上記式(5)の化合物に対して、好ましくは5から50重量倍であり、より好ましくは10から20倍である。第四工程の反応温度は、好ましくは0から200℃であり、より好ましくはトルエンの還流温度である。得られた反応物は、それ自体公知の方法である蒸留やシリカゲルカラムクロマトグラフィーなどによって精製することができる。
次に、2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンおよび5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンの合成に関して説明する。なお、原料とする2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンおよび4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンは、それ自体公知の方法[国際公開WO99/33804号公報]で入手可能である。2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンおよび5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンは、原料の2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンおよび4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンを、下記の反応式IIのようにメチル化することにより、容易に得ることが出来る。
[反応式II]
Figure 2005012310
(式中R6はCH又はHを表す。)
用いられるメチル化剤としては、ヨウ化メチル、臭化メチルおよび塩化メチルなどのハロゲン化メチルが挙げられる。メチル化剤の使用量は、原料の2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンに対して好ましくは0.5から3当量であり、より好ましくは1.0から1.5当量である。
上記のメチル化反応には、溶媒としてジエチルエーテル、ジメチルホルムアミド、およびジメチルスルホキシドなどを用いることができるが、好ましくはジエチルエーテルを使用する。溶媒の使用量は、チエノピリジンに対し、好ましくは5から100重量倍でありより好ましくは10から30重量倍である。また、上記メチル化に際し、炭酸ナトリウムを添加することにより反応を促進させることができる。炭酸ナトリウムの添加量は、チエノピリジンに対して好ましくは1から10当量であり、より好ましくは1から3当量である。
メチル化反応の反応温度は、好ましくは−20から100℃であり、通常は室温で撹拌するだけで反応が進行する。得られた反応物は、それ自体公知の方法である蒸留やシリカゲルカラムクロマトグラフィーや洗浄などによって精製することができる。
次に、本発明のチエノピリジン系化合物の調製法を実施例に基づいて説明する。ただし、以下の内容についていかなる意味でも、本発明を限定的に解釈してはならない。The present inventors extract roasted coffee beans with an organic solvent, concentrate the extracted extract, distill the obtained solvent extract, and distill the distilled distillate with an acid / alkali liquid-liquid. After partitioning, it was found that a component in which the thienopyridine compound was concentrated to about 20% could be obtained by subjecting it to silica gel column chromatography.
The novel thienopyridine compound of the present invention has the following general formula II
[General Formula II]
Figure 2005012310
(Wherein, R1-R6 represents H or CH 3 or CH 2 CH 3. However, all the R1 to R6 is other other is H, R3 is CH 3 H, R2 is in CH 3 is H, R4 Is CH 3 and others are H, R5 is CH 3 and others are H, R6 is CH 3 and others are H, R1 and R4 are CH 3 and others are H, R2 and R4 are CH 3 and others are H, and R5 And R6 is CH 3 and the others are H.).
Further, the fragrance composition of the present invention has the following general formula I:
[General Formula I]
Figure 2005012310
(Wherein, R1-R6 are, H or CH 3 or CH represents. A 2 CH 3) a perfume composition containing a thienopyridine compound (s) represented by.
More specifically, examples of the thienopyridine compound represented by the above formula of the present invention include 7-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine and 2,4-dimethyl-4. , 5,6,7-tetrahydrothieno [3,2-c] pyridine, 2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2,6-dimethyl-4 , 5,6,7-tetrahydrothieno [3,2-c] pyridine, 2,7-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3,4-dimethyl-4 , 5,6,7-tetrahydrothieno [3,2-c] pyridine, 3,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3,6-dimethyl-4 , 5,6,7-tetrahydrothieno [3,2-c Pyridine, 3,7-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 4,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] Pyridine, 5,6-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 5,7-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] Pyridine, 6,7-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2-ethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3-ethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 4-ethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 5-ethyl- 4,5,6,7-tetrahydrothieno [3,2-c] pyri 6-ethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 7-ethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2- Ethyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2-ethyl-4-methyl-4,5,6,7-tetrahydrothieno [3,2-c] Pyridine, 2-ethyl-5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2-ethyl-6-methyl-4,5,6,7-tetrahydrothieno [3, 2-c] pyridine, 2-ethyl-7-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3-ethyl-2-methyl-4,5,6,7-tetrahydro Thieno [3,2-c] pyridine, 3-ethyl-4-methyl-4,5 , 6,7-tetrahydrothieno [3,2-c] pyridine, 3-ethyl-5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3-ethyl-6-methyl -4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3-ethyl-7-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 4-ethyl 2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 4-ethyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine 4-ethyl-5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 4-ethyl-6-methyl-4,5,6,7-tetrahydrothieno [3,2 -C] pyridine, 4-ethyl-7-methyl-4,5,6,7- Torahydrothieno [3,2-c] pyridine, 5-ethyl-2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 5-ethyl-3-methyl-4,5,6 , 7-tetrahydrothieno [3,2-c] pyridine, 5-ethyl-4-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 5-ethyl-6-methyl-4 , 5,6,7-tetrahydrothieno [3,2-c] pyridine, 5-ethyl-7-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 6-ethyl-2 -Methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 6-ethyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 6 -Ethyl-4-methyl-4,5,6,7-tetrahydride Thieno [3,2-c] pyridine, 6-ethyl-5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 6-ethyl-7-methyl-4,5,6 , 7-tetrahydrothieno [3,2-c] pyridine, 7-ethyl-2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 7-ethyl-3-methyl-4 , 5,6,7-tetrahydrothieno [3,2-c] pyridine, 7-ethyl-4-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 7-ethyl-5 -Methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 7-ethyl-6-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2 , 3-Diethyl-4,5,6,7-tetrahydrothieno [3,2- c] pyridine, 2,4-diethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2,5-diethyl-4,5,6,7-tetrahydrothieno [3,2- c] pyridine, 2,6-diethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2,7-diethyl-4,5,6,7-tetrahydrothieno [3,2- c] pyridine, 3,4-diethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3,5-diethyl-4,5,6,7-tetrahydrothieno [3,2- c] pyridine, 3,6-diethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3,7-diethyl-4,5,6,7-tetrahydrothieno [3,2- c] pyridine, 4,5-diethyl-4,5,6,7-tetrahydride Thieno [3,2-c] pyridine, 4,6-diethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 4,7-diethyl-4,5,6,7-tetrahydro Thieno [3,2-c] pyridine, 5,6-diethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 5,7-diethyl-4,5,6,7-tetrahydro Examples include thieno [3,2-c] pyridine and 6,7-diethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, which are novel compounds.
Also, 4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 3-methyl-4, 5,6,7-tetrahydrothieno [3,2-c] pyridine, 2,3-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 4-methyl-4,5 6,7-tetrahydrothieno [3,2-c] pyridine, 5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 6-methyl-4,5,6,7- Tetrahydrothieno [3,2-c] pyridine, 4,6-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, and 4,7-dimethyl-4,5,6,7 -Tetrahydrothieno [3,2-c] pyridine is known as a compound There, but use of the perfume is one that has been found for the first time by the study of the inventors of the present invention.
These thienopyridine compounds of the present invention can impart a strong and characteristic roasting aroma particularly when added to foods and drinks.
Among the above thienopyridine compounds of the present invention, compounds of particular note are those represented by the following chemical formula I
[Formula I]
Figure 2005012310
3,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by the following chemical formula II
[Chemical Formula II]
Figure 2005012310
2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by the following chemical formula III
[Chemical Formula III]
Figure 2005012310
And 5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by the formula: These compounds are particularly effective in enhancing the roasted aroma.
The thienopyridine compound of the present invention is a component contained in roasted coffee beans and can be obtained from coffee oil as follows. The coffee beans to be used preferably have a high roasting degree. For example, it is preferable to use deep roasted beans for espresso or iced coffee. The coffee oil in the present invention may be a press oil obtained by squeezing roasted beans, but liquid or supercritical carbon dioxide may be extracted from roasted coffee beans or may be extracted with an organic solvent.
Examples of the organic solvent used for solvent extraction of coffee oil include hexane, diethyl ether, ethyl acetate, and ethanol. Among them, a highly polar solvent such as ethyl acetate and ethanol is preferably used. The amount of solvent used is about 2 to 5 times the mass ratio of coffee beans, and in order to sufficiently extract the components in the coffee, it is desirable to carry out repeated extraction about 3 times. . As the extraction method, immersion extraction, stirring extraction, or the like is used.
The solvent extract obtained by distilling off the solvent from the solvent extract thus obtained can obtain a volatile component by distillation under reduced pressure by simple distillation or thin film distillation. Although the distillation conditions vary depending on the distillation method, since this thienopyridine compound is a high boiling point compound, in the case of simple distillation, it is preferable to set the distillation kettle heating temperature to 150 to 250 ° C. and the pressure to about 67 to 13 Pa. Although the distillation step can be omitted and the solvent extract can be liquid-liquid distributed as it is, it is preferable to distill the solvent extract and extract the volatile component before the liquid-liquid distribution.
The obtained volatile component was subjected to liquid-liquid partition with 1N hydrochloric acid and diethyl ether, and the hydrochloric acid layer was neutralized with aqueous sodium hydroxide solution to make it weakly alkaline, and then again liquid-liquid partitioned with diethyl ether. The ether layer can be collected and concentrated to concentrate the thienopyridine compound in the volatile component.
Furthermore, the thienopyridine compound concentration can be concentrated to about 20% by mass by subjecting the obtained thienopyridine compound concentration component to silica gel column chromatography. In addition, as an elution solvent, the target thienopyridine type compound can be efficiently concentrated by using a suitable gradient from hexane 100 volume% to diethyl ether 100 volume%. In the chromatographic fraction, the thienopyridine compound elutes into a fraction of 100% by volume of diethyl ether. By collecting this fraction, a sample enriched with the thienopyridine compound can be obtained.
The thienopyridine compound of the present invention does not necessarily have to be isolated and purified, and the thienopyridine-enriched component can also be used as the thienopyridine compound. For example, these thienopyridine-based compound concentration components can be used as an aroma enhancer, and can also be used as a perfume composition formulated with other perfume materials. Thus, the thienopyridine-based compound of the present invention can be used as a compound, and can also be used as a fragrance composition prepared with other fragrance materials.
In a preferred embodiment of the present invention, the fragrance composition includes the following general formula I:
[General Formula I]
Figure 2005012310
(Wherein, R1-R6 represent. H or CH 3 or CH 2 CH 3) perfume composition obtained by adding at least one thienopyridine compounds represented by like.
Suitable products to which the thienopyridine-based compound and the fragrance composition of the present invention are added include particularly savory beverages such as coffee and cocoa, roasted fragrances such as fragrance, baked confectionery such as cookies, sauces, Food and drink such as seasonings such as sauce and cooked foods such as soup. Moreover, even if the thienopyridine compound and the fragrance composition of the present invention are added to foods and drinks that are not roasted, they can give accents to the flavor or enhance the flavor.
In addition to foods, the thienopyridine compound and fragrance composition of the present invention can be added to cosmetics to accentuate the fragrance or take advantage of its characteristics to produce odorants for fuel gas and carbon dioxide fire extinguishing agents. It can also be used as an agent and odorant for crime prevention.
When the thienopyridine compound concentration component of the present invention is blended with other fragrances, it is preferable that the concentration of the thienopyridine compound is about 0.01% to 0.001% with respect to the total amount of the fragrance composition. . The amount added to the food is appropriately determined according to the nature and purpose of the food to be added, but it is usually preferable that the thienopyridine compound is contained in the food within a range of about 0.01 ppm to 1 ppm. More preferably, it is 0.01 ppm to 0.1 ppm. Moreover, although the addition amount to cosmetics, such as a fragrance | flavor, is also determined suitably, it is preferable to contain normally in the range of about 0.2 ppb-0.5 ppm. Moreover, when using as an odorant for fuel gas, addition of about 20 to 60 mg / m3 is usually preferable.
Next, among these novel thienopyridine compounds, in particular the following general formula III
[General Formula III]
Figure 2005012310
(Wherein R 3 represents CH 3 or CH 2 CH 3 ), an organic group of 5-alkyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine The production by the synthesis method will be described. The synthetic route is as shown in Reaction Formula I shown below.
[Reaction Formula I]
Figure 2005012310
(Wherein, R3 represents either CH 3 or CH 2 CH 3.)
In the first step of the above reaction formula I, the 1-alkyl-4-piperidone represented by the formula (1) and the pyruvic aldehyde dimethyl acetal represented by the formula (2) are reacted in the presence of a base, A compound represented by the formula (3) is obtained as a main component.
The amount of pyruvic aldehyde dimethyl acetal of formula (2) to be used relative to 1-alkyl-4-piperidone of formula (1) is preferably 0.5 to 2 equivalents, more preferably 0.9 to 1. .2 equivalents.
The base used in this case is not particularly limited as long as it can be usually used for aldol condensation, but lithium diisopropylamide is particularly preferably used. The amount of the base used is preferably 0.5 to 2 equivalents, more preferably 0.9 to 1.2 equivalents, relative to 1-alkyl-4-piperidone of the above formula (1).
The reaction temperature in the first step is preferably −80 to 50 ° C., and more preferable reaction temperature is −80 to −50 ° C. in view of the selectivity of the reaction and the stability of the target product.
The reaction solvent is not particularly limited as long as it can be usually used for aldol condensation, but THF is particularly preferably used. The amount of the reaction solvent used is preferably 3 to 50 times by weight, more preferably 5 to 15 times by weight, with respect to 1-alkyl-4-piperidone of the above formula (1).
It is also possible to use the Mukaiyama aldol reaction in which 1-methyl-4-piperidone of formula (1) is once converted to silyl enol ether and then reacted in the presence of a Lewis acid.
In the second step of the above reaction formula I, the compound of formula (3) may be used after being purified by a silica gel column or the like, or may be used without being purified as it is. Next, the compound represented by the formula (4) is obtained by dehydrating the compound of the formula (3). For the dehydration, a generally used method using an acid and an alkali can be used, but by reacting thionyl chloride in a pyridine solvent, the target compound of formula (4) can be obtained with high selectivity and high yield. A compound is obtained.
The amount of thionyl chloride used in the reaction is preferably 1 to 10 equivalents, more preferably 1.5 to 5 equivalents, relative to the compound of formula (3). The amount of pyridine used as a solvent is preferably 2 to 40 equivalents, more preferably 10 to 20 equivalents, relative to thionyl chloride.
The reaction temperature in the second step is preferably -10 to 50 ° C, more preferably -5 ° C to 10 ° C. The reaction product of the above formula (4) can be purified by distillation or silica gel column chromatography which are known per se.
Next, in the third step of the above reaction formula I, a compound of formula (5) is obtained by hydrogenating the compound of formula (4). As the catalyst used in the reaction in the third step, Pd-based catalysts such as Pd—C, Pd—Al 2 O 3 and Pd—BaSO 4 are preferable, and 5% Pd—C is particularly preferable. The amount of the catalyst used is preferably 0.01 to 2 times by weight with respect to the compound of the above formula (4), more preferably 0.1 to 1 times by weight from the viewpoint of the reaction rate.
Examples of the solvent used for the reaction in the third step include methanol, ethanol and ethyl acetate, and ethanol is particularly preferably used. The amount of the solvent to be used is preferably 1 to 50 times by weight, more preferably 5 to 20 times by weight with respect to the compound of the formula (4).
In the third step, the reaction temperature is preferably 0 to 200 ° C., and the reaction proceeds normally at about room temperature. The reaction pressure is preferably from normal pressure to 0.5 MPa, and the reaction proceeds normally at normal pressure.
The compound of formula (5) can be used for the next reaction by filtering the catalyst and concentrating the solvent after the reaction, but it is purified by distillation or silica gel column chromatography which are known per se. be able to.
Next, in the fourth step of the above reaction formula I, the compound of the formula (5) can be deacetalized once to give a 1,4-dicarbonyl compound and then thiophenated by the Paal method. However, by directly thiophenating the acetal as it is, the compound of formula (6), which is the target product, can be obtained more advantageously industrially.
As the thiophenating agent, inorganic sulfur compounds such as P 2 S 3 , P 4 S 7 and P 2 S 5 used in the Paal method thiophenation, Lawson's reagent [2,4-bis (4-methoxyphenyl)- 1,2,3,4-dithiadiphosphetane 2,4-disulfide] and the like. Lawson's reagent is preferably used because of its high reaction selectivity and ease of handling. The amount of Lawesson reagent used is preferably 1 to 5 equivalents, more preferably 2 to 3 equivalents, relative to the compound of formula (5).
Examples of the reaction solvent in the fourth step include toluene, xylene, benzene, hexane, DME, and chloroform, and toluene is particularly preferably used. The amount of the solvent used is preferably 5 to 50 times by weight, more preferably 10 to 20 times the amount of the compound of the above formula (5). The reaction temperature in the fourth step is preferably 0 to 200 ° C., more preferably the reflux temperature of toluene. The obtained reaction product can be purified by distillation or silica gel column chromatography which are known per se.
Next, 2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine and 5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine The synthesis of will be described. The raw materials 2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine and 4,5,6,7-tetrahydrothieno [3,2-c] pyridine are themselves It can be obtained by a known method [International Publication WO99 / 33804]. 2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine and 5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine are raw materials. 2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine and 4,5,6,7-tetrahydrothieno [3,2-c] pyridine of the following reaction scheme II Thus, it can obtain easily by methylating.
[Reaction Formula II]
Figure 2005012310
(Wherein R 6 represents CH 3 or H)
Methylating agents used include methyl halides such as methyl iodide, methyl bromide and methyl chloride. The amount of the methylating agent to be used is preferably 0.5 to 3 equivalents, more preferably 1 with respect to the raw material 2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine. 0.0 to 1.5 equivalents.
In the methylation reaction, diethyl ether, dimethylformamide, dimethyl sulfoxide, or the like can be used as a solvent, but diethyl ether is preferably used. The amount of the solvent used is preferably 5 to 100 times by weight and more preferably 10 to 30 times by weight with respect to thienopyridine. Moreover, in the case of the said methylation, reaction can be accelerated | stimulated by adding sodium carbonate. The amount of sodium carbonate added is preferably 1 to 10 equivalents, more preferably 1 to 3 equivalents, relative to thienopyridine.
The reaction temperature of the methylation reaction is preferably −20 to 100 ° C. Usually, the reaction proceeds only by stirring at room temperature. The obtained reaction product can be purified by a method known per se, such as distillation, silica gel column chromatography or washing.
Next, a method for preparing the thienopyridine compound of the present invention will be described based on examples. However, the present invention should not be construed as being limited in any sense with respect to the following contents.

[実施例1]
焙煎コーヒー豆3kgを、酢酸エチル9kgを用いて1回、そして酢酸エチル6kgを用いて2回、計3回常温下で浸漬抽出した。固液分離して得られた酢酸エチル抽出液をエバポレーターにて減圧濃縮し、得られた抽出物485gを、圧力40Pa、蒸留釜加熱温度200℃で単蒸留し、留出した香気成分4.75gを得た。次に、この香気成分を1規定塩酸溶液120mLに溶解した後、ジエチルエーテル50mLで2回洗浄した。この1規定塩酸溶液層を水酸化ナトリウム溶液でpH9に調整した後、ジエチルエーテル60mLで3回抽出した。ジエチルエーテル層を無水硫酸マグネシウムで脱水後減圧濃縮した後、シリカゲルカラムクロマトグラフィー処理(Silicagel 60、70−230Mesh、40g、ヘキサン/ジエチルエーテル=100/0、95/5、90/10、80/20、50/50、0/100各320mL、流速300mL/時間)を行い、チエノピリジン系化合物を約20%含有する香気成分45mgを得た。
チエノピリジン系化合物濃縮成分は、キャピラリー分取ガスクロマトグラフィー(J&W社製キャピラリーカラムDB−1、30m ×0.53mm×1.30μm、オーブン温度100℃〜250℃(10℃/分 昇温))用いて、単離・精製を行うことで、下記の化学式I
[化学式I]

Figure 2005012310
で示される3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンを、純度90質量%以上で得た。
上記の化学式Iで示されるチエノピリジン系化合物について、1H−NMR、13C−NMR、DEPT45・90・135、H−H COSY、HMBC、NOESY、EI−MSを測定し、構造を決定した。以下、1H−NMR、13C−NMR、EI−MSのスペクトルデータを示す。
1H−NMR(400MHz,CDCl)δ2.08(3H,s,3−CH),2.50(3H,s,5−CH),2.72(2H,t,6),2.89(2H,t,7),3.38(2H,s,4),6.69(1H,s,2)
13C−NMR(100MHz,CDCl)δ13.6(3−CH),25.9(7),45.8(5−CH),52.5(6),54.3(4),117.8(2),133.2,133.5,134.4(3 or 3a or 7a)
MS:167(M+,44),124(100),97(4),91(7),42(8)
上記実施例1で得られた本発明のチエノピリジン系化合物をコーヒーに添加することで、コーヒーにエスプレッソコーヒーのような深煎りコーヒーに特徴的な焙煎感を付与する効果がみられた。
[実施例2]
以下に、本発明のチエノピリジン系化合物の香気成分および香気増強剤としての効果を確認した試験例を示す。
インスタントコーヒー粉末1.5gとグラニュー糖7gをコーヒーカップに入れ、これにお湯120gを注いでコーヒーサンプルNo.1(コーヒーベース液)とした。また、同量のコーヒーベース液に、焙煎コーヒーを常法により含水エタノールで抽出したコーヒーエキスを0.1質量%加えたものをコーヒーサンプルNo.2とした。そして、通常コーヒー飲料用香料に、実施例1で得られた化学式IIで示されるチエノピリジン系化合物が1ppmの濃度になるよう添加した香料0.1質量%を加えたものをコーヒーサンプルNo.3とした。
良く訓練された20名のパネルメンバーを選び、香料無添加のコーヒーサンプルNO.1、通常コーヒー飲料用香料を添加したコーヒーサンプルNO.2、および実施例1で得られた化学式Iで示されるチエノピリジン系化合物を加えたコーヒー飲料用香料を添加したコーヒーサンプルNo.3の香味について、それぞれ比較官能検査を行なった。その結果は、次表1のとおりであった。
Figure 2005012310
本発明の化学式Iで示されるチエノピリジン系化合物を添加したものは、通常香料添加品および無添加品に比べ、良好な焙煎感、風味を示した。
[実施例3]
3−(1−ヒドロキシ−2,2−ジメトキシ−1−メチル−エチル)−1−メチル−ピペリジン−4−オンの合成
リチウムジイソプロピルアミド(1.8M in heptane、THF、ethylbenzene;アルドリッチ社製)100ml(0.18mol)を量り取り、−60℃以下の温度に冷却した。これに、1−メチル−4−ピペリドン20.37g(0.18mol)をTHF108gで希釈した溶液を、−60℃以下の温度で30分間で滴下した。続いてピルビックアルデヒドジメチルアセタール21.14g(180mol)のTHF108gで希釈した溶液を、−60℃以下の温度で34分間で滴下した。そのまま、4時間反応させた。飽和食塩水220gと20%水酸化ナトリウム水溶液24gの混合物を氷浴で冷却したものに、上記で得られた反応液を全量注ぎ失活した。ジエチルエーテルで抽出し、有機層をショートカラムに通した後に濃縮し、反応クルード29.6gを得た。GC分析したところ、目的物の3−(1−ヒドロキシ−2,2−ジメトキシ−1−メチル−エチル)−1−メチル−ピペリジン−4−オンが、61.6%(異性体込み)含まれていた。
[実施例4]
3−(2,2−ジメトキシ−1−メチル−エチリデン)−1−メチル−ピペリジン−4−オンの合成
実施例3で得られた反応クルード29.5gを、ピリジン465.7g(5.88mol)に溶解した。氷浴で冷却しながら、これにチオニルクロリド33.51g(0.28mol)を25分間で滴下し、そのまま4時間反応させた。飽和食塩水340gと30%水酸化ナトリウム水溶液159gの混合物を氷浴で冷却したものに、上記で得られた反応液を全量注ぎ失活した。ジエチルエーテルで抽出し、有機層をショートカラムに通した後に濃縮し、反応クルード16.86gを得た。これをシリカゲルカラムクロマトで精製し、GC純度65.5%(異性体込み)の精製物9.05gを得た。
[実施例5]
3−(2,2−ジメトキシ−1−メチル−エチル)−1−メチル−ピペリジン−4−オンの合成
実施例4で得られた精製物8.61gを、エタノール15gに溶解した。これに、5%Pd−C8.00gを添加した後、室温、常圧で水素ガスと接触させた。4時間反応させた後、GC分析したところ、原料の3−(2,2−ジメトキシ−1−メチル−エチリデン)−1−メチル−ピペリジン−4−オンは消費されていた。減圧濾過により触媒を取り除き、溶媒を濃縮したところ、GC純度60.3%の反応クルード7.07gが得られた。これをシリカゲルカラムクロマトで精製し、GC純度75.1%(異性体込み)の精製物5.09gを得た。
[実施例6]
3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンの合成
実施例5で得られた精製物4.79gをトルエン82gに溶解した。これに、ローソン試薬7.87g(19.46mol)を添加し、1時間還流させた。反応液を冷却後、これに30%水酸化ナトリウム水溶液27.8gを滴下し、ジエチルエーテルで抽出した。有機層をショートカラムに通した後に濃縮し、反応クルード6.24gを得た。これをシリカゲルカラムクロマトで精製し、GC純度98.2%の精製物1.35gを得た。このものの1H−NMR、13C−NMR、GC−MSを測定した結果、天然物処理物と完全に一致した。以下に、1H−NMR、13C−NMR、MSのスペクトルデータを示す。
1H−NMR(400MHz,CDCl)δ2.08(3H,s),2.50(3H,s),2.72(2H,t),2.89(2H,t),3.37(2H,s),6.69(1H,s)
13C−NMR(100MHz,CDCl)δ13.7(3−CH),25.9(7),45.8(5−CH),52.5(6),54.3(4),117.7(2),133.2,133.5,134.4(3 or 3a or 7a)
MS:167(M+,46),124(100),97(5),91(8),42(10)
上記のようにして得られた精製物を実施例2のコーヒーサンプルNo.2に添加した結果、0.1ppm添加では、ミドルからベースにかけて自然なコーヒー感とビター感が増加し、全体的にボリューム感がアップし、実施例1のコーヒー由来の3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンと同等の効果を確認することができた。また、0.01ppm添加では、インパクトは弱いが後残りのコーヒー感の持続性が良かった。
[実施例7]
2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンの合成
2−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン 1.53g(10mmol)のジエチルエーテル溶液(15ml)を室温で撹拌し、これに、ヨウ化メチル1.42gのジエチルエーテル(15ml)溶液をゆっくり滴下した。これに、飽和炭酸ナトリウム水溶液12mlを添加し、6時間室温で撹拌混合した。有機層を取り、洗浄後に溶媒濃縮して反応混合物を得た。これをシリカゲルカラムクロマトにより精製し、GC純度97%の精製物0.69gを得た。以下に、1H−NMR、MSのスペクトルデータを示す。
1H−NMR(400MHz,CDCl)δ2.32(3H,s),2.36(3H,s),2.62(2H,t),2.74(2H,t,7),3.32(2H,s),6.28(1H,s)
MS:MS:167(M+,50),124(100),91(8),42(8)
上記のようにして得られた精製物を、実施例2のコーヒーサンプルNo.2に0.1ppm添加した結果、ミドルからベースにかけて自然なコーヒー感とビター感が増加し、全体的にボリューム感がアップし、実施例7の3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンと同等の効果を確認できた。
[実施例8]
5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンの合成
4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン 1.39g(10mmol)のジエチルエーテル溶液(15ml)を室温で撹拌し、これに、ヨウ化メチル1.42gのジエチルエーテル(15ml)溶液をゆっくり滴下した。これに、飽和炭酸ナトリウム水溶液12mlを添加し、6時間室温で撹拌混合した。有機層を取り、洗浄後に溶媒濃縮して反応混合物を得た。これをシリカゲルカラムクロマトにより精製し、GC純度97%の精製物0.76gを得た。以下に、1H−NMR、MSのスペクトルデータを示す。
1H−NMR(400MHz,CDCl)δ2.45(3H,s),2.70(2H,t),2.89(2H,t),3.48(2H,s),6.70(1H,d),7.04(1H,d)
MS:153(M+,56),110(100),84(6),66(6),42(10)
上記のようにして得られた精製物を実施例2のコーヒーサンプルNo.2に0.1ppm添加した結果、ミドルからベースにかけて自然なコーヒー感とビター感が増加し、全体的にボリューム感がアップし、実施例7の3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンと同等の効果を確認することができた。[Example 1]
3 kg of roasted coffee beans were immersed and extracted at room temperature once, using 9 kg of ethyl acetate and twice using 6 kg of ethyl acetate. The ethyl acetate extract obtained by solid-liquid separation was concentrated under reduced pressure using an evaporator, and 485 g of the resulting extract was simply distilled at a pressure of 40 Pa and a distillation kettle heating temperature of 200 ° C., and 4.75 g of aroma components distilled out. Got. Next, this aromatic component was dissolved in 120 mL of 1N hydrochloric acid solution, and then washed twice with 50 mL of diethyl ether. The 1N hydrochloric acid solution layer was adjusted to pH 9 with a sodium hydroxide solution and then extracted three times with 60 mL of diethyl ether. The diethyl ether layer was dehydrated with anhydrous magnesium sulfate and concentrated under reduced pressure, and then subjected to silica gel column chromatography (Silica gel 60, 70-230 Mesh, 40 g, hexane / diethyl ether = 100/0, 95/5, 90/10, 80/20). , 50/50, 0/100 each 320 mL, flow rate 300 mL / hour) to obtain 45 mg of an aroma component containing about 20% of a thienopyridine compound.
The thienopyridine-based compound-concentrated component was obtained by using capillary preparative gas chromatography (capillary column DB-1, J & W, 30 m × 0.53 mm × 1.30 μm, oven temperature 100 ° C. to 250 ° C. (temperature increase 10 ° C./min)). By carrying out isolation and purification, the following chemical formula I
[Formula I]
Figure 2005012310
3,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by the following formula was obtained at a purity of 90% by mass or more.
About the thienopyridine type compound shown by said Chemical formula I, 1H-NMR, 13C-NMR, DEPT45 * 90 * 135, H-H COSY, HMBC, NOESY, EI-MS were measured and the structure was determined. Hereinafter, spectral data of 1H-NMR, 13C-NMR, and EI-MS are shown.
1H-NMR (400 MHz, CDCl 3 ) δ 2.08 (3H, s, 3-CH 3 ), 2.50 (3H, s, 5-CH 3 ), 2.72 (2H, t, 6), 2. 89 (2H, t, 7), 3.38 (2H, s, 4), 6.69 (1H, s, 2)
13C-NMR (100 MHz, CDCl 3 ) δ 13.6 (3-CH 3 ), 25.9 (7), 45.8 (5-CH 3 ), 52.5 (6), 54.3 (4), 117.8 (2), 133.2, 133.5, 134.4 (3 or 3a or 7a)
MS: 167 (M +, 44), 124 (100), 97 (4), 91 (7), 42 (8)
By adding the thienopyridine compound of the present invention obtained in Example 1 to coffee, an effect of imparting a roasting feeling characteristic to deep roasted coffee such as espresso coffee to coffee was observed.
[Example 2]
Below, the test example which confirmed the effect as an aroma component and an aroma enhancer of the thienopyridine type compound of this invention is shown.
Put 1.5 g of instant coffee powder and 7 g of granulated sugar in a coffee cup, pour 120 g of hot water into this, and sample coffee sample No. 1 (coffee base solution). Further, coffee sample No. 1 was obtained by adding 0.1% by mass of a coffee extract obtained by extracting roasted coffee with water-containing ethanol by a conventional method to the same amount of coffee base liquid. 2. And what added 0.1 mass% of fragrance | flavor added so that the thienopyridine type compound shown by Chemical formula II obtained in Example 1 might become a density | concentration of 1 ppm to the fragrance | flavor for normal coffee drinks was coffee sample No.2. It was set to 3.
Choose 20 well-trained panel members and add no scented coffee sample NO. 1. Coffee sample NO. 2 and coffee sample No. 1 to which a flavor for coffee beverages added with a thienopyridine compound represented by the chemical formula I obtained in Example 1 was added. A comparative sensory test was performed on each of the three flavors. The results are shown in Table 1 below.
Figure 2005012310
What added the thienopyridine type compound shown by Chemical formula I of this invention showed the favorable roasting feeling and flavor compared with the normal fragrance | flavor addition product and the additive-free product.
[Example 3]
Synthesis of 3- (1-hydroxy-2,2-dimethoxy-1-methyl-ethyl) -1-methyl-piperidin-4-one Lithium diisopropylamide (1.8 M in heptane, THF, ethylbenzene; manufactured by Aldrich) 100 ml (0.18 mol) was weighed and cooled to a temperature of −60 ° C. or lower. A solution obtained by diluting 20.37 g (0.18 mol) of 1-methyl-4-piperidone with 108 g of THF was added dropwise thereto at a temperature of −60 ° C. or lower for 30 minutes. Subsequently, a solution of 21.14 g (180 mol) of pyruvic aldehyde dimethylacetal diluted with 108 g of THF was added dropwise at a temperature of −60 ° C. or lower for 34 minutes. The reaction was continued for 4 hours. A mixture of 220 g of saturated brine and 24 g of 20% aqueous sodium hydroxide solution was cooled in an ice bath, and the whole reaction solution obtained above was poured to deactivate. The mixture was extracted with diethyl ether, and the organic layer was passed through a short column and then concentrated to obtain 29.6 g of a reaction crude. As a result of GC analysis, 61.6% (including isomers) of 3- (1-hydroxy-2,2-dimethoxy-1-methyl-ethyl) -1-methyl-piperidin-4-one as a target product was contained. It was.
[Example 4]
Synthesis of 3- (2,2-dimethoxy-1-methyl-ethylidene) -1-methyl-piperidin-4-one 29.5 g of the reaction crude obtained in Example 3 was replaced with 465.7 g (5.88 mol) of pyridine. Dissolved in. While cooling in an ice bath, 33.51 g (0.28 mol) of thionyl chloride was added dropwise thereto over 25 minutes, and the mixture was allowed to react for 4 hours. A mixture of 340 g of saturated brine and 159 g of 30% aqueous sodium hydroxide solution was cooled in an ice bath, and the whole reaction solution obtained above was poured to deactivate. Extraction with diethyl ether was conducted, and the organic layer was passed through a short column and then concentrated to obtain 16.86 g of a reaction crude. This was purified by silica gel column chromatography to obtain 9.05 g of a purified product having a GC purity of 65.5% (including isomers).
[Example 5]
Synthesis of 3- (2,2-dimethoxy-1-methyl-ethyl) -1-methyl-piperidin-4-one 8.61 g of the purified product obtained in Example 4 was dissolved in 15 g of ethanol. After adding 8.00 g of 5% Pd-C to this, it was contacted with hydrogen gas at room temperature and normal pressure. After the reaction for 4 hours, GC analysis revealed that the raw material 3- (2,2-dimethoxy-1-methyl-ethylidene) -1-methyl-piperidin-4-one was consumed. When the catalyst was removed by filtration under reduced pressure and the solvent was concentrated, 7.07 g of a reaction crude having a GC purity of 60.3% was obtained. This was purified by silica gel column chromatography to obtain 5.09 g of a purified product having a GC purity of 75.1% (including isomers).
[Example 6]
Synthesis of 3,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine 4.79 g of the purified product obtained in Example 5 was dissolved in 82 g of toluene. To this, 7.87 g (19.46 mol) of Lawson reagent was added and refluxed for 1 hour. After cooling the reaction solution, 27.8 g of 30% aqueous sodium hydroxide solution was added dropwise thereto and extracted with diethyl ether. The organic layer was passed through a short column and then concentrated to obtain 6.24 g of a reaction crude. This was purified by silica gel column chromatography to obtain 1.35 g of a purified product having a GC purity of 98.2%. As a result of measuring 1H-NMR, 13C-NMR, and GC-MS of this product, it was completely consistent with the processed natural product. The spectrum data of 1H-NMR, 13C-NMR, and MS are shown below.
1H-NMR (400 MHz, CDCl 3 ) δ 2.08 (3H, s), 2.50 (3H, s), 2.72 (2H, t), 2.89 (2H, t), 3.37 (2H , S), 6.69 (1H, s)
13C-NMR (100 MHz, CDCl 3 ) δ 13.7 (3-CH 3 ), 25.9 (7), 45.8 (5-CH 3 ), 52.5 (6), 54.3 (4), 117.7 (2), 133.2, 133.5, 134.4 (3 or 3a or 7a)
MS: 167 (M +, 46), 124 (100), 97 (5), 91 (8), 42 (10)
The purified product obtained as described above was obtained from the coffee sample No. 2 of Example 2. As a result of adding to 2, the addition of 0.1 ppm increases the natural coffee feeling and the bitter feeling from the middle to the base, increasing the overall volume feeling, and 3,5-dimethyl-4 derived from the coffee of Example 1 , 5,6,7-tetrahydrothieno [3,2-c] pyridine could be confirmed. Moreover, when 0.01 ppm was added, the impact was weak, but the persistence of the remaining coffee feeling was good.
[Example 7]
Synthesis of 2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine 2-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine A solution of 53 g (10 mmol) in diethyl ether (15 ml) was stirred at room temperature, and a solution of 1.42 g of methyl iodide in diethyl ether (15 ml) was slowly added dropwise thereto. To this, 12 ml of a saturated aqueous sodium carbonate solution was added and stirred and mixed at room temperature for 6 hours. The organic layer was removed, and after washing, the solvent was concentrated to obtain a reaction mixture. This was purified by silica gel column chromatography to obtain 0.69 g of a purified product having a GC purity of 97%. The spectrum data of 1H-NMR and MS are shown below.
1H-NMR (400 MHz, CDCl 3 ) δ 2.32 (3H, s), 2.36 (3H, s), 2.62 (2H, t), 2.74 (2H, t, 7), 3.32. (2H, s), 6.28 (1H, s)
MS: MS: 167 (M +, 50), 124 (100), 91 (8), 42 (8)
The purified product obtained as described above was prepared from the coffee sample No. 2 of Example 2. As a result of adding 0.1 ppm to 2, the natural coffee feeling and the bitter feeling increased from the middle to the base, and the overall volume feeling increased, and 3,5-dimethyl-4,5,6,7 of Example 7 increased. -An effect equivalent to that of tetrahydrothieno [3,2-c] pyridine was confirmed.
[Example 8]
Synthesis of 5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine 1.39 g (10 mmol) of diethyl 4,5,6,7-tetrahydrothieno [3,2-c] pyridine The ether solution (15 ml) was stirred at room temperature, and a solution of 1.42 g of methyl iodide in diethyl ether (15 ml) was slowly added dropwise thereto. To this, 12 ml of a saturated aqueous sodium carbonate solution was added and stirred and mixed at room temperature for 6 hours. The organic layer was removed, and after washing, the solvent was concentrated to obtain a reaction mixture. This was purified by silica gel column chromatography to obtain 0.76 g of a purified product having a GC purity of 97%. The spectrum data of 1H-NMR and MS are shown below.
1H-NMR (400 MHz, CDCl 3 ) δ 2.45 (3H, s), 2.70 (2H, t), 2.89 (2H, t), 3.48 (2H, s), 6.70 (1H) , D), 7.04 (1H, d)
MS: 153 (M +, 56), 110 (100), 84 (6), 66 (6), 42 (10)
The purified product obtained as described above was obtained from the coffee sample No. 2 of Example 2. As a result of adding 0.1 ppm to 2, the natural coffee feeling and the bitter feeling increased from the middle to the base, and the overall volume feeling increased, and 3,5-dimethyl-4,5,6,7 of Example 7 increased. -An effect equivalent to that of tetrahydrothieno [3,2-c] pyridine could be confirmed.

本発明の新規チエノピリジン系化合物は、今までにない特徴的香気を付与し、特に焙煎香気を有意に増強する特性をもつ。これらは、主にロースト臭を持つ飲食物(コーヒー、お茶、ココアなどの嗜好飲料、クッキーなどの焼き菓子、ソース、たれなどの調味料、スープなどの調理食品等)、香粧品、燃料ガス用付臭剤、炭酸ガス消火剤用付臭剤、犯罪対策用付臭剤としてなど、香料および香気増強剤として広い分野での利用が可能である。  The novel thienopyridine-based compound of the present invention imparts an unprecedented characteristic fragrance, and particularly has a characteristic of significantly enhancing roasted fragrance. These are mainly foods and drinks with a roasted odor (paste beverages such as coffee, tea and cocoa, baked sweets such as cookies, seasonings such as sauces and sauces, cooked foods such as soups), cosmetics, and fuel gas It can be used in a wide range of fields as a fragrance and an aroma enhancer such as an odorant, an odorant for carbon dioxide fire extinguishing agent, and an odorant for crime prevention.

Claims (8)

下記の一般式I
[一般式I]
Figure 2005012310
(式中、R1〜R6はHまたはCHまたはCHCHを表す。)で示されるチエノピリジン系化合物の少なくとも1種を添加してなる香料組成物。
The following general formula I
[General Formula I]
Figure 2005012310
(Wherein, R1-R6 are H or CH 3 or an CH 2 CH 3.) Perfume composition obtained by adding at least one thienopyridine compounds represented by.
下記の一般式II
[一般式II]
Figure 2005012310
(式中、R1〜R6はHまたはCHまたはCHCHを表す。ただし、R1からR6すべてがH、R2がCHでその他がH、R3がCHでその他がH、R4がCHでその他がH、R5がCHでその他がH、R6がCHでその他がH、R1とR4がCHでその他がH、R2とR4がCHでその他がH、およびR5とR6がCHでその他がHのものは除く。)で示されるチエノピリジン系化合物。
The following general formula II
[General Formula II]
Figure 2005012310
(Wherein, R1-R6 represents H or CH 3 or CH 2 CH 3. However, R6 all the R1 is H, R2 is other other is H, R3 is CH 3 in CH 3 is H, R4 is CH 3 others H, R5 is other in CH 3 is H, R6 is other in CH 3 is H, R1 and R4 are other in CH 3 is an H, R2 R4 other is H in CH 3, and R5 and R6 Is a CH 3 and the other is H.)
下記の化学式I
[化学式I]
Figure 2005012310
で示される3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン。
The following chemical formula I
[Chemical Formula I]
Figure 2005012310
3,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by
下記の化学式II
[化学式II]
Figure 2005012310
で示される、2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン。
The following chemical formula II
[Chemical Formula II]
Figure 2005012310
2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by
請求項2記載のチエノピリジン系化合物の少なくとも1種を添加してなる香料組成物。A fragrance composition obtained by adding at least one of the thienopyridine compounds according to claim 2. 5−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジン、2,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンおよび3,5−ジメチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンから選ばれる少なくとも1つの化合物を配合してなる香料組成物。5-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine, 2,5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine and 3, A fragrance composition comprising at least one compound selected from 5-dimethyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine. 請求項1、請求項5および請求項6のいずれかに記載の香料組成物を添加してなる食品、飼料および香粧品。A food, feed and cosmetic product comprising the fragrance composition according to any one of claims 1, 5, and 6. 下記の反応式I
[反応式I]
Figure 2005012310
(式中、R3は、CHまたはCHCHを表す。)に示されている1−アルキル−4−ピペリドンとピルビックアルデヒドジメチルアセタールとを塩基の存在下に反応させ、次いで脱水反応後、水素添加した後にチオフェン化することを特徴とする、下記の一般式III
[一般式III]
Figure 2005012310
(式中、R3は、CHまたはCHCHを表す。)で示される5−アルキル−3−メチル−4,5,6,7−テトラヒドロチエノ[3,2−c]ピリジンの製造方法。
The following reaction formula I
[Reaction Formula I]
Figure 2005012310
(Wherein R 3 represents CH 3 or CH 2 CH 3 ) 1-alkyl-4-piperidone and pyruvicaldehyde dimethyl acetal shown in the above are reacted in the presence of a base, and then after dehydration reaction The following general formula III, characterized by thiophenation after hydrogenation
[General Formula III]
Figure 2005012310
(Wherein R 3 represents CH 3 or CH 2 CH 3 ) A process for producing 5-alkyl-3-methyl-4,5,6,7-tetrahydrothieno [3,2-c] pyridine represented by .
JP2005512610A 2003-08-04 2004-08-03 Use of thienopyridine compounds in perfumery and novel thienopyridine compounds Active JP4517381B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003285981 2003-08-04
JP2003285981 2003-08-04
PCT/JP2004/011409 WO2005012310A1 (en) 2003-08-04 2004-08-03 Use of thienopyridine compound in perfume and novel thienopyridine compound

Publications (2)

Publication Number Publication Date
JPWO2005012310A1 true JPWO2005012310A1 (en) 2006-09-14
JP4517381B2 JP4517381B2 (en) 2010-08-04

Family

ID=34113916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005512610A Active JP4517381B2 (en) 2003-08-04 2004-08-03 Use of thienopyridine compounds in perfumery and novel thienopyridine compounds

Country Status (2)

Country Link
JP (1) JP4517381B2 (en)
WO (1) WO2005012310A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117562239A (en) * 2019-03-13 2024-02-20 味之素株式会社 Coated mouth feel enhancer
EP3797846B1 (en) 2019-09-26 2024-05-22 Chanel Parfums Beauté Microfluidic extraction from plant extract

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033804A1 (en) * 1997-12-25 1999-07-08 Meiji Seika Kaisha, Ltd. Tetrahydrobenzindole derivatives
WO1999054303A1 (en) * 1998-04-22 1999-10-28 Meiji Seika Kaisha, Ltd. Optically active tetrahydrobenzindole derivatives
JP2000166474A (en) * 1998-12-02 2000-06-20 Soda Aromatic Co Ltd Production of coffee flavor
JP2000333635A (en) * 1999-05-31 2000-12-05 Nagaoka Koryo Kk Roasting flavor, flavor composition and food containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033804A1 (en) * 1997-12-25 1999-07-08 Meiji Seika Kaisha, Ltd. Tetrahydrobenzindole derivatives
WO1999054303A1 (en) * 1998-04-22 1999-10-28 Meiji Seika Kaisha, Ltd. Optically active tetrahydrobenzindole derivatives
JP2000166474A (en) * 1998-12-02 2000-06-20 Soda Aromatic Co Ltd Production of coffee flavor
JP2000333635A (en) * 1999-05-31 2000-12-05 Nagaoka Koryo Kk Roasting flavor, flavor composition and food containing the same

Also Published As

Publication number Publication date
JP4517381B2 (en) 2010-08-04
WO2005012310A8 (en) 2005-07-07
WO2005012310A1 (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP4517381B2 (en) Use of thienopyridine compounds in perfumery and novel thienopyridine compounds
CN101743216B (en) 6,8,10-undecatrien-(3 or 4)-one and perfume composition
US4179448A (en) Spirane derivatives useful as perfuming and flavor-modifying ingredients
US3931250A (en) Heterocyclic compound as odor- and flavor-modifying agent
KR101516837B1 (en) 6,8,10-undecatrien-3-ol or 6,8,10-undecatrien-4-ol, and perfume composition
JP4709978B2 (en) Fragrance composition containing 5-methyl-5- (4-methyl-3-pentenyl) -4,5-dihydro-2 (3H) -furanone and method for producing the same
US4302607A (en) Process for the preparation of novel unsaturated macrocyclic ketones
US5068362A (en) Cyclic ethers and their utilization as perfuming or flavoring ingredients
JP2006290843A (en) Geranyl derivative
US4252693A (en) Perfume compositions containing spirane derivatives
US4346023A (en) Process for the preparation of novel unsaturated macrocyclic ketones
JP2741091B2 (en) 8-Methyl-4 (Z) -nonene derivative
US4447627A (en) Aliphatic epoxy-ketone
EP0211954B1 (en) Use of (+/-)-cis-gamma-irone in perfumery and novel process for preparing same
Lunt et al. 655. Studies of compounds related to natural perfumes. Part III. The Diels–Alder reaction with acetylenic aldehydes. The synthesis of 4-methylsafranal
JPS626696B2 (en)
JPH0224826B2 (en)
JPH05140071A (en) Cyclopentylcyanomethylcyclopentene compound, preparation thereof, and use thereof as fragrant substance
JP3084413B2 (en) Pyridine derivative and fragrance composition containing the derivative
JPS61158943A (en) Dimethyl or trimethylcyclohexanecarbaldehyde
JPH0128028B2 (en)
JPH0237917B2 (en)
GB1560286A (en) Spiranic derivatives of dihydrofuran useful as perfuming and flavour-modifying ingredients
JPS61243035A (en) Cis-2,2,3-trimethyl-6-methylene-cyclohexane derivative and production thereof
JP2010505989A (en) Use of 5,5-dimethyl-3-ethyl-3,4-dihydrofuran-2-one in perfumes and flavors and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350