JPWO2004094970A1 - Body temperature measuring method and body temperature measuring device - Google Patents

Body temperature measuring method and body temperature measuring device Download PDF

Info

Publication number
JPWO2004094970A1
JPWO2004094970A1 JP2005505751A JP2005505751A JPWO2004094970A1 JP WO2004094970 A1 JPWO2004094970 A1 JP WO2004094970A1 JP 2005505751 A JP2005505751 A JP 2005505751A JP 2005505751 A JP2005505751 A JP 2005505751A JP WO2004094970 A1 JPWO2004094970 A1 JP WO2004094970A1
Authority
JP
Japan
Prior art keywords
temperature
temperature measuring
measuring unit
measured
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005505751A
Other languages
Japanese (ja)
Other versions
JP4699900B2 (en
Inventor
元哉 坂野
元哉 坂野
Original Assignee
坂野 數仁
坂野 數仁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 坂野 數仁, 坂野 數仁 filed Critical 坂野 數仁
Priority to JP2005505751A priority Critical patent/JP4699900B2/en
Priority claimed from PCT/JP2004/005673 external-priority patent/WO2004094970A1/en
Publication of JPWO2004094970A1 publication Critical patent/JPWO2004094970A1/en
Application granted granted Critical
Publication of JP4699900B2 publication Critical patent/JP4699900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

体温測定方法及び体温測定器に係わり、測温信頼性を維持しつつ測温時間が短縮された体温測定方法及びその体温測定方法を用いた体温測定器を提供する。 測温ヘッド13は、被測定者に押圧接触される測温部21と、内部に断熱部材13bを備える。測温部21と断熱部材13bとの間には、サーミスタ32とヒータ33とが設けられる。測温部21を被測定者の測温部位に押圧接触すると、測温部21の内側にあるサーミスタ32とヒータ33は断熱部材13bと被測定者とによって形成される実質的な閉空間に配置される。この状態ではサーミスタ32と外気との直接的な熱伝達が発生し難く、ヒータ33を作動してサーミスタ32を被測定者の体温よりも高温に上昇させた後、被測定者をヒートシンクとして被測定者の体温まで冷却させる。その過程で、測定温度の時間変化率を求め、当該時間変化率が所定の範囲内にあることを所定の回数確認した場合に、そのときの測定値を体温とみなす。係る方法を採用することで測温信頼性を維持しつつ測温時間を短縮することができる。The present invention relates to a body temperature measuring method and a body temperature measuring device, and provides a body temperature measuring method and a body temperature measuring device using the body temperature measuring method in which the temperature measuring time is shortened while maintaining temperature measuring reliability. The temperature measuring head 13 includes a temperature measuring unit 21 that is pressed and contacted by a person to be measured, and a heat insulating member 13b inside. A thermistor 32 and a heater 33 are provided between the temperature measuring unit 21 and the heat insulating member 13b. When the temperature measuring unit 21 is pressed and brought into contact with the temperature measuring part of the person to be measured, the thermistor 32 and the heater 33 inside the temperature measuring part 21 are arranged in a substantially closed space formed by the heat insulating member 13b and the person to be measured. Is done. In this state, direct heat transfer between the thermistor 32 and the outside air hardly occurs, and the heater 33 is operated to raise the thermistor 32 to a temperature higher than the body temperature of the person to be measured, and then the person to be measured is measured as a heat sink. Let the person cool down to the body temperature. In the process, the time change rate of the measured temperature is obtained, and when it is confirmed a predetermined number of times that the time change rate is within a predetermined range, the measured value at that time is regarded as the body temperature. By adopting such a method, the temperature measurement time can be shortened while maintaining the temperature measurement reliability.

Description

本発明は、体温測定方法及び体温測定器に係わり、詳しくは測温信頼性を維持しつつ測温時間が短縮された体温測定方法及びその体温測定方法を用いた体温測定器に関する。  The present invention relates to a body temperature measuring method and a body temperature measuring device, and more particularly to a body temperature measuring method in which a temperature measuring time is shortened while maintaining temperature measuring reliability and a body temperature measuring device using the body temperature measuring method.

病院で患者の体温を測るときに体温計は欠かせないものであり、日常生活の中でも体調が優れないときには体温計で体温を測るものである。体温を測定すること、つまり測温(或いは検温)には、従来から水銀体温計が用いられてきた。この水銀体温計は、水銀の熱膨張率という単純な物理特性を測定原理とするので測定精度が高いという長所を有するものの、壊れやすい、有害、取扱い不便という短所を有している。そこで、これらの問題を克服するため、近年安価に入手可能となったサーミスタ等を温度測定手段とする電子体温計が開発されている。
第13図は、係る電子体温計の一般的な構造を概念的に示したものである。第13図に示すように、先端に感温素子であるサーミスタ等の温度測定手段151dを有する測温プローブ151と、前記温度測定手段151dからの信号を処理して当該測定温度を表示する本体152より構成されている(実開昭62−1324号公報参照)。詳しくは、測温プローブ151は、筒状のハウジング151aの先端部にキャップ151bを嵌装し、このキャップ151bの内側に熱伝導性の比較的良いエポキシ系樹脂等の接着剤151cを充填して、ここに温度測定手段151dを埋設している。温度測定手段151dのリード線151eは本体152側に導かれる構造になっている。
しかしながら、このような従来の一般的な構成では、接着剤151cの熱容量が大きいために温度測定手段151dの熱応答特性が悪いという問題がある。つまり、接着剤151cは体温計本体152にも所定の面積で接触しているため、温度測定手段151dに伝達した熱が接着剤151cを介して体温計本体152へと流出し、温度測定手段151dの熱応答特性が悪くなる。このように、従来の構成の電子温度計では、熱応答特性が悪いため測定時間が長くなるという問題があった。
第14図は、上記の一般的な電子体温計の体温測定開始後の温度プロファイルを模式的に示したものである。温度プロファイル161は上記の一般的な電子体温計について、温度プロファイル162はその他の電子体温計(後述する第16図に示す電子体温計)について示したものである。
体温測定開始後、キャップ151bと接触する被測定者から接着剤151cを介して温度測定手段151dへと熱が伝達され、温度測定手段151dでの測定温度が上昇する。しかし、被測定者から伝搬する熱は、接着剤151cの加温と接着剤151cを介して体温計本体152への流出とのために効果的には温度測定手段151dへと伝達されず、その温度上昇は緩やかとなる。また、温度測定手段151dの温度が体温近傍に近づくと、温度差が少ないためにキャップ151bへと伝達される単位時間当たりの熱量は少なくなる。このため、上記の接着剤151cの加温や体温計本体152への流出の影響が相対的に大きくなり、温度センサの温度上昇は特に緩やかとなる。この状態では、被測定者からキャップ151bへと流入する熱の殆どが接着剤151cと体温計本体152へ流出してしまい、温度測定手段151dの温度上昇には用いられていない。従って、図13に示されるような電子体温計では、温度プロファイル161が飽和に達して、測定温度が正確な体温、即ち平衡温度を表示するまでには、5分以上の時間を要することとなる。
体温計で温度を測定する被測定者は体調の優れない方であったり子供であったりすることを考慮すると、体温測定の信頼性を維持しつつ、より測定時間が短くて済む体温計の開発が望まれている。
この体温測定の信頼性を維持しつつ測定時間を短縮するために提供されている技術は、大別すると、温度プロファイルが平衡温度に達するまでの飽和時間を短縮する技術と、温度プロファイルが飽和する前に体温即ち平衡温度を予測する技術とがある。
まず、飽和時間を短縮する技術について第15図及び第16図を参照しながら説明する。
第15図及び第16図は、飽和時間を短縮するための従来の技術を含む電子体温計の構成を概念的に示す正面図及び部分断面図である。
第15図に示される電子体温計は、平衡温度に達する時間を短縮するために、サーミスタ171を備えるセンサキャップ172と本体部分173との接続部分に断熱部材を用いて、センサキャップ172と本体部分173とを熱的に分離した構造を有している(特開2001−66190号公報)。このため、被測定者との接触によってセンサキャップ172へと流入する熱は本体部分173へと流出し難い構造となっている。
しかし、このような構造では、被測定者からサーミスタ171へと伝達される熱が外気へと放出されることを必ずしも効果的には抑制できない。従来の水銀温度計と同じ形状を有するセンサキャップ172の構造では、センサキャップ172を腋下に挟み込む体勢を維持しなければ、センサキャップ172は外気に露出され、その露出部から外気へと熱が放出されるためである。舌下で体温を測定する場合でも、従来のセンサキャップ172の形状のままでは部分的な外気露出を効果的には抑制できない。
一方、第16図に示される電子体温計は、温度プロファイルの初期の立ち上がり時間を短縮するための予備加熱用のヒータ187を内蔵する。また、被測定者から伝達する熱が効果的にサーミスタ183の昇温に用いられるように、サーミスタ183を保持するセンサホルダ184の熱容量を小さくしたり、センサホルダ184とケース本体との断熱性を高めるために、センサホルダ184の先端とケース本体の先端とにはギャップGが設けられている(特開2002−5752号公報)。
第16図に示される電子体温計の温度プロファイルは、第14図の温度プロファイル162のようになる。まず、予備加熱用のヒータ187によって、例えば30℃までセンサホルダ184全体を加熱することで、測定開始後初期の昇温時間が短縮される。第14図では、この領域を領域162Aとして示している。
また、第13図に示される電子体温計のように接着剤151cでセンサキャップ内部を充填する場合に比べると、センサホルダ184の熱容量は小さくなっている。この構造により、予備加熱用のヒータ187による予備加熱停止後、被測定者からの熱伝達によってサーミスタ183が加温されるにあたって、昇温速度が上昇する。
更に、第13図に示される電子体温計ではキャップ内に充填される接着剤151cと体温計本体との接触面積が広いが、第16図に示される電子体温計ではセンサキャップと体温計本体との接触面積が小さく、電子体温計本体へ熱が流出し難い構造となっている。この構造も予備加熱用のヒータ187による予備加熱停止後の被測定者からの熱伝達によるサーミスタ183の昇温速度を上昇させることに効果があると期待される。
しかし、このような所謂改良型の電子体温計でも、センサキャップと被測定者との体温差が少なくなって、単位時間当たりの熱流入量が少なくなった状態では、従来の一般的な電子体温計と本質的な差はない。このため、被測定者から流入する熱のほとんどは、センサホルダ184内のサーミスタ183以外の要素を加温するために用いられたり、或いはセンサキャップから電子体温計本体へと流出したりする。即ち、流入した熱はサーミスタ183を加温する目的にはほとんど用いられず消散してしまうことになる。この状態(領域)を第14図では、領域162Bとして示している。従って、この状態ではサーミスタ183の昇温速度は特に緩やかになってしまい、係る構成の電子体温計でも体温測定に1分程度の時間を要しているのが実状である。
次に、平衡温度を予測する技術について説明する。
特開2003−75262号公報に示されているように、平衡温度を予測するために用いられる測定原理は、2種類の熱的環境、具体的には熱の流入状態と流出状態とが異なる環境にある温度測定手段からの温度変動に係る情報を入力し、これらの情報に基づいて熱伝導式の逆問題を解くことで、被測定者の深部温度を推測するというものである。
ここで重要なことは、この測定原理に基づいて温度を予想する技術は、温度変動に係る情報に基づいていることである。即ち、この温度測定方法では、最も信頼性の高い平衡温度を直接測定するのではなく、温度が変動しているときの測温情報に基づいて平衡温度を予測しているのである。
このように平衡温度の予測であるが故に、測定時間を10秒程度とすることが可能であるが、温度変動に係る情報を収集しているときに、被測定者が正確な温度測定を妨げる行為をした場合、例えば体温測定中に電子体温計が一時的にでも適切に腋下で押圧接触されていない場合には、温度測定手段の温度環境が変動するために、不適切な温度変動情報が体温計に入力されることとなる。電子体温計はこの不適切な温度変動に係る情報に基づいて温度予測を行うこととなるので、表示温度の信頼性は必然的に低くなってしまう。腋下で体温計が体温測定中に適切に保持されているか否かを被測定者が常に確認することは、現状の体温計の構成では簡単ではない。従って、結果的に複数回の温度測定が必要となってしまうことが上述した予測方式の電子体温計に関する問題点となっている。
即ち、体温測定時間を短縮する技術を導入しても、被測定者に対して測温部が適切に接触した状態を維持することができてなければ、体温測定に対する信頼性が得られず、結果として測定時間の短縮は達成されない。むしろ、測定時間が短縮されるほど、体温測定中の一時的な不適切な接触状態の影響が顕著になり、測定信頼性が低下するともいえる。
従って、本願発明は以上の従来技術における問題点に鑑みてなされたものであり、測温信頼性を維持しつつ測温時間が短縮された体温測定方法及びその方法を用いた体温測定器を提供することを目的とする。
A thermometer is indispensable when measuring a patient's body temperature in a hospital, and when a physical condition is not excellent in daily life, a thermometer is used to measure a body temperature. Conventionally, a mercury thermometer has been used for measuring body temperature, that is, for temperature measurement (or temperature measurement). Although this mercury thermometer has the advantage of high measurement accuracy because it uses the simple physical characteristic of the thermal expansion coefficient of mercury as a measurement principle, it has the disadvantages of being fragile, harmful and inconvenient to handle. Therefore, in order to overcome these problems, electronic thermometers using a thermistor or the like that has become available at low cost in recent years as a temperature measuring means have been developed.
FIG. 13 conceptually shows the general structure of such an electronic thermometer. As shown in FIG. 13, a temperature measuring probe 151 having temperature measuring means 151d such as a thermistor as a temperature sensing element at the tip, and a main body 152 for processing the signal from the temperature measuring means 151d and displaying the measured temperature. (See Japanese Utility Model Publication No. 62-1324). Specifically, the temperature measuring probe 151 has a cap 151b fitted at the tip of a cylindrical housing 151a, and an adhesive 151c such as an epoxy resin having relatively good thermal conductivity is filled inside the cap 151b. The temperature measuring means 151d is embedded here. The lead wire 151e of the temperature measuring means 151d is structured to be guided to the main body 152 side.
However, such a conventional general configuration has a problem that the thermal response characteristic of the temperature measuring means 151d is poor because the heat capacity of the adhesive 151c is large. That is, since the adhesive 151c is also in contact with the thermometer main body 152 in a predetermined area, the heat transmitted to the temperature measuring means 151d flows out to the thermometer main body 152 through the adhesive 151c, and the heat of the temperature measuring means 151d. Response characteristics are degraded. As described above, the electronic thermometer having the conventional configuration has a problem that the measurement time becomes long because the thermal response characteristic is poor.
FIG. 14 schematically shows a temperature profile after the start of temperature measurement of the above-described general electronic thermometer. The temperature profile 161 shows the above-mentioned general electronic thermometer, and the temperature profile 162 shows the other electronic thermometer (the electronic thermometer shown in FIG. 16 described later).
After the body temperature measurement is started, heat is transferred from the person in contact with the cap 151b to the temperature measuring means 151d through the adhesive 151c, and the temperature measured by the temperature measuring means 151d rises. However, the heat propagated from the measurement subject is not effectively transmitted to the temperature measuring means 151d due to the heating of the adhesive 151c and the outflow to the thermometer main body 152 through the adhesive 151c, and the temperature The rise will be moderate. Further, when the temperature of the temperature measuring means 151d approaches the body temperature, the amount of heat per unit time transmitted to the cap 151b decreases because the temperature difference is small. For this reason, the influence of the heating of the adhesive 151c and the outflow to the thermometer main body 152 becomes relatively large, and the temperature rise of the temperature sensor becomes particularly moderate. In this state, most of the heat flowing into the cap 151b from the person to be measured flows out to the adhesive 151c and the thermometer main body 152, and is not used for increasing the temperature of the temperature measuring means 151d. Therefore, in the electronic thermometer as shown in FIG. 13, it takes more than 5 minutes for the temperature profile 161 to reach saturation and the measured temperature to display an accurate body temperature, that is, an equilibrium temperature.
Considering that the person who measures the temperature with a thermometer is a poor physical condition or a child, it is hoped to develop a thermometer that requires less measurement time while maintaining the reliability of temperature measurement. It is rare.
The technologies provided to reduce the measurement time while maintaining the reliability of this body temperature measurement can be broadly divided into the technology that shortens the saturation time until the temperature profile reaches the equilibrium temperature, and the temperature profile is saturated. There is a technique for predicting body temperature, that is, equilibrium temperature.
First, a technique for reducing the saturation time will be described with reference to FIGS.
FIGS. 15 and 16 are a front view and a partial cross-sectional view conceptually showing the structure of an electronic thermometer including a conventional technique for shortening the saturation time.
The electronic thermometer shown in FIG. 15 uses a heat insulating member at the connecting portion between the sensor cap 172 having the thermistor 171 and the main body portion 173 in order to shorten the time to reach the equilibrium temperature, and the sensor cap 172 and the main body portion 173. Are thermally separated from each other (Japanese Patent Laid-Open No. 2001-66190). For this reason, the heat flowing into the sensor cap 172 due to contact with the measurement subject is difficult to flow out to the main body portion 173.
However, with such a structure, it is not always possible to effectively suppress the heat transferred from the person being measured to the thermistor 171 from being released to the outside air. In the structure of the sensor cap 172 having the same shape as that of a conventional mercury thermometer, the sensor cap 172 is exposed to the outside air unless the posture for sandwiching the sensor cap 172 under the armpit is maintained, and heat is transferred from the exposed portion to the outside air. This is because it is released. Even when the body temperature is measured under the tongue, partial exposure to the outside air cannot be effectively suppressed with the shape of the conventional sensor cap 172.
On the other hand, the electronic thermometer shown in FIG. 16 incorporates a preheating heater 187 for shortening the initial rise time of the temperature profile. In addition, the heat capacity of the sensor holder 184 that holds the thermistor 183 can be reduced, or the heat insulation between the sensor holder 184 and the case body can be reduced so that the heat transmitted from the subject can be effectively used to raise the temperature of the thermistor 183. In order to increase the height, a gap G is provided between the tip of the sensor holder 184 and the tip of the case body (Japanese Patent Laid-Open No. 2002-5752).
The temperature profile of the electronic thermometer shown in FIG. 16 is the temperature profile 162 of FIG. First, by heating the entire sensor holder 184 to, for example, 30 ° C. with the preheating heater 187, the initial temperature rise time after the start of measurement is shortened. In FIG. 14, this region is shown as a region 162A.
Further, the heat capacity of the sensor holder 184 is smaller than that in the case where the inside of the sensor cap is filled with the adhesive 151c as in the electronic thermometer shown in FIG. With this structure, after the preheating by the preheating heater 187 is stopped, the temperature increase rate is increased when the thermistor 183 is heated by heat transfer from the measurement subject.
Further, in the electronic thermometer shown in FIG. 13, the contact area between the adhesive 151c filled in the cap and the thermometer main body is wide, but in the electronic thermometer shown in FIG. 16, the contact area between the sensor cap and the thermometer main body is small. The structure is small and it is difficult for heat to flow out to the electronic thermometer body. This structure is also expected to be effective in increasing the temperature increase rate of the thermistor 183 by heat transfer from the measurement subject after the preheating is stopped by the preheating heater 187.
However, even in such a so-called improved electronic thermometer, when the difference in body temperature between the sensor cap and the person to be measured is reduced and the heat inflow per unit time is reduced, There is no essential difference. For this reason, most of the heat flowing from the person to be measured is used to heat elements other than the thermistor 183 in the sensor holder 184, or flows out from the sensor cap to the electronic thermometer body. That is, the inflowing heat is hardly used for the purpose of heating the thermistor 183 and is dissipated. This state (region) is shown as region 162B in FIG. Therefore, in this state, the rate of temperature increase of the thermistor 183 is particularly slow, and the actual condition is that it takes about 1 minute to measure the body temperature even with the electronic thermometer having such a configuration.
Next, a technique for predicting the equilibrium temperature will be described.
As disclosed in Japanese Patent Application Laid-Open No. 2003-75262, the measurement principle used to predict the equilibrium temperature is two types of thermal environments, specifically, environments in which the inflow state and the outflow state of heat are different. The information about the temperature fluctuation from the temperature measuring means is input, and the inverse temperature problem of the heat conduction type is solved based on the information to estimate the deep temperature of the person to be measured.
What is important here is that the technology for predicting the temperature based on this measurement principle is based on information relating to temperature fluctuation. That is, in this temperature measurement method, the most reliable equilibrium temperature is not directly measured, but the equilibrium temperature is predicted based on temperature measurement information when the temperature fluctuates.
Since the equilibrium temperature is predicted as described above, the measurement time can be set to about 10 seconds. However, when collecting information related to temperature fluctuation, the measurement subject prevents accurate temperature measurement. For example, if the electronic thermometer is not properly pressed and pressed under armpit during body temperature measurement, the temperature environment of the temperature measurement means will fluctuate. It will be input to the thermometer. Since the electronic thermometer predicts the temperature based on the information related to the inappropriate temperature fluctuation, the reliability of the display temperature is inevitably lowered. It is not easy for the measurement subject to always check whether the thermometer is properly held during measurement of the temperature under the armpit with the current thermometer configuration. Therefore, the fact that a plurality of temperature measurements are required as a result is a problem with the above-described electronic thermometer of the prediction method.
That is, even if a technique for shortening the body temperature measurement time is introduced, the reliability of the body temperature measurement cannot be obtained unless the state where the temperature measuring unit is properly in contact with the measurement subject can be maintained. As a result, a reduction in measurement time is not achieved. Rather, it can be said that as the measurement time is shortened, the influence of temporary improper contact during body temperature measurement becomes more significant, and the measurement reliability decreases.
Accordingly, the present invention has been made in view of the above-described problems in the prior art, and provides a body temperature measurement method in which the temperature measurement time is shortened while maintaining temperature measurement reliability, and a body temperature measurement device using the method. The purpose is to do.

本出願の体温測定方法は、温度測定手段と、当該温度測定手段を内部に有し被測定者の体表面に押圧接触される測温部と、当該測温部に熱を印加して当該測温部の温度を調整する測温部温度調整手段と、前記温度測定手段で測定した温度の時間変化率を計算する演算部とを具備し、前記測温部を前記被測定者の体表面に押圧接触させながら前記測温部の温度を前記測温部温度調整手段によって前記被測定者の体表面の温度より一旦高くし、温度順位が当該測温部の温度、前記被測定者の温度、環境温度となる状態に設定してから、前記被測定者をヒートシンクとして前記温度測定手段によって測定される前記体表面の温度の時間変化率を暫時測定する体温測定方法であって、少なくとも前記測温部に熱量を印加する熱量印加プロセスと、前記熱量印加プロセスによって前記測温部に熱量を印加した後に、前記温度測定手段によって温度を測定して前記演算部で求められる測定温度の時間変化率が所定の範囲内にあることを所定の回数確認した場合に、そのときの測定値を前記被測定者の体表面の体温度とみなす体温測定プロセスと、を具備することを特徴とする。
前記温度測定手段は、温度を物理量に変化して数値として認識できるようなものであり、例えばサーミスタ等がある。前記測温部温度調整手段は、前記測温部に熱量を印加するものであり、種々の発熱体を用いることができる。簡単には、ニクロム線ヒータ等を用いることができるが、後述するように電子部品の能動素子や受動素子に電流を流して発熱するように構成してもよい。前記演算部は、測定値(測定温度)を演算するものであり、汎用の演算プロセッサ等を利用することができる。
係る方法を採用することで、被測定者をヒートシンクとして温度測定手段を冷却しながら平衡温度へと到達させる体温測定方法が実現される。測温部に熱量を印加し、前記温度測定手段が被測定者の体温よりも高い温度にすると、温度測定手段から被測定者へと熱が流出する状態となる。同時に温度測定手段からその他の部分、例えば測温ヘッドを構成する断熱部へも熱が流出する状態となる。この状態は温度測定手段と被測定者との温度が一致するまで継続し、その後は、温度測定手段と被測定者との温度が一致した状態を維持しながら断熱部へと熱が流出する状態となる。
即ち、温度測定手段は、熱量が印加された後に、被測定者の体温と一致するまで被測定者と断熱部との双方に対して熱を流出させて温度測定手段の温度を低下させるという一の熱的プロセスが発生する。この状態は、温度測定手段の温度が被測定者の体温と一致するまで継続する。
この点は、従来の温度測定方法と大きく異なる。従来の温度測定方法では、被測定者から流入する熱の一部だけが温度測定手段の温度上昇、すなわち蓄熱に用いられ、残りは温度測定手段に熱的に接触する他の要素に流出する。換言すれば、温度測定手段の温度を被測定者の体温に到達させるように温度測定手段を蓄熱するプロセスは常に外部への熱流出プロセスとの競争状態にある。ここで、被測定者から温度測定手段への単位時間当たりの熱流入量と、温度測定手段の単位時間当たりの蓄熱量とは温度測定手段の温度と被測定者の体温との温度差が大きいほど大きくなる。これに対して、温度測定手段から外部要素への単位時間当たりの熱流出量は温度測定手段の温度には強くは依存しない。このため、温度測定開始初期は温度測定手段と被測定者との温度差が大きいため蓄熱プロセスが優勢であるが、温度測定手段の温度が被測定者の体温に近づくと蓄熱プロセスが劣勢になり、熱流出プロセスがむしろ支配的になる。よって温度測定手段の温度は被測定者の体温に近づけば近づくほど上昇しにくくなる。以上が、従来の温度測定方法で温度測定手段の温度と被測定者の体温の温度差が少ない高精度の体温測定を行おうとすると特に長時間の計測時間が必要となる理由である。
従って、本願発明に係る体温測定器を用いて体温測定をすることで、熱的な競争状態を発生させることなく、温度測定手段を被測定者の体温と一致させることとなり、温度測定に要する間が短縮されることになる。
なお、前記測温部に印加する熱量は、前記温度測定手段によって温度を測定して前記演算部で測定温度の時間変化率を求め、当該測定温度の時間変化率から前記測温部温度調節手段によって前記測温部に印加する熱量を決定する熱量決定プロセスを具備して、当該熱量決定プロセスによって決定してもよい。
測定温度の時間変化率は、温度測定手段とこれに熱的に相互作用をする他の要素、具体的には被測定者や断熱部との熱移動を反映して変動する。そこで、加熱に必要な最小限の熱量を設定するにあたって、この温度の時間変化率に基づくことで、熱量設定の精度が向上する。このため、温度測定手段の過剰加熱がさらに抑制され、加熱終了後の冷却過程に要する時間が短縮される。従って、係る体温測定方法を採用することで、短時間の体温測定が行われる。
本願発明の体温測定方法では、前記体温測定プロセスでの温度の時間変化率の所定の範囲は、−0.1℃/秒以上+0.01℃/秒以下とする。このような条件を設定することで、体温測定の終点を客観的に検知することとなり、体温測定の信頼性が向上する。
さらに、前記熱量印加プロセスによって前記測温部に熱量を印加した後に、前記温度測定手段によって温度を測定して前記演算部で測定温度の時間変化率を求め、当該測定温度の時間変化率の勾配を判定する温度時間変化率勾配判定プロセスを具備してもよい。そして、前記熱量印加プロセスによって前記測温部に熱量を印加した後に、前記温度変化率勾配判定プロセスで判定される勾配が正の場合に、前記温度測定手段によって測定される温度が所定の温度以下であることを確認した後に、前記測温部温度調整手段によって前記測温部に所定時間再加熱するようにしてもよい。
前記測温部温度調整手段からの発熱量が少なく、熱の供給が停止した後も温度測定手段の温度が被測定者の体温よりも低い場合には、被測定者からの熱流入が継続する。このため、係る場合には熱量を印加した後、所定時間経過しても温度測定手段の冷却が発生しない。即ち、この場合には温度の時間変化率は勾配が正の状態が維持されるとなる。そこで、所定時間経過後の温度の時間変化率の勾配が正である場合には、加熱不十分と判断し、再加熱を行うことにより、加熱不十分に起因する測定時間の冗長化が防止される。従って、係る体温測定方法を採用することで、短時間の体温測定が行われる。
前記測温部は、その内部に断熱材料を有し、当該断熱材料と前記測温部との間には前記温度測定手段と前記測温部温度調整手段とが配置され、当該温度計測手段と当該測温部温度調整手段とは永久磁石によって前記測温部に吸着するようにしてもよい。
係る構成を備えることで、体温を測定するにあたって、測温部を被測定者の腋下に押圧させると、断熱部材と被測定者の体表面とが接触することで形成される閉空間に測温部が配置され、温度測定手段は外気と特に熱伝達がし難い状態が実現される。このため、体温測定中に温度測定手段から外気へと熱が放出され難くなり、測定時間を冗長化する熱流出因子の影響が抑制される。従って、本発明に係る体温測定方法を用いることで、測定信頼性が高い体温測定が短時間で行われ易くなる。また、外気への一時的な熱流出を原因とする急激な温度変動が発生し難いので、短時間で体温計測を行っても、測定信頼性は高い。
前記温度測定手段は、サーミスタ、熱電対、金属測温抵抗対、IC温度センサ、磁気温度センサの内から任意に選ぶことができる。これらの部品は汎用品であるから、低コストで本願発明の体温測定方法を実現することに寄与することとなる。
前記測温部の正面形状は円形であるか、又は半楕円球形状或いは角部を丸めた直方体形状とし、当該半楕円球形状或いは角部を丸めた直方体の長軸或いは最長辺方向は、前記被測定者の測定部位に前記測温部を当接させるために前記測温部を差し込む動作方向に対して直交するようにしてもよい。
腋下では、腋下近傍における動脈の影響を受け、温度が高い部分の分布形状が垂直方向に長い体表面温度分布を有する。係る形状にすることで、従来の体温計と同様の動作によって腋下に挿入して測温部を押圧接触すると、測温部と被測定者とが接触する部分の形状も、垂直方向に長い形状となる。このため、本願発明に係る体温測定器を通常動作による腋下挿入することで、温度が高い部分の全体に測温部が接触し易くなり、信頼性の高い温度測定が行われることになる。
また、従来の体温計と同様の動作で舌下に挟んだ場合にも、測温部が舌端から一定の距離の位置に舌の伸長方向に対して垂直に当接される。このため、測定位置が変動し難く、かつ外気の影響を受け難い。従って、この場合でも短時間でかつ信頼性高く被測定者の体温が測定されることとなる。
なお、前記測温部の正面形状を円形とすれば、当該体温測定器を被測定者が腋下に差し込む際に、その方向を特に気にしなくてもよいので、気分が悪く体調を損ねている患者は、気を煩うことなく体温測定を行うことができる。
前記測温部温度調整手段は、発熱体としてもよい。例えばニクロム線ヒータを用いることができる。或いは、電子部品の能動素子や受動素子に電流を流して発熱するように構成しても良い。係る構成を採ることによって安価で簡易な測温部温度調整手段を実現することができる。また、前記測温部温度調整手段は、自己制御型正温度係数特性を有する抵抗体を含む加熱自律制御手段を備えてもよい。
自己制御型正温度係数特性を有する抵抗体とは、抵抗体の温度が上昇すると内部抵抗が上昇する物性を備える抵抗体である。この抵抗体を加熱手段と直列に接続して定電圧を印加すると、印加初期は抵抗体温度が低いために加熱手段には相当量の電流が流れ、加熱手段は発熱する。しかし、加熱手段からの発熱によって抵抗体温度が上昇すると、その内部抵抗が上昇し、この抵抗と直列に接続される加熱手段を流れる電流が減少する。このため、加熱手段からの単位時間当たりの発熱量が減少する。即ち、加熱手段は自己制御型正温度係数特性を有する抵抗体と直列に接続されることで、その加熱温度に上限を与えられることとなる。
従って、加熱手段が加熱自律制御手段に制御されることで、測温部の内側に配される加熱手段と温度測定手段とは所定の設定値以下の温度に維持される。係る異常加熱の対策が施されているため、測温部の故障は発生し難くなる。故に、係る構成を備える体温測定方法を用いることで、信頼性の高い体温測定が行われ易くなる。
また、温度測定手段は加熱自律制御手段によって設定される上限温度までしか加熱されないので、温度測定手段と被測定者の体温との温度差も所定温度以下となる。このため、被測定者の体温へと冷却されるにあたって特に長時間を要するような事態が防止される。従って、係る構成を備える体温測定方法を用いることで、短時間での体温測定が行われやすい。なお、加熱自律制御手段が加熱制御手段の機能を兼ねても構わない。
本願発明の体温測定器は、温度測定手段と、当該温度測定手段を内部に有し被測定者の体表面に押圧接触される測温部と、当該測温部に熱を印加して当該測温部の温度を調整する測温部温度調整手段と、前記温度測定手段で測定した温度の時間変化率を計算する演算部とを具備し、前記測温部を前記被測定者の体表面に押圧接触させながら前記測温部の温度を前記測温部温度調整手段によって前記被測定者の体表面の温度より一旦高くし、温度順位が当該測温部の温度、前記被測定者の温度、環境温度となる状態に設定してから、前記被測定者をヒートシンクとして前記体表面の温度の時間変化率を測定するように構成して成る。
前述の体温測定方法を実現するように構成されたものであり、本願発明に係る体温測定器を用いて体温測定をすることで、熱的な競争状態を発生させることなく、温度測定手段を被測定者の体温と一致させることとなり、温度測定に要する間が短縮されることとなる。
前記測温部は、その内部に断熱材料を有し、当該断熱材料と前記測温部との間には前記温度計測手段と前記測温部温度調整手段とが配置され、当該温度計測手段と当該測温部温度調整手段とは永久磁石によって前記測温部に吸着するように構成してもよい。
係る構成を備えれば、体温を測定するにあたって、測温部を被測定者の腋下に押圧させると、断熱部材と被測定者の体表面とが接触することで形成される閉空間に測温部が配置され、温度測定手段は外気と特に熱伝達がし難い状態が実現される。このため、体温測定中に温度測定手段から外気へと熱が放出され難く、測定時間を冗長化する熱流出因子の影響が抑制される。従って、本願発明に係る体温測定器を用いることで、測定信頼性が高い体温測定が短時間で行われることとなる。また、外気への一時的な熱流出を原因とする急激な温度変動が発生し難いので、短時間で体温計測を行っても、測定信頼性は高い。
前記温度測定手段は、サーミスタ、熱電対、金属測温抵抗対、IC温度センサ、磁気温度センサの内から選ばれた一種を用いてもよい。これらの部品は汎用品であるから、低コストで本願発明の体温測定器を実現することに寄与することとなる。
前記測温部の正面形状は円形であるか、又は半楕円球形状或いは角部を丸めた直方体形状であり、当該半楕円球形状或いは角部を丸めた直方体の長軸或いは最長辺方向は、前記被測定者の測定部位に前記測温部を当接させるために前記測温部を差し込む動作方向に対して直交するようにしてもよい。
腋下では、腋下近傍における動脈の影響を受け、温度が高い部分の分布形状が垂直方向に長い体表面温度分布を有する。係る形状にすることで、従来の体温計と同様の動作によって腋下に挿入して測温部を押圧接触すると、測温部と被測定者とが接触する部分の形状も、垂直方向に長い形状となる。このため、本願発明に係る体温測定器を通常動作による腋下挿入することで、温度が高い部分の全体に測温部が接触し易くなり、信頼性の高い温度測定が行われることになる。
また、従来の体温計と同様の動作で舌下に挟んだ場合にも、測温部が舌端から一定の距離の位置に舌の伸長方向に対して垂直に当接される。このため、測定位置が変動し難く、かつ外気の影響を受け難い。従って、この場合でも短時間でかつ信頼性高く被測定者の体温が測定されることになる。
なお、前記測温部の正面形状を円形とすれば、当該体温測定器を被測定者が腋下に差し込む際に、その方向を特に気にしなくてもよいので、気分が悪く体調を損ねている患者は、気を煩うことなく体温測定を行うことができる。
前記測温部温度調整手段は、発熱体としてもよい。例えばニクロム線ヒータを用いることができる。或いは、電子部品の能動素子や受動素子に電流を流して発熱するように構成しても良い。係る構成を採ることによって安価で簡易な測温部温度調整手段を実現することができる。また、前記測温部温度調整手段は、自己制御型正温度係数特性を有する抵抗体を含む加熱自律制御手段を備えてもよい。
自己制御型正温度係数特性を有する抵抗体とは、抵抗体の温度が上昇すると内部抵抗が上昇する物性を備える抵抗体である。この抵抗体を加熱手段と直列に接続して定電圧を印加すると、印加初期は抵抗体温度が低いために加熱手段には相当量の電流が流れ、加熱手段は発熱する。しかし、加熱手段からの発熱によって抵抗体温度が上昇すると、その内部抵抗が上昇し、この抵抗と直列に接続される加熱手段を流れる電流が減少する。このため、加熱手段からの単位時間当たりの発熱量が減少する。即ち、加熱手段は自己制御型正温度係数特性を有する抵抗体と直列に接続されることで、その加熱温度に上限を与えられることとなる。
従って、加熱手段が加熱自律制御手段に制御されることで、測温部の内側に配される加熱手段と温度測定手段とは所定の設定値以下の温度に維持される。係る異常加熱の対策が施されているため、測温部の故障が発生し難い。故に、係る構成を備える体温測定器を用いることで、信頼性の高い体温測定が行われ易くなる。
また、温度測定手段は加熱自律制御手段によって設定される上限温度までしか加熱されないので、温度測定手段と被測定者の体温との温度差も所定温度以下となる。このため、被測定者の体温へと冷却されるにあたって特に長時間を要するような事態が防止される。従って、係る構成を備える体温測定器を用いることで、短時間での体温測定が行われ易い。なお、加熱自律制御手段が加熱制御手段の機能を兼ねても構わない。
また、本願発明の体温測定器は、一方の端部に前記測温部が配設された略円弧状の弾性体を有し、当該一方の端部に配設された前記測温部が被測定者の腋下に、他方の端部が被測定者の肩部に当接され、前記弾性体の形状快復力によってそれぞれの端部が前記被測定者に押圧されることで前記測温部が前記被測定者に対して固定されるように構成してもよい。
係る構成をとることで、体温計の測温部は、体温計自らの弾性力によって腋下の所定の位置に固定される。このため、体温測定中の測定位置の変動が発生し難く、温度測定手段と外気との熱の移動が発生し難くなる。従って、短時間でかつ信頼性高く体温が測定され易くなる。さらに、被測定者は体温計を腋下に挟むという動作から開放されることになる。このため、係る構成を備える体温計は、継続的な温度モニタリングのための手段としても使用され得ることになる。
The body temperature measuring method of the present application includes a temperature measuring unit, a temperature measuring unit having the temperature measuring unit therein and pressed against the body surface of the measurement subject, and applying the heat to the temperature measuring unit. A temperature measuring section temperature adjusting means for adjusting the temperature of the temperature section; and a calculation section for calculating a temporal change rate of the temperature measured by the temperature measuring means, and the temperature measuring section is provided on the body surface of the subject. While pressing, the temperature of the temperature measuring unit is once higher than the temperature of the body surface of the measured person by the temperature measuring unit temperature adjusting means, the temperature ranking is the temperature of the temperature measuring unit, the temperature of the measured person, A body temperature measuring method for temporarily measuring a rate of time change of the temperature of the body surface measured by the temperature measuring means using the subject as a heat sink after setting to a state to be an environmental temperature, at least the temperature measuring A heat quantity application process for applying heat quantity to the part, and After applying a quantity of heat to the temperature measuring unit by a quantity application process, measure the temperature by the temperature measuring means and confirm that the time change rate of the measured temperature obtained by the computing unit is within a predetermined range a predetermined number of times And a body temperature measurement process in which the measured value at that time is regarded as the body temperature of the body surface of the person to be measured.
The temperature measuring means can change the temperature into a physical quantity and recognize it as a numerical value, such as a thermistor. The temperature measuring unit temperature adjusting means applies heat to the temperature measuring unit, and various heating elements can be used. For simplicity, a nichrome wire heater or the like can be used. However, as will be described later, a current may be supplied to an active element or passive element of an electronic component to generate heat. The calculation unit calculates a measurement value (measurement temperature), and a general-purpose calculation processor or the like can be used.
By adopting such a method, a body temperature measuring method is realized in which the temperature is measured while the temperature measuring means is cooled by using the person to be measured as a heat sink. When the amount of heat is applied to the temperature measuring unit and the temperature measuring means is set to a temperature higher than the body temperature of the person to be measured, the heat flows from the temperature measuring means to the person to be measured. At the same time, the heat flows from the temperature measuring means to other portions, for example, a heat insulating portion constituting the temperature measuring head. This state continues until the temperature of the temperature measuring means and the person to be measured match, and then heat flows out to the heat insulation part while maintaining the temperature of the temperature measuring means and the person to be measured matched. It becomes.
That is, the temperature measuring unit is configured to decrease the temperature of the temperature measuring unit by applying heat to both the measured person and the heat insulating portion until the temperature of the measured person coincides with the body temperature of the measured person after the amount of heat is applied. The thermal process occurs. This state continues until the temperature of the temperature measuring means matches the body temperature of the person being measured.
This point is greatly different from the conventional temperature measurement method. In the conventional temperature measuring method, only a part of the heat flowing in from the person to be measured is used for temperature rise of the temperature measuring means, that is, heat storage, and the rest flows out to other elements that are in thermal contact with the temperature measuring means. In other words, the process of storing the temperature measuring means so that the temperature of the temperature measuring means reaches the body temperature of the person to be measured is always in a state of competition with the heat outflow process to the outside. Here, the amount of heat inflow per unit time from the person being measured to the temperature measuring means and the amount of heat stored per unit time of the temperature measuring means are large between the temperature of the temperature measuring means and the body temperature of the person being measured. It gets bigger. On the other hand, the amount of heat flow from the temperature measuring means to the external element per unit time does not strongly depend on the temperature of the temperature measuring means. For this reason, the heat storage process is dominant at the beginning of temperature measurement because the temperature difference between the temperature measuring means and the person to be measured is large, but when the temperature of the temperature measuring means approaches the body temperature of the person to be measured, the heat storage process becomes inferior. The heat spill process becomes rather dominant. Therefore, the temperature of the temperature measuring means is less likely to rise as it approaches the body temperature of the person being measured. The above is the reason why a long measurement time is required when performing a highly accurate body temperature measurement in which the temperature difference between the temperature of the temperature measuring means and the body temperature of the measurement subject is small in the conventional temperature measurement method.
Therefore, by measuring the body temperature using the body temperature measuring device according to the present invention, the temperature measuring means is made to coincide with the body temperature of the person to be measured without generating a thermal competition state, and the time required for the temperature measurement. Will be shortened.
The amount of heat applied to the temperature measuring unit is determined by measuring the temperature by the temperature measuring unit, obtaining the time change rate of the measured temperature by the calculating unit, and calculating the temperature measuring unit temperature adjusting unit from the time change rate of the measured temperature. May include a heat quantity determination process for determining the amount of heat applied to the temperature measuring unit, and the heat quantity determination process may be used.
The time change rate of the measured temperature varies reflecting the heat transfer between the temperature measuring means and other elements that interact thermally with the temperature measuring means, specifically, the person to be measured and the heat insulating portion. Therefore, when setting the minimum amount of heat necessary for heating, the accuracy of the amount of heat setting is improved based on the time change rate of this temperature. For this reason, the excessive heating of the temperature measuring means is further suppressed, and the time required for the cooling process after the heating is completed is shortened. Therefore, a body temperature measurement for a short time is performed by adopting such a body temperature measurement method.
In the body temperature measurement method of the present invention, the predetermined range of the time change rate of the temperature in the body temperature measurement process is set to −0.1 ° C./second or more and + 0.01 ° C./second or less. By setting such conditions, the end point of body temperature measurement is objectively detected, and the reliability of body temperature measurement is improved.
Further, after applying a heat amount to the temperature measuring unit by the heat amount application process, the temperature is measured by the temperature measuring means, and the time change rate of the measured temperature is obtained by the calculation unit, and the gradient of the time change rate of the measured temperature is determined. A temperature time change rate gradient determination process may be included. Then, after applying the amount of heat to the temperature measuring unit by the heat amount application process, when the gradient determined by the temperature change rate gradient determination process is positive, the temperature measured by the temperature measuring unit is equal to or lower than a predetermined temperature. Then, the temperature measuring unit may be reheated for a predetermined time by the temperature measuring unit temperature adjusting means.
If the temperature of the temperature measuring means is lower than the body temperature of the person to be measured even after the supply of heat from the temperature measuring section temperature adjusting means is small and the supply of heat is stopped, the heat inflow from the person to be measured continues. . For this reason, in such a case, the cooling of the temperature measuring means does not occur even if a predetermined time elapses after the heat amount is applied. That is, in this case, the temperature change rate with time has a positive gradient. Therefore, when the gradient of the time change rate of the temperature after a lapse of a predetermined time is positive, it is determined that the heating is insufficient, and reheating is performed to prevent redundant measurement time due to insufficient heating. The Therefore, a body temperature measurement for a short time is performed by adopting such a body temperature measurement method.
The temperature measuring unit has a heat insulating material therein, and the temperature measuring unit and the temperature measuring unit temperature adjusting unit are arranged between the heat insulating material and the temperature measuring unit, and the temperature measuring unit The temperature measuring unit temperature adjusting means may be attracted to the temperature measuring unit by a permanent magnet.
With this configuration, when measuring the body temperature, if the temperature measuring unit is pressed under the arm of the person to be measured, the heat insulation member and the body surface of the person to be measured are in contact with each other in the closed space formed. A temperature part is arranged, and the temperature measurement means realizes a state in which heat transfer with the outside air is particularly difficult. For this reason, it becomes difficult to release heat from the temperature measuring means to the outside air during the body temperature measurement, and the influence of the heat outflow factor that makes the measurement time redundant is suppressed. Therefore, by using the body temperature measurement method according to the present invention, body temperature measurement with high measurement reliability can be easily performed in a short time. In addition, since rapid temperature fluctuations caused by temporary heat outflow to the outside air hardly occur, measurement reliability is high even if body temperature is measured in a short time.
The temperature measuring means can be arbitrarily selected from a thermistor, a thermocouple, a metal resistance thermometer pair, an IC temperature sensor, and a magnetic temperature sensor. Since these parts are general-purpose products, they contribute to realizing the body temperature measuring method of the present invention at low cost.
The front surface shape of the temperature measuring unit is circular, or a semi-elliptical sphere shape or a rectangular parallelepiped shape with rounded corners, and the long axis or longest side direction of the semi-elliptical spherical shape or rectangular solid with rounded corners is You may make it orthogonally cross with respect to the operation direction which inserts the said temperature measuring part in order to make the said temperature measuring part contact | abut to the measurement part of a to-be-measured person.
Under the armpit, under the influence of the artery in the vicinity of the armpit, the distribution shape of the high temperature portion has a body surface temperature distribution that is long in the vertical direction. By adopting such a shape, when the temperature measuring part is pressed and contacted with the armpit by the same operation as a conventional thermometer, the shape of the part where the temperature measuring part and the person to be measured are in contact with each other is also a shape that is long in the vertical direction It becomes. For this reason, by inserting the body temperature measuring instrument according to the present invention under the armpit under normal operation, the temperature measuring unit can easily come into contact with the entire portion having a high temperature, and a highly reliable temperature measurement is performed.
In addition, even when sandwiched under the tongue by the same operation as a conventional thermometer, the temperature measuring unit is brought into contact with a position at a certain distance from the tongue end perpendicularly to the extending direction of the tongue. For this reason, the measurement position does not easily change and is not easily affected by the outside air. Therefore, even in this case, the body temperature of the measurement subject is measured in a short time and with high reliability.
In addition, if the front shape of the temperature measuring part is circular, when the person to be measured inserts the body temperature measuring device under his arm, the direction of the person does not have to be particularly concerned. The patient can take a body temperature measurement without worrying.
The temperature measuring unit temperature adjusting means may be a heating element. For example, a nichrome wire heater can be used. Or you may comprise so that an electric current may be sent through the active element and passive element of an electronic component, and it may generate | occur | produce. By adopting such a configuration, an inexpensive and simple temperature measuring unit temperature adjusting means can be realized. The temperature measuring unit temperature adjusting means may include heating autonomous control means including a resistor having a self-control type positive temperature coefficient characteristic.
The resistor having the self-control type positive temperature coefficient characteristic is a resistor having a physical property that the internal resistance increases when the temperature of the resistor increases. When a constant voltage is applied by connecting this resistor in series with the heating means, a considerable amount of current flows through the heating means because the temperature of the resistor is low at the initial application time, and the heating means generates heat. However, when the resistor temperature rises due to heat generated by the heating means, the internal resistance rises, and the current flowing through the heating means connected in series with this resistance decreases. For this reason, the calorific value per unit time from the heating means decreases. That is, the heating means is connected in series with a resistor having a self-controlling positive temperature coefficient characteristic, thereby giving an upper limit to the heating temperature.
Therefore, when the heating means is controlled by the heating autonomous control means, the heating means and the temperature measuring means arranged inside the temperature measuring unit are maintained at a temperature equal to or lower than a predetermined set value. Since the countermeasure of the abnormal heating which concerns is taken, the failure of a temperature measuring part becomes difficult to generate | occur | produce. Therefore, by using the body temperature measuring method having such a configuration, it becomes easy to perform highly reliable body temperature measurement.
Further, since the temperature measuring means is heated only to the upper limit temperature set by the heating autonomous control means, the temperature difference between the temperature measuring means and the body temperature of the measurement subject is also equal to or lower than the predetermined temperature. For this reason, it is possible to prevent a situation that takes a long time to cool down to the body temperature of the measurement subject. Therefore, it is easy to perform body temperature measurement in a short time by using the body temperature measuring method having such a configuration. The heating autonomous control means may also serve as the function of the heating control means.
The body temperature measuring device of the present invention comprises a temperature measuring means, a temperature measuring section having the temperature measuring means inside and being pressed against the body surface of the measurement subject, and applying the heat to the temperature measuring section. A temperature measuring section temperature adjusting means for adjusting the temperature of the temperature section; and a calculation section for calculating a temporal change rate of the temperature measured by the temperature measuring means, and the temperature measuring section is provided on the body surface of the subject. While pressing, the temperature of the temperature measuring unit is once higher than the temperature of the body surface of the measured person by the temperature measuring unit temperature adjusting means, the temperature ranking is the temperature of the temperature measuring unit, the temperature of the measured person, After setting to a state where the ambient temperature is reached, the time variation rate of the temperature of the body surface is measured using the measurement subject as a heat sink.
It is configured to realize the above-described body temperature measuring method, and by measuring the body temperature using the body temperature measuring device according to the present invention, the temperature measuring means can be covered without generating a thermal competition state. Therefore, the time required for temperature measurement is shortened.
The temperature measuring unit includes a heat insulating material therein, and the temperature measuring unit and the temperature measuring unit temperature adjusting unit are disposed between the heat insulating material and the temperature measuring unit, and the temperature measuring unit The temperature measuring unit temperature adjusting means may be configured to be attracted to the temperature measuring unit by a permanent magnet.
With such a configuration, when measuring the body temperature, when the temperature measuring unit is pressed under the arm of the person to be measured, the measurement is performed in a closed space formed by the contact between the heat insulating member and the body surface of the person to be measured. A temperature part is arranged, and the temperature measurement means realizes a state in which heat transfer with the outside air is particularly difficult. For this reason, it is difficult for heat to be released from the temperature measuring means to the outside air during body temperature measurement, and the influence of a heat outflow factor that makes measurement time redundant is suppressed. Therefore, by using the body temperature measuring device according to the present invention, body temperature measurement with high measurement reliability can be performed in a short time. In addition, since rapid temperature fluctuations caused by temporary heat outflow to the outside air hardly occur, measurement reliability is high even if body temperature is measured in a short time.
The temperature measuring means may be one selected from a thermistor, a thermocouple, a metal resistance thermometer pair, an IC temperature sensor, and a magnetic temperature sensor. Since these parts are general-purpose products, they contribute to realizing the body temperature measuring device of the present invention at low cost.
The front surface shape of the temperature measuring unit is circular, or a semi-elliptical sphere shape or a rectangular parallelepiped shape with rounded corners, and the long axis or longest side direction of the semi-elliptical spherical shape or rectangular solid with rounded corners is You may make it orthogonally cross with respect to the operation direction which inserts the said temperature measuring part in order to make the said temperature measuring part contact | abut to the measurement site | part of the said to-be-measured person.
Under the armpit, under the influence of the artery in the vicinity of the armpit, the distribution shape of the high temperature portion has a body surface temperature distribution that is long in the vertical direction. By adopting such a shape, when the temperature measuring part is pressed and contacted with the armpit by the same operation as a conventional thermometer, the shape of the part where the temperature measuring part and the person to be measured are in contact with each other is also a shape that is long in the vertical direction It becomes. For this reason, by inserting the body temperature measuring instrument according to the present invention under the armpit under normal operation, the temperature measuring unit can easily come into contact with the entire portion having a high temperature, and a highly reliable temperature measurement is performed.
In addition, even when sandwiched under the tongue by the same operation as a conventional thermometer, the temperature measuring unit is brought into contact with a position at a certain distance from the tongue end perpendicularly to the extending direction of the tongue. For this reason, the measurement position does not easily change and is not easily affected by the outside air. Therefore, even in this case, the body temperature of the measurement subject is measured in a short time and with high reliability.
In addition, if the front shape of the temperature measuring part is circular, when the person to be measured inserts the body temperature measuring device under his arm, the direction of the person does not have to be particularly concerned. The patient can take a body temperature measurement without worrying.
The temperature measuring unit temperature adjusting means may be a heating element. For example, a nichrome wire heater can be used. Or you may comprise so that an electric current may be sent through the active element and passive element of an electronic component, and it may generate | occur | produce. By adopting such a configuration, an inexpensive and simple temperature measuring unit temperature adjusting means can be realized. The temperature measuring unit temperature adjusting means may include heating autonomous control means including a resistor having a self-control type positive temperature coefficient characteristic.
The resistor having the self-control type positive temperature coefficient characteristic is a resistor having a physical property that the internal resistance increases when the temperature of the resistor increases. When a constant voltage is applied by connecting this resistor in series with the heating means, a considerable amount of current flows through the heating means because the temperature of the resistor is low at the initial application time, and the heating means generates heat. However, when the resistor temperature rises due to heat generated by the heating means, the internal resistance rises, and the current flowing through the heating means connected in series with this resistance decreases. For this reason, the calorific value per unit time from the heating means decreases. That is, the heating means is connected in series with a resistor having a self-controlling positive temperature coefficient characteristic, thereby giving an upper limit to the heating temperature.
Therefore, when the heating means is controlled by the heating autonomous control means, the heating means and the temperature measuring means arranged inside the temperature measuring unit are maintained at a temperature equal to or lower than a predetermined set value. Since measures against such abnormal heating are taken, it is difficult for the temperature measuring unit to fail. Therefore, it becomes easy to perform highly reliable body temperature measurement by using a body temperature measuring device having such a configuration.
Further, since the temperature measuring means is heated only to the upper limit temperature set by the heating autonomous control means, the temperature difference between the temperature measuring means and the body temperature of the measurement subject is also equal to or lower than the predetermined temperature. For this reason, it is possible to prevent a situation that takes a long time to cool down to the body temperature of the measurement subject. Therefore, it is easy to perform body temperature measurement in a short time by using a body temperature measuring device having such a configuration. The heating autonomous control means may also serve as the function of the heating control means.
In addition, the body temperature measuring instrument of the present invention has a substantially arc-shaped elastic body in which the temperature measuring unit is disposed at one end, and the temperature measuring unit disposed at the one end is covered. Under the measuring person's armpit, the other end is brought into contact with the shoulder of the person to be measured, and each end is pressed against the person to be measured by the shape recovery force of the elastic body. May be fixed to the subject.
By taking such a configuration, the thermometer of the thermometer is fixed at a predetermined position under the armpit by the thermometer's own elastic force. For this reason, fluctuations in the measurement position during body temperature measurement are unlikely to occur, and heat transfer between the temperature measurement means and the outside air is unlikely to occur. Therefore, body temperature can be easily measured in a short time and with high reliability. Furthermore, the person to be measured is freed from the operation of holding the thermometer under his armpit. For this reason, a thermometer having such a configuration can be used as a means for continuous temperature monitoring.

第1図は、本願発明の第一の実施の形態に係る体温測定器を概念的に示す斜視図である。
第2図は、第一の実施の形態に係る体温測定器の測温ヘッドを概念的に示す部分正面図(a)及び右側面図(b)である。
第3図は、第一の実施の形態に係る体温測定器の測温ヘッドの部分断面図である。
第4図は、腋下における体表面温度の分布と第一の実施の形態に係る体温測定器を被測定者の腋下に挿入する動作とを概念的に示したもの(a)と、体温測定状態を概念的に示す被測定者と第一の実施の形態に係る体温測定器との部分断面図(b)である。
第5図は、第一の実施の形態に係る体温測定器の体温測定開始から体温測定終了までの温度プロファイルを従来の体温計の温度プロファイルと比較して概念的に示したものである。
第6図は、第一の実施の形態に係る体温測定器による体温測定開始から体温測定終了後までのサーミスタの熱の流出入について概念的に示した部分断面図である。
第7図は、第一の実施の形態に係る体温測定方法の初期動作確認プロセスの要部を示すフロー図である。
第8図は、第一の実施の形態に係る体温測定方法の熱量決定プロセス及び接触診断プロセスの要部を示すフロー図である。
第9図は、第一の実施の形態に係る体温測定方法の熱量印加プロセス及び温度変化率勾配判定プロセスの要部を示すフロー図である。
第10図は、第一の実施の形態に係る体温測定方法の体温測定プロセスの要部を示すフロー図である。
第11図は、本願発明の第二の実施の形態に係る装着型の体温測定器の一態様を模式的に示した正面図(a)と、当該装着型の体温測定器で被測定者が体温測定している状態を模式的に示した概念図(b)である。
第12図は、本願発明の第二の実施の形態に係る装着型の体温測定器の別の態様を模式的に示した正面図である。
第13図は、従来の一般的な電子体温計の構造を概念的に示すの正面図及び測温プローブの部分断面図である。
第14図は、従来技術による電子体温計の体温測定開始後の温度プロファイルを模式的に示したものである。
第15図は、飽和時間を短縮する目的で開発された従来の電子体温計の一例を概念的に示す正面図である。
第16図は、飽和時間を短縮する目的で開発された従来の電子体温計の別の一例を概念的に示す先端部の部分断面図である。
FIG. 1 is a perspective view conceptually showing a body temperature measuring device according to the first embodiment of the present invention.
FIG. 2 is a partial front view (a) and a right side view (b) conceptually showing the temperature measuring head of the body temperature measuring device according to the first embodiment.
FIG. 3 is a partial cross-sectional view of the temperature measuring head of the body temperature measuring device according to the first embodiment.
FIG. 4 conceptually shows the distribution of the body surface temperature in the armpit and the operation of inserting the body temperature measuring device according to the first embodiment into the armpit of the person to be measured, and the body temperature. It is a fragmentary sectional view (b) of a to-be-measured person which shows a measurement state conceptually, and a body temperature measuring device concerning a first embodiment.
FIG. 5 conceptually shows a temperature profile from the start of body temperature measurement to the end of body temperature measurement of the thermometer according to the first embodiment in comparison with the temperature profile of a conventional thermometer.
FIG. 6 is a partial cross-sectional view conceptually showing heat inflow / outflow of the thermistor from the start of body temperature measurement to the end of body temperature measurement by the body temperature measuring device according to the first embodiment.
FIG. 7 is a flowchart showing a main part of an initial operation confirmation process of the body temperature measurement method according to the first embodiment.
FIG. 8 is a flowchart showing the main parts of the calorie determination process and the contact diagnosis process of the body temperature measurement method according to the first embodiment.
FIG. 9 is a flowchart showing the main parts of the heat application process and temperature change rate gradient determination process of the body temperature measurement method according to the first embodiment.
FIG. 10 is a flowchart showing the main part of the body temperature measurement process of the body temperature measurement method according to the first embodiment.
FIG. 11 is a front view (a) schematically showing one aspect of a wearable body temperature measuring device according to the second embodiment of the present invention, and a person being measured by the wearable body temperature measuring device. It is the conceptual diagram (b) which showed the state which is measuring body temperature typically.
FIG. 12 is a front view schematically showing another aspect of the wearable body temperature measuring device according to the second embodiment of the present invention.
FIG. 13 is a front view conceptually showing the structure of a conventional general electronic thermometer and a partial cross-sectional view of a temperature measuring probe.
FIG. 14 schematically shows a temperature profile after the start of body temperature measurement of an electronic thermometer according to the prior art.
FIG. 15 is a front view conceptually showing an example of a conventional electronic thermometer developed for the purpose of shortening the saturation time.
FIG. 16 is a partial cross-sectional view of the tip portion conceptually showing another example of a conventional electronic thermometer developed for the purpose of shortening the saturation time.

第一の実施の形態
第1図は、本願発明の第一の実施の形態に係る体温測定器を概念的に示した斜視図である。また、第2図は、第1図に係る体温測定器の先端の部分を拡大した正面図(a)と右側面図(b)である。また、第3図は、当該先端部分の右側面から見た概念的な部分断面図である。
第1図に示されるように、本実施形態に係る体温測定器1は、測温ヘッド13と連結部14とを備える測温プローブ11と、メインスイッチ12aや表示器12bを備える扁平のほぼ筒状の形状の本体部12とから構成される。測温ヘッド13、連結部14及び本体部12は例えば樹脂の射出成形によって製造してもよいし、金属のプレス加工によって製造してもよい。なお、連結部14は適度の弾性を有していることが望ましく、バネ材、ゴム、エラストマーなどを用いることができる。
第2図(a)に示されるように、測温ヘッド13は、正面から見ると連結部14の延長方向を短軸とする楕円形状をなし、側面から見ると、第2図(b)に示されるように、突出する測温部21以外の部分は角を丸めた長方形の形状をなしている。係る丸め処理がなされているのは、測温ヘッド13を舌下或いは腋下に接触保持させて体温測定するので、被測定者の接触に伴う不快感を防止するためである。
測温ヘッド13の正面側中央部には連結部14の延長方向を短軸とする半楕円球状の突出部をなすように測温部21が形成されている。測温部21の正面形状は押圧接触時に被測定者の体表面に調和する表面形状で有れば、他の形状でもよい。その形状には円形、半円状や頂部を丸めた円錐状、又は端部を丸めた直方体状、立方体状若しくは円錐台状が挙げられる。これらの形状のうち、本実施形態に係る体温測定器1のように、測温ヘッド13を被測定者の測定部位に配置するための差込動作を行う方向の長さよりもこれにほぼ直交する方向の長さの方が長い形状の場合には、後述するように、短時間で信頼性の高い体温測定が行われやすい望ましい形状である。
また、前記測温部21の正面形状を円形とした場合には、被測定者が検温する際に測温部21或いは測温ヘッド13の方向を気にする必要がないので、気軽に検温することが可能である。このことは、子供やお年寄り、病気で具合が悪い患者にとっては大切な点である。
第3図に示されるように、この測温部21は薄板で構成され、測温ヘッド13の一部をなす断熱性固定板13aと断熱部材13bとによって測温ヘッド13上に固定されている。また、断熱性固定板13aと断熱部材13bとはねじなどの適切な手段によって測温ヘッド13に固定されている。
測温部21の内側、即ち測温部21の内壁と断熱部材13bとが形成する実質的な閉空間の内部には、サーミスタ32とヒータ33と永久磁石37とが配置されている。サーミスタ32は負温度係数特性を有する抵抗体と自己制御型正温度係数特性を有する抵抗体とを備える。負温度係数特性を有する抵抗体は温度測定に用いられ、自己制御型正温度係数特性を有する抵抗体はヒータ33の出力制御に用いられる。ヒータ33は、測温部温度調整手段として用いている。
測温部21内部に配置されるサーミスタ32とヒータ33とにはそれぞれ配線34、35の一方の端部が接続され、配線34、35のもう一方の端部は、断熱部材13bの貫通部(配線34、35以外の部分は断熱材料36で充填されている)と測温ヘッド13及び連結部14の内部とを通じて、本体部12に備えられる温度の時間変化率を演算する演算部等を含む制御基板(図示せず)と接続されている。
測温部21は、断熱性固定板13a及び断熱部材13bよりも熱伝導率の高い磁性材料で構成され、サーミスタ32とヒータ33とは磁性を有する材料の薄膜で覆われている。このため、測温部21には常に永久磁石37が接触し、永久磁石37の影響で帯磁した測温部21に対して、サーミスタ32とヒータ33と測温部21とは常に接触した状態をなす。
本実施形態ではサーミスタ32が備える負温度係数特性を有する抵抗体によって温度を測定するが、これ以外に、熱電対や金属測温抵抗対、IC温度センサ、或いは磁気温度センサを用いてもよい。なお、サーミスタ32が備える自己制御型正温度係数特性を有する抵抗体はヒータ33が備えていてもよいし、サーミスタ32やヒータ33と別体で測温部21の内部に配置されていてもよい。
また、本実施形態では永久磁石37をサーミスタ32とヒータ33とともに測温部21内に配置したが、測温部21が永久磁石で構成されていてもよい。或いは、測温部21の内壁に永久磁石からなる層を形成してもよい。
さらに、ヒータ33を例えばニクロム線としてサーミスタ32に巻き付けて、サーミスタ32とヒータ33を実質的に一体化させることも、サーミスタ32の加熱効率向上の観点から望ましい態様の一つである。
或いは、測温部21を弾性体或いは柔軟材料のような形状回復力を有する材料で構成してもよい。この場合には、測温部21が押圧接触時に被測定者の体表面になじむように変形するので、体温測定時における測温部21と被測定者との非接触部分を少なくすることができる。このため、測温部21を介してのサーミスタ32と被測定者との熱の移動が行われやすくなり、短時間で信頼性の高い体温測定が行われ易い。また、この場合には、上記のように測温部21の形状を予め体表面に調和する形状としなくても測温部21と被測定者との接触面積が増加するので、その形状を直方体などの単純形状としてもよい。このため、測温部21の部品加工工程における生産性が向上する。さらに、測温部21の内壁も形状回復力を有する材料で構成する場合には、測定ヘッド13としての組立後の状態として、サーミスタ32とヒータ33とが測温部21の内壁を若干弾性変形させるように、サーミスタ32とヒータ33との形状及び測温部21の内壁形状を設定するとよい。この場合には、測温部21の形状回復力によって、サーミスタ32等は測温部21への接触を維持しつつ略一定の位置に固定されることとなる。このため、サーミスタ32等を測温部21内部に配置する工程において接着工程を必要とせず、製造工程での生産性が向上する。
次に、本実施形態に係る体温計の使用の一態様として、腋下で体温測定する場合について説明する。
第4図(a)は被測定者の腋下における体表面温度の分布と本実施形態に係る体温測定器を被測定者の腋下に挿入する動作とを概念的に示す図であり、第4図(b)は本実施形態に係る体温測定器による体温測定状態を概念的に示す、被測定者41と本実施形態に係る体温測定器1との部分断面図である。
第4図(a)に示されるように、腋下における温度分布は腋下近傍を流れる動脈の影響を受け、垂直方向に長い均一温度領域を有する分布となる。このため、腋下において腕部のちょうど下部に高い温度を示す領域が垂直方向に長い形状を有して存在し、この高い温度を示す領域の前後に、即ち胸部側と背部側に、温度が少し低くなった領域が垂直方向に長い形状を有して存在する。体温測定器1は、この高い温度を示す領域の温度を計測することが望ましい。
本実施形態に係る体温測定器1は、測定ヘッド13を被測定者の測定部位に配置するための差込動作を行う方向の長さよりもこれにほぼ直交する方向の長さの方が長いセンサホルダ21の形状を有する。このため、電子体温計1の本体部12をほぼ水平にしたまま測定ヘッド13を腋下へと挿入して体表面と測定ヘッド13とを押圧接触させるという従来の体温計の挿入動作と同様の動作を行うことで、センサホルダ21はその全体が上記の温度が高い領域に当接されやすい。
また、第4図(b)に示されるように、腋下に測温ヘッド13を挟むと、測温部21の半楕円球部分は被測定者41の体表面に押しつけられることとなる。このとき、測温部21は断熱性固定板13a及び断熱部材13bと被測定者41とが作る実質的な閉空間の内部に配置される状態となる。また、この閉空間内で測温部21は被測定者41と接触しているので、サーミスタ32は測温部21を介して被測定者41と熱伝達が可能な状態となる。
ここで、本実施形態では測温部21としてフェライト系のステンレスを用い、断熱性固定板13a及び断熱部材13b(以降、双方をまとめて断熱部とも称する)は硬質ウレタンフォームを用いている。ステンレスとウレタンフォームとの熱伝導率はそれぞれ約10W/m・K、約0.024W/m・Kであるから、断熱部は測温部21の約1/400の熱伝導率を有する。
この様な構成においては、測温部21が外気に露出され難い。また、サーミスタ32と断熱部との熱伝達に比べて、サーミスタ32と被測定者41との熱伝達が優先的に行われ易い。このため、体温測定中にサーミスタ32から外気へと熱が放出され難いので、測定時間を冗長化する外気への熱流出の影響が抑制され、かつ外気への一時的な熱流出を原因とする急激な温度変動が発生し難い。
なお、前述の熱伝導率の比は1/200以下で有ればサーミスタ32と被測定者41との熱伝達が優先的に行われ、1/400以下で有ればサーミスタ32と被測定者41との熱伝達が特に優先的に行われる。
また、測温部21をアルミニウム合金のような高い熱伝導率を有する材料(熱伝導率>200W/m・K)で構成して、係る熱伝導率比を低下させることは望ましい態様である。この場合には、測温部21内壁には磁性材料からなる層を形成して、サーミスタ32とヒータ33とが測温部21に対して磁力によって接触させるとよい。
本実施形態に係る体温測定器1を用いて舌下で被測定者の体温を計測する場合も、測温部21が断熱材(断熱性固定板13a及び断熱部材13b)に取り囲まれつつ舌下に押し込まれる構成となるため、測温信頼性を維持しつつ測定時間の短縮とが両立した測定が行われる。
続いて、本実施形態に係る体温測定器1の体温測定方法について説明する。
第5図は、本実施形態に係る体温測定器1の体温測定開始から体温測定終了までの温度プロファイルを従来の体温計の温度プロファイルと比較して概念的に示したものである。本願発明の説明の都合上、従来技術に係る第16図に比べて横軸はやや拡大されたものとなっている。
ここで、第5図における温度プロファイル162は、特開2002−5752号公報に示される電子体温計の温度プロファイルを示したものであり、初期にヒータによる予備加熱がなされ、従前の一般的な電子体温計の温度プロファイルに比べると平衡温度近傍で温度の時間変化率が低下する事態は有る程度改善されている。しかし、前述の通り、平衡温度近傍となって被測定者41からの熱流入が少ない状態では、体温計本体への熱流出の影響が相対的に大きくなるため、温度の時間変化率は著しく低下する。
即ち、従来の体温測定方法では、サーミスタを含むセンサキャップをヒータによって予備加熱することはあっても、その温度は被測定者41の体温以下であり、実質的に被測定者41から放出される熱を一方的に受け取るだけであった。その点で、従来の体温測定方法は受動的な体温測定方法といえる。
これに対し、温度プロファイル51に示される本実施形態に係る体温測定器の体温測定方法は、体温測定開始後、まずヒータ33によってサーミスタ32を加熱し(領域A)、サーミスタ32の温度を一時的に被測定者41の平衡温度より高温とする(領域B)。その後、被測定者41及び体温計の本体部12をヒートシンクとして被測定者41の体温である平衡温度まで冷却する(領域C)。
サーミスタ32の温度を一旦被測定者41の体温よりも高温にすることで、体温測定器1に比べて膨大な熱容量を有する被測定者41は、サーミスタ32を冷却するのためのヒートシンクとして機能することとなる。このため、サーミスタ32はこのヒートシンクである被測定者41に熱を放出して速やかに平衡温度に到達する。従来の体温測定方法では、サーミスタ32が平衡温度に到達することに対して本体部12への熱の流出は阻害因子であったが、本実施形態に係る体温測定方法にとっては、逆に平衡温度到達を促進する因子となる。
従って、本実施形態に係る能動的な体温測定方法によれば、被測定者41の正確な体温である平衡温度が短時間、適切な条件下では5秒以下で計測されることとなる。
ここで、本実施形態に係る体温測定方法が能動的であることを、第6図を用いて詳しく説明する。
第6図は、体温測定開始から体温測定終了後までのサーミスタ32の熱の流出入について概念的に示した部分断面図である。第6図(a)は、第5図における温度プロファイル51の領域Aの状態に、第6図(b)は領域Bの状態に、第6図(c)は領域Cの状態に、第6図(d)は温度プロファイル51が平衡温度に達した後の状態に対応する。
まず、ヒータ33が加熱されている領域Aでは、第6図(a)に示されるように、サーミスタ32にはヒータ33から直接的に熱が流入し(矢印Q61)、併せて、測温部21を介して被測定者41とからも熱が流入する(矢印Q62)。また、サーミスタ32から熱が一部断熱部材13bへと流出する(矢印Q63)。この状態での単位時間当たりの熱移動量の絶対値を比較すると、Q61>>Q62>Q63となり、ヒータ33からの熱の流入がサーミスタ32の温度変化にとって支配的要因となっている。
続いて、第6図(b)に示されるように、第5図における領域Bの状態への遷移直後、即ちサーミスタ32が平衡温度より高温に加熱されると、サーミスタ32と被測定者41との熱移動方向が逆転し、被測定者41に向かって熱の流出が発生する(矢印Q65)。また、サーミスタ32がピーク温度に達するまでは、ヒータ33からの熱流入は継続する(矢印Q64)。さらに、断熱部材13bへの熱の流出も継続的に発生している(矢印Q66)。
第5図における領域Bの状態での単位時間当たりの熱移動量の関係は、初期はQ64>Q65+Q66である。その後、ヒータ33の通電が所定のタイミングで停止すると、停止後もしばらくはヒータ33からの余熱による熱流入Q64は継続するが、その量は漸次減少する。また、サーミスタ32の温度が平衡温度よりも高くなるに伴い被測定者41への熱流出Q65が増加する。このため、熱移動量の関係はQ64=Q65+Q66となり、最終的にはQ64<Q65+Q66となって第5図における領域Bから領域Cへと遷移する。
ヒータ33の余熱の効果が無くなり、ヒータ33からサーミスタ32への実質的な熱流入が無くなると、第6図(c)に示されるような被測定者41をヒートシンクとする全面的な冷却過程に移行する。この状態では、サーミスタ32から被測定者41への熱流出(矢印Q67)と断熱部材13bへの熱流出(矢印Q68)とが発生する。単位時間の熱移動量の絶対値をQ67とQ68について比較すると、Q68がサーミスタ32の温度低下に伴って若干低下する程度であるのに対して、被測定者41への熱流出Q67はサーミスタ32が平衡温度に近づくにつれて減少し、平衡温度到達直前にはQ67は零になる。
その後、サーミスタ32の温度が平衡温度に達すると、第6図(d)に示すように、サーミスタ32から断熱部材13bへの熱流出Q70に相当する熱が被測定者41からサーミスタ32へと流入するようになる(矢印Q69)。この状態がサーミスタ32にとっての平衡状態であり、この状態では、サーミスタ32の熱容量は断熱部材13bの熱容量よりもはるかに少ないので、単位時間当たりの熱の移動量は、実質的にQ69=Q70となる。
以上説明したように、本実施形態に係る体温測定方法では、サーミスタ32は体温測定初期は熱を吸収し、その後熱を放出し、体温測定終了時には熱を伝達する媒体となる。従来の体温測定方法ではサーミスタ32などの温度測定手段は一方的に熱流入を受けるだけなので、この点で本実施形態に係る体温測定方法は「能動的」であるといえる。
なお、上記のごとく短時間での体温測定を達成するにあたっては、ヒータ33とサーミスタ32と測温部21が互いに熱伝達可能な状態であるから、測温部21の熱容量が小さいことが望ましい。第6図(a)に示されるように、ヒータ33によってサーミスタ32が加熱されるときには、サーミスタ32と熱的に接続された測温部21も加熱される。このため、測温部21の熱容量が大きいと、ヒータ33の発熱量をその分増やす必要が有り、結果として体温測定に要するエネルギー消費量が増加することとなるからである。
次に、本実施形態に係る体温測定方法を第7図から第10図に示されるフロー図に基づいて詳細に説明する。第7図は本実施形態に係る体温測定方法の初期動作確認プロセスの要部を示すフロー図である。第8図、第9図、第10図はそれぞれ、熱量決定プロセス及び接触診断プロセス、温度変化率勾配判定プロセス、体温測定プロセスの要部を示すフロー図である。
1.初期動作確認プロセス(第7図)
電源ボタン12aが押されると、制御基板のCPUは表示画面12bに「Ready」を表示して被測定者41に体温測定準備が整ったことを報知する(ステップS11)。被測定者41はその表示を確認してから、体温測定器1を腋下に挿入する。
体温測定器1が腋下に挟まれて、サーミスタ32で所定の温度上昇が検知されると(ステップS12)、CPUは次のプロセス、即ち熱量決定プロセスへと移行するための処理を行い(ステップS13)、初期動作確認プロセスを終了する。所定の温度上昇がなく、表示画面12bに「Ready」を表示してから所定の時間を経過した場合には、エラーメッセージを表示してもよい(ステップS14、S15)。
2.熱量決定プロセス及び接触診断プロセス(第8図)
まず、CPUはサーミスタ32で測定した初期温度T1を本体部12の制御基板が備える記憶装置に格納する(ステップS21)。続いて、測定開始から規定時間t1経過後、例えば1秒後にサーミスタ32で測定した中間温度T2を記憶装置に格納する(ステップS22)。なお、これらの測定値T1、T2とt1とを用い本体部12内の演算部によって測定温度の時間変化率を求めることができる。
引き続き、記憶装置に格納された初期温度T1及び中間温度T2を読出し、これらの温度に基づいて、サーミスタ32を被測定者41の体温よりも高温に到達させるために必要なヒータ33の発熱量を決定する。このヒータ発熱量は、初期温度T1、中間温度T2、測定温度の時間変化率(温度上昇率ΔT/Δt)等によって変動するものであり、体温測定器1の形状にも依存するので、これらのパラメータとヒータ発熱量との関係を予め把握しておく。この関係把握の精度が高いほどサーミスタ32の過剰加熱や後述する再加熱の可能性が少なくなり、体温測定に要する時間は短縮されることとなる。
本実施形態では、「温度の時間変化率−ヒータ発熱量」の関係を記述するテーブルを初期温度に対応して複数個用意し、これを予め記憶装置に格納させてある。読出した初期温度T1に応じてこれらのテーブル群から最適なテーブルを選択し(ステップS23)、初期温度T1と中間温度T2とに基づいて求められる温度の時間変化率(単位時間当たりの温度変化量、ΔT/Δt)を選択されたテーブルに参照してヒータ発熱量を決定する(ステップS24)。上記の決定方法以外に、初期温度T1と温度の時間変化率との一方のみを用いてヒータ発熱量を決定してもよい。
続いて、記憶装置に予め格納する「ヒータ発熱量−ヒータ作動時間」テーブルを読出し(ステップS25)、ステップS24で求めたヒータ発熱量と照合して(ステップS26)、ヒータ33の作動時間を決定する(ステップS27)。この「ヒータ発熱量−ヒータ作動時間」テーブルを用いることで、ヒータの発熱量を作動時間で制御することが実現されるが、作動時間以外に、作動電圧などによってヒータ発熱量を制御しても構わない。
本実施形態では、上記のごとく、ヒータ33の加熱開始前におけるサーミスタ32の温度測定結果に基づいてヒータ発熱量を決定してからヒータ33の作動時間を決定している。これによって測温部21に印加する熱量が決定されることになる。なお、ヒータ発熱量を決定してからヒータの作動時間を決定しているが、これはヒータ33の設計変更などに対応し易いためである。しかし、ヒータ発熱量を決定することなく、サーミスタ32の温度測定結果に基づいて直接ヒータ33の作動時間を決定してもよい。この場合には、初期温度T1と温度の時間変化率とに基づいて決定してもよいし、いずれか一方に基づいて決定してもよい。或いは、第7図に示される初期プロセスのステップS11において「Ready」を表示した直後の温度に基づいて決定してもよい。
さらには、ヒータ33の発熱量を可変にすることなく固定とし、例えば1.5秒の固定作動時間としてもよい。第6図(a)に示されるように、サーミスタ32を被測定者41の体温以上に加熱する場合には、ヒータ33と被測定者41とから熱が流入する。このため、ヒータ33からサーミスタ32に供給する熱を一定にしても、被測定者41の体温が高い場合にはサーミスタ32が受け取る熱量も多くなり、結果的にサーミスタ32の加熱による到達ピーク温度も高くなる。従って、ヒータ33の加熱時間を一定にしても、所定時間以上の加熱で有れば、被測定者41よりも高い温度にサーミスタ32は設定される。ここで、一定時間の加熱をする場合には、過剰加熱が発生し、被測定者41及び電子体温計1に悪影響を与えることが問題となる。この点については、加熱開始後のサーミスタ32の温度を監視して、例えば45℃などの所定温度以上ではヒータ33の加熱を強制的に終了させるプロセスをソフト的に組み込んだり、サーミスタ32が備える自己制御型正温度係数特性を有する抵抗体によってヒータ33を制御して、自己飽和温度以上の過熱を抑制したりすることで係る問題は回避される。
引き続き、接触診断プロセスに移行する(ステップS28)。接触診断プロセスとは、サーミスタ32から得られる温度の時間変化率ΔT/Δtが既定値以上であるか否かを判定するモードである。判定結果が規定値以上である場合には、被測定者41は正常に体温測定器1を腋下に挟んでいると判断し、実際にヒータ33の加熱を行う熱量印加プロセスに移行するための処理を行い(ステップS29)、熱量決定プロセス及び接触診断プロセスを終了する。
一方、ステップS25での判定で規定値以下であると判定した場合には、本体部12が内蔵するブザーにて警告音を発して、被計測者41が体温測定器1を腋下に安定に押圧するよう促し(ステップS30)、その後所定時間を経過してから第7図に示される初期動作確認プロセスのステップS12へと移行する。
3.熱量印加プロセス及び温度変化率勾配判定プロセス(第9図)
まず熱量印加プロセスでは、サーミスタ32からの温度測定結果の制御基板への取り込みを継続させつつ、ステップ24で決定したヒータ発熱量に基づいてステップS27で決定したヒータ作動時間だけヒータ33による加熱を行う(ステップS31)。その結果、サーミスタ32は、被測定者41から流入した熱とヒータ33からの熱が重畳されて、被測定者41の体温よりも高い温度に急速に到達する。所定時間のヒータ作動終了後、所定時間が経過した段階で、温度変化率勾配判定プロセスに移行する。
温度変化率勾配判定プロセスでは、まず、温度の時間変化率を測定し(ステップS32)、その温度の時間変化率がプラス勾配であるか否かを判別し(ステップS33)、プラス勾配ではないと判定した場合には、体温測定プロセスへと移行するための処理を行い(ステップS34)、温度変化率勾配判定プロセスを終了する。
一方、ステップS33でプラス勾配であると判定した場合には、続いてサーミスタ32が達しうる温度として上限と考えられる所定温度、例えば43℃以下であるか否かを判別する(ステップS35)。ステップS35で測定温度が所定の温度以下であると判定した場合には、補助的に短時間、例えば0.5秒程度ヒータ33による加熱を再度行い、その後、所定時間経過を確認してから、再度温度変化率の勾配の判別を行う(ステップS36)。
ここで、加熱を終了してから所定時間経過後の温度の時間変化がプラス勾配である場合に短時間の追加加熱を行うと決定する理由について説明する。ヒータ33から必要量の発熱が行われたときには、サーミスタ32の温度は被測定者41の体温より高い温度に到達し、その後、サーミスタ32の温度は低下しながら被測定者41の体温に到達する本実施形態に係る測定方法が実施される。このときのサーミスタ32の温度プロファイルは、第5図に示されるように、加熱終了後しばらくはヒータ33からの余熱によって、温度の時間変化がプラス勾配であるが、ヒータ33からの余熱の影響が無視できるようになると、温度の時間変化は逆転してマイナス勾配となる。すなわち、本実施形態に係る体温測定方法では、ヒータ33の加熱終了後、ヒータ33からの余熱の影響が無視できるまで所定時間の経過を待ってからサーミスタ32の温度の時間変化を測定すると、マイナス勾配が得られる。
一方、ヒータ33による加熱時間が短く、必要量の発熱が行われていないときには、加熱を終了した後、サーミスタ32の温度が被測定者41の体温より高い温度に到達しない場合がある。この場合には、ヒータ33からの余熱の影響が無視できる状態になっても、サーミスタ32の温度が被測定者41の体温に到達するまでは、被測定者41からサーミスタ32へ向けての熱移動が継続して発生する。すなわち、この場合には被測定者41をヒートシンクとする短時間の体温測定を行うことができず、サーミスタ32の測定温度の時間変化はプラス勾配の状態が継続する。
従って、ヒータ33の加熱が終了してから余熱の影響が無視できる状態になるまでの待機時間が経過した後にサーミスタ32の温度の時間変化を測定したときに、その時間変化がプラス勾配である場合には、ヒータ33の加熱が不十分であって、本実施態様に係る短時間での体温測定を行うことができない状態である可能性が高い。そこで、この場合にはヒータ33を所定時間だけ再度作動させてサーミスタ32の温度を高めることとしている。
なお、加熱を終了してから温度の時間変化率を測定するまでの計測待機時間が短すぎるときには、まだヒータ33からの余熱の影響が残っている状態で温度の時間変化率が測定され、測定された温度の時間変化はプラス勾配であると判定されてしまう。この場合にはヒータ33を再度作動させることで結果的に測定時間が遅延してしまい、望ましい状況ではない。従って、この計測待機時間を適切に設定することは、測定時間が短い体温測定を実現するにあたって重要である。
また、ステップS35でサーミスタ32での測定温度が所定温度以上であると判定した場合には、測温ヘッド13と被測定者41との接触状態が特に不適切であったり、電子体温計1の内部的な異常が発生していたりすると考えられる。このため、再加熱を行って体温測定を継続するよりも、むしろ体温測定を終了して被測定者41に確認を促す方が、安全性及び消費電力の節約の観点から望ましい。そこで、警告音を鳴らして被測定者41に異常発生を報知し(ステップS37)、温度変化率勾配判定プロセスを終了する。
ここで、サーミスタ32に備えられる自己制御型正温度係数特性を含む抵抗体によってヒータ33は制御されているので、ヒータ33の温度が自己飽和安定温度以上に過熱することが防止されている。従って、上記のステップS35及びステップS37からなるプロセスは省略しても構わない。
4.体温測定プロセス(第10図)
体温測定プロセスでは、CPUはまず、温度の時間変化率を測定し(ステップS41)、その温度の時間変化率が所定の範囲内であるか否かを判定する(ステップS42)。この所定の範囲とは、−0.1℃/秒以上であって+0.01℃/秒以下である。ステップS42での判定の結果、温度の時間変化率が所定の範囲内であると判定した場合には、初期値が零に設定されている終点判定用カウンタに1を加算する(ステップS43)。続いて、終点判定用カウンタが所定値、例えば5であるか否かを判定し(ステップS44)、所定値である場合には、サーミスタ32は被測定者41の平衡温度に達したと判定する。そこで、サーミスタ32の現在の測定温度を表示器12bに表示して(ステップS45)、体温測定を終了するための処理を行い(ステップS46)、体温測定プロセスを終了する。この体温測定終了のための処理は、表示温度の記録装置への格納や体温測定過程で記録した温度データの消去、終点判定用カウンタなどの体温測定で使用する内部パラメータやフラグのリセットを含む。
一方、ステップS44での判定の結果、終点判定用カウンタが所定値未満であると判定した場合には、前回の測定から所定時間経過、例えば0.1秒経過後、温度の時間変化率を再度測定して(ステップS48)、ステップS42の判定処理へと移行する。
また、ステップS42での判定の結果、温度の時間変化率が所定のマイナス勾配設定値より低いと判定した場合には、まず終点判定用カウンタを零にリセットする(ステップS47)。終点判定のプロセスを改めて行う必要があるからである。その後、前回の測定から所定時間経過後、温度の時間変化率を再度測定し(ステップS48)、ステップS42の勾配判定処理へと移行する。
本実施形態では、体温測定器1が腋下に挟まれたことを条件として加熱を開始しているが、予め加熱を行って被測定者41の体温の上限として一般的に考えられる温度、例えば42℃よりも高い温度に維持しておいていてもよい。この場合には、体温測定器1はヒータ33のような加熱手段を必ずしも内蔵してある必要はなく、所定温度に加温したウオーターバスなどに測定ヘッド13が浸漬させておいてもよい。また、ウオーターバスで加温される液体がアルコールを含むなどして消毒液も兼用していれば、さらに効率的な体温測定がなされることとなる。
なお、本実施形態では体温測定器1を腋下に挟んで体温測定する場合について説明したが、舌下で体温測定する場合も全く同様のプロセスで体温測定することができる。
第二の実施の形態
第11図(a)は本発明の第二の実施の形態に係る装着型の体温測定器の一態様を模式的に示したものであり、第11図(b)は第11図(a)に示される装着型の体温測定器で被測定者が体温測定している状態を模式的に示したものである。
第11図(a)に示されるように、装着型の電子体温計70aは、測温ヘッド13と本体部712aと略円弧状をなす弾性体71とを備える。測温ヘッド13の構造及び機能並びに本体部712aの機能は第一の実施の形態に係る体温測定器1と同様であるから説明は省略する。弾性体71の一方の端部に、測温部2121が円弧の内側を向くように測温ヘッド13が配設され、弾性体71の円弧の略中央部に本体部712aが配設される。また、測温ヘッド13が備えるサーミスタ32と本体部712aが備える制御基板とは配線72で接続されている。第11図では配線72は弾性体71の外部に配置されているが、その一部或いは全部が弾性体71の内部に配置されてもよい。なお、弾性体71の他方の端部73は、装着時に被測定者への負担が少なくなるように丸め処理がなされている。
この装着型の体温測定器70aを使用するにあたっては、被測定者41は円弧状の弾性体71の円弧を広げながら肩部に装着する(第11図(b))。このとき、弾性体71の測定ヘッド13が配設される側の端部を腋下に当接させ、弾性体71の他端は被測定者41の背面に当接させる。このように装着することで、腋下に当接する測温ヘッド13は弾性体71の弾性によって被測定者41の体表面に押圧接触されることとなる。このため、体温測定中に被測定者41が肩を動かしても測温ヘッド13は被測定者41の体表面から離れることはなく、体温測定中の測温部21の温度環境が急激に変化することがない。従って正確な体温測定が行われ易い。
また、測温ヘッド13を腋下に挟んだ状態で保持する必要がなく、肩を自由に動かすことができるので、装着型の電子体温計70aを一般的な体温測定のためだけでなく、継続的な体温モニタリングの目的で使用してもよい。この場合には、本体部712aにはモニタリングした体温を記録する手段を設けてもよいし、外部の記録手段へと計測した温度を送信するための手段を設けてもよい。
なお、第二の実施の形態に係る装着型の電子体温計70aの体温測定原理は第一の実施の形態に係る体温測定器1と同様であるから説明を省略する。
第12図(a)及び第12図(b)は、本願発明の第二の実施の形態に係る装着型の体温測定器の別の態様を模式的に示したものである。第12図(a)に示される装着型の体温計70bは、弾性体71と測温ヘッド13との配置関係は第11図(a)に示される装着型の電子体温計70aと同様である。しかし、装着型の体温測定器70bの本体部712bが弾性体71には配置されず、別体となっている点が装着型の体温測定器70aと異なる。
この装着型の体温測定器70bは、本体部712bと測温ヘッド13とは弾性体で被覆された配線72で接続される。本体部712bは体温測定時に手に持ってもよいし、衣服のポケットに収納してもよい。また、本体部712bの表示部が配置される面の裏面にクリップを設けて、衣服に容易に装着できるようにしてもよい。
配線72としてその延長方向に伸縮可能な配線を用いることは、断線の可能性が低減するので望ましい態様である。また、本体部712b及び測温ヘッド13に対して脱着可能な接続コネクタによって接続する構造を配線72が備えることも望ましい。配線72が断線した場合には、装着型の体温測定器70bからそのコネクタによって断線した配線72を取り外し、新規な配線72へと交換することで容易に修理が行われるからである。
以上述べたように、本願発明に係る体温測定方法及び対温測定器は、サーミスタ等の温度測定手段と、温度測定手段を内部に有し体表面に押圧接触される測温部と、測温部に熱を印加して測温部の温度を調整する測温部温度調整手段と、温度測定手段で測定した温度の時間変化率を計算する演算部とを具備し、測温部の温度を測温部温度調整手段によって体表面の温度より一旦高くし、温度順位が当該測温部の温度、前記被測定者の温度、環境温度となる状態に設定してから、被測者の体表面の温度の時間変化率を測定するものであるので、体温測定中に温度測定手段から外気へと熱が放出され難く、測定時間を冗長化する熱流出因子の影響が抑制される。
従って、測定信頼性が高い平衡温度を直接計測する体温測定が短時間で行われことになる。また、外気への一時的な熱流出を原因とする急激な温度変動が発生し難いので、短時間で体温計測を行っても、測定信頼性が損なわれ難いという特長を有する。よって、測温信頼性を維持しつつ測温時間が短縮された体温測定方法及びその体温測定方法を用いた体温測定器が実現された。
First embodiment
FIG. 1 is a perspective view conceptually showing a body temperature measuring device according to the first embodiment of the present invention. 2 is an enlarged front view (a) and right side view (b) of the tip portion of the body temperature measuring device according to FIG. FIG. 3 is a conceptual partial sectional view as seen from the right side surface of the tip portion.
As shown in FIG. 1, a body temperature measuring device 1 according to the present embodiment is a flat and substantially cylindrical tube including a temperature measuring probe 11 including a temperature measuring head 13 and a connecting portion 14, and a main switch 12a and a display 12b. It is comprised from the main-body part 12 of a shape. The temperature measuring head 13, the connecting portion 14, and the main body portion 12 may be manufactured by, for example, resin injection molding, or may be manufactured by metal pressing. Note that it is desirable that the connecting portion 14 has appropriate elasticity, and a spring material, rubber, elastomer, or the like can be used.
As shown in FIG. 2 (a), the temperature measuring head 13 has an elliptical shape with the extending direction of the connecting portion 14 as the short axis when viewed from the front, and when viewed from the side, the temperature measuring head 13 is shown in FIG. 2 (b). As shown, the portions other than the protruding temperature measuring unit 21 have a rectangular shape with rounded corners. The reason why the rounding process is performed is to prevent the discomfort associated with the contact of the person to be measured because the body temperature is measured by holding the temperature measuring head 13 under the tongue or the armpit.
A temperature measuring portion 21 is formed at the center of the front side of the temperature measuring head 13 so as to form a semi-elliptical spherical protrusion with the extending direction of the connecting portion 14 as the short axis. The front surface shape of the temperature measuring unit 21 may be another shape as long as it is a surface shape that matches the body surface of the measurement subject at the time of pressing contact. The shape includes a circular shape, a semicircular shape, a conical shape with rounded tops, a rectangular parallelepiped shape with rounded ends, a cubic shape, or a truncated cone shape. Among these shapes, like the body temperature measuring instrument 1 according to the present embodiment, it is substantially orthogonal to the length in the direction in which the insertion operation for placing the temperature measuring head 13 at the measurement site of the measurement subject is performed. In the case of a shape having a longer direction length, as will be described later, this is a desirable shape that facilitates highly reliable body temperature measurement in a short time.
Further, when the front surface shape of the temperature measuring unit 21 is circular, there is no need to worry about the direction of the temperature measuring unit 21 or the temperature measuring head 13 when the person to be measured measures the temperature, so the temperature is easily measured. It is possible. This is important for children, the elderly, and patients who are sick and sick.
As shown in FIG. 3, the temperature measuring unit 21 is formed of a thin plate, and is fixed on the temperature measuring head 13 by a heat insulating fixing plate 13a and a heat insulating member 13b forming a part of the temperature measuring head 13. . Further, the heat insulating fixing plate 13a and the heat insulating member 13b are fixed to the temperature measuring head 13 by appropriate means such as screws.
A thermistor 32, a heater 33, and a permanent magnet 37 are arranged inside the temperature measuring unit 21, that is, inside a substantially closed space formed by the inner wall of the temperature measuring unit 21 and the heat insulating member 13b. The thermistor 32 includes a resistor having a negative temperature coefficient characteristic and a resistor having a self-controlling positive temperature coefficient characteristic. The resistor having the negative temperature coefficient characteristic is used for temperature measurement, and the resistor having the self-control type positive temperature coefficient characteristic is used for output control of the heater 33. The heater 33 is used as temperature measuring unit temperature adjusting means.
One end of wirings 34 and 35 is connected to the thermistor 32 and the heater 33 arranged inside the temperature measuring unit 21, respectively, and the other end of the wirings 34 and 35 is a penetration part ( A portion other than the wirings 34 and 35 is filled with a heat insulating material 36) and the temperature measuring head 13 and the inside of the connecting portion 14 are included, and a calculation unit for calculating a time change rate of temperature provided in the main body 12 is included. It is connected to a control board (not shown).
The temperature measuring unit 21 is made of a magnetic material having higher thermal conductivity than the heat insulating fixing plate 13a and the heat insulating member 13b, and the thermistor 32 and the heater 33 are covered with a thin film of magnetic material. For this reason, the temperature measuring unit 21 is always in contact with the permanent magnet 37, and the thermistor 32, the heater 33, and the temperature measuring unit 21 are always in contact with the temperature measuring unit 21 magnetized by the influence of the permanent magnet 37. Eggplant.
In the present embodiment, the temperature is measured by a resistor having a negative temperature coefficient characteristic included in the thermistor 32. However, a thermocouple, a metal temperature measuring resistor pair, an IC temperature sensor, or a magnetic temperature sensor may be used. The resistor having the self-control type positive temperature coefficient characteristic provided in the thermistor 32 may be provided in the heater 33, or may be disposed in the temperature measuring unit 21 separately from the thermistor 32 and the heater 33. .
Moreover, in this embodiment, although the permanent magnet 37 was arrange | positioned in the temperature measuring part 21 with the thermistor 32 and the heater 33, the temperature measuring part 21 may be comprised with the permanent magnet. Alternatively, a layer made of a permanent magnet may be formed on the inner wall of the temperature measuring unit 21.
Further, winding the heater 33 around the thermistor 32 as, for example, a nichrome wire so that the thermistor 32 and the heater 33 are substantially integrated is one of desirable modes from the viewpoint of improving the heating efficiency of the thermistor 32.
Or you may comprise the temperature measurement part 21 with the material which has shape recovery force like an elastic body or a flexible material. In this case, since the temperature measuring unit 21 is deformed so as to be adapted to the body surface of the measurement subject at the time of pressing contact, the non-contact portion between the temperature measurement unit 21 and the measurement subject at the time of body temperature measurement can be reduced. . For this reason, heat transfer between the thermistor 32 and the measurement subject via the temperature measuring unit 21 is easy to be performed, and highly reliable body temperature measurement is easily performed in a short time. Further, in this case, the contact area between the temperature measuring unit 21 and the person to be measured is increased even if the shape of the temperature measuring unit 21 is not previously harmonized with the body surface as described above. A simple shape such as For this reason, the productivity in the component processing process of the temperature measuring unit 21 is improved. Further, when the inner wall of the temperature measuring unit 21 is also made of a material having a shape recovery force, the thermistor 32 and the heater 33 slightly elastically deform the inner wall of the temperature measuring unit 21 as an assembled state as the measuring head 13. It is good to set the shape of the thermistor 32 and the heater 33, and the inner wall shape of the temperature measuring part 21 so that it may carry out. In this case, the thermistor 32 and the like are fixed at a substantially constant position while maintaining contact with the temperature measuring unit 21 by the shape recovery force of the temperature measuring unit 21. For this reason, the adhesion process is not required in the process of arranging the thermistor 32 and the like inside the temperature measuring section 21, and the productivity in the manufacturing process is improved.
Next, as an aspect of the use of the thermometer according to the present embodiment, a case where body temperature is measured under the armpit will be described.
FIG. 4 (a) is a diagram conceptually showing the distribution of the body surface temperature under the measurement subject's armpit and the operation of inserting the thermometer according to the present embodiment into the measurement subject's armpit. FIG. 4B is a partial cross-sectional view of the measured person 41 and the body temperature measuring device 1 according to the present embodiment, conceptually showing a body temperature measurement state by the body temperature measuring device according to the present embodiment.
As shown in FIG. 4 (a), the temperature distribution in the armpit is affected by an artery flowing in the vicinity of the armpit, and has a uniform temperature region that is long in the vertical direction. For this reason, an area showing high temperature exists just below the arm part under the armpit and has a shape that is long in the vertical direction, and the temperature is before and after the area showing high temperature, that is, on the chest side and the back side. A slightly lowered region exists with a long shape in the vertical direction. It is desirable for the body temperature measuring device 1 to measure the temperature of the region showing this high temperature.
The body temperature measuring device 1 according to the present embodiment is a sensor having a longer length in a direction substantially perpendicular to the length in the direction in which the insertion operation for placing the measuring head 13 at the measurement site of the measurement subject is performed. It has the shape of the holder 21. For this reason, the same operation as the conventional thermometer insertion operation in which the measurement head 13 is inserted into the armpit while the main body 12 of the electronic thermometer 1 is substantially horizontal to press-contact the body surface and the measurement head 13. By doing so, the entire sensor holder 21 is likely to come into contact with the region where the temperature is high.
Further, as shown in FIG. 4 (b), when the temperature measuring head 13 is sandwiched between the armpits, the semi-elliptical sphere portion of the temperature measuring unit 21 is pressed against the body surface of the person to be measured 41. At this time, the temperature measuring unit 21 is placed in a substantially closed space formed by the heat insulating fixing plate 13 a and the heat insulating member 13 b and the person to be measured 41. In addition, since the temperature measuring unit 21 is in contact with the person to be measured 41 in this closed space, the thermistor 32 can transfer heat to the person to be measured 41 via the temperature measuring unit 21.
Here, in this embodiment, ferritic stainless steel is used as the temperature measuring section 21, and the heat insulating fixing plate 13a and the heat insulating member 13b (hereinafter collectively referred to as a heat insulating section) are made of hard urethane foam. Since the thermal conductivities of stainless steel and urethane foam are about 10 W / m · K and about 0.024 W / m · K, respectively, the heat insulating part has a thermal conductivity of about 1/400 of the temperature measuring part 21.
In such a configuration, the temperature measuring unit 21 is not easily exposed to the outside air. In addition, heat transfer between the thermistor 32 and the person to be measured 41 is more preferentially performed than heat transfer between the thermistor 32 and the heat insulating portion. For this reason, since it is difficult for heat to be released from the thermistor 32 to the outside air during the body temperature measurement, the influence of the heat outflow to the outside air that makes the measurement time redundant is suppressed, and temporary heat outflow to the outside air is caused. Sudden temperature fluctuation is unlikely to occur.
Note that if the ratio of the thermal conductivity is 1/200 or less, heat transfer between the thermistor 32 and the person to be measured 41 is preferentially performed, and if it is 1/400 or less, the thermistor 32 and the person to be measured are conducted. Heat transfer with 41 is particularly preferential.
In addition, it is desirable that the temperature measuring unit 21 is made of a material having a high thermal conductivity such as an aluminum alloy (thermal conductivity> 200 W / m · K) to reduce the thermal conductivity ratio. In this case, a layer made of a magnetic material may be formed on the inner wall of the temperature measuring unit 21 so that the thermistor 32 and the heater 33 are brought into contact with the temperature measuring unit 21 by magnetic force.
Even when the body temperature of the measurement subject is measured under the tongue using the body temperature measuring device 1 according to the present embodiment, the temperature measuring unit 21 is surrounded by the heat insulating material (the heat insulating fixing plate 13a and the heat insulating member 13b) and the sublingual Therefore, it is possible to perform measurement in which measurement time is shortened while maintaining temperature measurement reliability.
Then, the body temperature measuring method of the body temperature measuring device 1 which concerns on this embodiment is demonstrated.
FIG. 5 conceptually shows a temperature profile from the start of the body temperature measurement to the end of the body temperature measurement of the body temperature measuring device 1 according to this embodiment in comparison with the temperature profile of a conventional thermometer. For convenience of explanation of the present invention, the horizontal axis is slightly enlarged as compared with FIG. 16 relating to the prior art.
Here, the temperature profile 162 in FIG. 5 shows the temperature profile of an electronic thermometer disclosed in Japanese Patent Application Laid-Open No. 2002-5752, and is preheated by a heater in the initial stage, and a conventional general electronic thermometer. Compared to the temperature profile, there is a certain degree of improvement in the situation in which the rate of time change in temperature near the equilibrium temperature decreases. However, as described above, when the heat inflow from the person under measurement 41 is small near the equilibrium temperature, the influence of the heat outflow to the thermometer main body is relatively large, and thus the time change rate of the temperature is remarkably reduced. .
That is, in the conventional body temperature measurement method, even if the sensor cap including the thermistor is preheated by the heater, the temperature is equal to or lower than the body temperature of the person to be measured 41 and is substantially released from the person to be measured 41. It only received heat unilaterally. In that respect, the conventional body temperature measuring method can be said to be a passive body temperature measuring method.
On the other hand, in the body temperature measuring method of the thermometer according to the present embodiment shown in the temperature profile 51, after starting the body temperature measurement, the thermistor 32 is first heated by the heater 33 (area A), and the temperature of the thermistor 32 is temporarily set. The temperature is higher than the equilibrium temperature of the person to be measured 41 (region B). Thereafter, the measurement subject 41 and the thermometer main body 12 are cooled to an equilibrium temperature that is the body temperature of the measurement subject 41 using the heat sink (region C).
By making the temperature of the thermistor 32 higher than the body temperature of the person 41 to be measured, the person 41 to be measured having a huge heat capacity compared to the body temperature measuring instrument 1 functions as a heat sink for cooling the thermistor 32. It will be. For this reason, the thermistor 32 releases heat to the person 41 to be measured, which is a heat sink, and quickly reaches the equilibrium temperature. In the conventional body temperature measurement method, the outflow of heat to the main body 12 is an inhibitory factor when the thermistor 32 reaches the equilibrium temperature. However, for the body temperature measurement method according to the present embodiment, the equilibrium temperature is reversed. It becomes a factor that promotes reaching.
Therefore, according to the active body temperature measuring method according to the present embodiment, the equilibrium temperature, which is the accurate body temperature of the person 41 to be measured, is measured in a short period of time within 5 seconds under appropriate conditions.
Here, the fact that the body temperature measurement method according to the present embodiment is active will be described in detail with reference to FIG.
FIG. 6 is a partial cross-sectional view conceptually showing heat flow in and out of the thermistor 32 from the start of body temperature measurement to the end of body temperature measurement. 6 (a) shows the state of the region A of the temperature profile 51 in FIG. 5, FIG. 6 (b) shows the state of the region B, FIG. 6 (c) shows the state of the region C, FIG. 4D corresponds to the state after the temperature profile 51 reaches the equilibrium temperature.
First, in the region A where the heater 33 is heated, as shown in FIG. 6A, heat directly flows into the thermistor 32 from the heater 33 (arrow Q61). Heat also flows from the person under measurement 41 via the arrow 21 (arrow Q62). Further, part of the heat from the thermistor 32 flows out to the heat insulating member 13b (arrow Q63). Comparing the absolute value of the amount of heat transfer per unit time in this state, Q61 >>Q62> Q63, and the inflow of heat from the heater 33 is a dominant factor for the temperature change of the thermistor 32.
Subsequently, as shown in FIG. 6 (b), immediately after the transition to the state of region B in FIG. 5, that is, when the thermistor 32 is heated to a temperature higher than the equilibrium temperature, the thermistor 32, the person to be measured 41, The direction of heat transfer is reversed, and heat flows out toward the person to be measured 41 (arrow Q65). Further, the heat inflow from the heater 33 continues until the thermistor 32 reaches the peak temperature (arrow Q64). Furthermore, the outflow of heat to the heat insulating member 13b is continuously generated (arrow Q66).
The relationship of the amount of heat transfer per unit time in the region B in FIG. 5 is initially Q64> Q65 + Q66. Thereafter, when the energization of the heater 33 is stopped at a predetermined timing, the heat inflow Q64 due to the residual heat from the heater 33 continues for a while after the stop, but the amount gradually decreases. Further, as the temperature of the thermistor 32 becomes higher than the equilibrium temperature, the heat outflow Q65 to the measurement subject 41 increases. For this reason, the relationship of the amount of heat transfer is Q64 = Q65 + Q66, and finally, Q64 <Q65 + Q66, and the region B changes to the region C in FIG.
When the effect of the residual heat of the heater 33 disappears and the substantial heat inflow from the heater 33 to the thermistor 32 disappears, the entire cooling process using the measurement subject 41 as a heat sink as shown in FIG. Transition. In this state, heat outflow from the thermistor 32 to the person to be measured 41 (arrow Q67) and heat outflow to the heat insulating member 13b (arrow Q68) occur. Comparing the absolute value of the amount of heat transfer per unit time with respect to Q67 and Q68, while Q68 is only slightly decreased as the temperature of the thermistor 32 is decreased, the heat outflow Q67 to the measured person 41 is the thermistor 32. Decreases as the temperature approaches the equilibrium temperature, and Q67 becomes zero immediately before reaching the equilibrium temperature.
Thereafter, when the temperature of the thermistor 32 reaches the equilibrium temperature, as shown in FIG. 6 (d), heat corresponding to the heat outflow Q70 from the thermistor 32 to the heat insulating member 13b flows into the thermistor 32 from the subject 41. (Arrow Q69). This state is an equilibrium state for the thermistor 32. In this state, the heat capacity of the thermistor 32 is much smaller than the heat capacity of the heat insulating member 13b, so the amount of heat transfer per unit time is substantially Q69 = Q70. Become.
As described above, in the body temperature measurement method according to the present embodiment, the thermistor 32 absorbs heat at the initial stage of body temperature measurement, then releases heat, and becomes a medium for transmitting heat at the end of body temperature measurement. In the conventional body temperature measurement method, the temperature measurement means such as the thermistor 32 only receives heat inflow unilaterally, and in this respect, the body temperature measurement method according to this embodiment can be said to be “active”.
In order to achieve body temperature measurement in a short time as described above, since the heater 33, the thermistor 32, and the temperature measurement unit 21 are in a state where heat can be transferred to each other, it is desirable that the heat capacity of the temperature measurement unit 21 is small. As shown in FIG. 6A, when the thermistor 32 is heated by the heater 33, the temperature measuring unit 21 thermally connected to the thermistor 32 is also heated. For this reason, if the heat capacity of the temperature measuring unit 21 is large, it is necessary to increase the amount of heat generated by the heater 33 accordingly, resulting in an increase in energy consumption required for body temperature measurement.
Next, the body temperature measurement method according to the present embodiment will be described in detail based on the flowcharts shown in FIGS. FIG. 7 is a flowchart showing the main part of the initial operation confirmation process of the body temperature measurement method according to this embodiment. FIG. 8, FIG. 9, and FIG. 10 are flowcharts showing the main parts of the calorie determination process, the contact diagnosis process, the temperature change rate gradient determination process, and the body temperature measurement process, respectively.
1. Initial operation confirmation process (Fig. 7)
When the power button 12a is pressed, the CPU of the control board displays “Ready” on the display screen 12b to notify the measurement subject 41 that the preparation for body temperature measurement is complete (step S11). The person under test 41 confirms the display, and then inserts the body temperature measuring device 1 under the armpit.
When the body temperature measuring device 1 is sandwiched between the armpits and a predetermined temperature rise is detected by the thermistor 32 (step S12), the CPU performs a process for shifting to the next process, that is, the heat quantity determination process (step S12). S13), the initial operation confirmation process is terminated. If there is no predetermined temperature rise and a predetermined time has elapsed since “Ready” was displayed on the display screen 12b, an error message may be displayed (steps S14 and S15).
2. Calorie determination process and contact diagnosis process (Fig. 8)
First, the CPU stores the initial temperature T1 measured by the thermistor 32 in a storage device provided in the control board of the main body 12 (step S21). Subsequently, the intermediate temperature T2 measured by the thermistor 32 is stored in the storage device after the lapse of the specified time t1 from the start of measurement, for example, 1 second later (step S22). In addition, the time change rate of measured temperature can be calculated | required by the calculating part in the main-body part 12 using these measured value T1, T2, and t1.
Subsequently, the initial temperature T1 and the intermediate temperature T2 stored in the storage device are read out, and based on these temperatures, the amount of heat generated by the heater 33 required to cause the thermistor 32 to reach a temperature higher than the body temperature of the person 41 to be measured is calculated. decide. The amount of heat generated by the heater varies depending on the initial temperature T1, the intermediate temperature T2, the time change rate of the measured temperature (temperature increase rate ΔT / Δt), and the like, and also depends on the shape of the body temperature measuring instrument 1. The relationship between the parameter and the heat generation amount of the heater is grasped in advance. The higher the accuracy of grasping this relationship, the less the possibility of overheating of the thermistor 32 and reheating described later, and the time required for body temperature measurement is shortened.
In this embodiment, a plurality of tables describing the relationship of “temporal change rate of temperature−heater calorific value” are prepared corresponding to the initial temperature, and stored in the storage device in advance. An optimum table is selected from these table groups in accordance with the read initial temperature T1 (step S23), and the time change rate of the temperature obtained based on the initial temperature T1 and the intermediate temperature T2 (temperature change amount per unit time). , ΔT / Δt) with reference to the selected table, the heater heat generation amount is determined (step S24). In addition to the above-described determination method, the heater heat generation amount may be determined using only one of the initial temperature T1 and the time change rate of the temperature.
Subsequently, the “heater heat generation amount-heater operation time” table stored in advance in the storage device is read (step S25) and collated with the heater heat generation amount obtained in step S24 (step S26) to determine the operation time of the heater 33. (Step S27). By using this “heater heat generation amount−heater operation time” table, it is possible to control the heat generation amount of the heater by the operation time. However, in addition to the operation time, the heater heat generation amount can be controlled by an operation voltage or the like. I do not care.
In the present embodiment, as described above, the heater heat generation amount is determined based on the temperature measurement result of the thermistor 32 before the heating of the heater 33 is started, and then the operation time of the heater 33 is determined. As a result, the amount of heat applied to the temperature measuring unit 21 is determined. The heater operating time is determined after the heater heat generation amount is determined, because this is easy to cope with a design change of the heater 33 and the like. However, the operating time of the heater 33 may be determined directly based on the temperature measurement result of the thermistor 32 without determining the heater heat generation amount. In this case, it may be determined based on the initial temperature T1 and the time change rate of the temperature, or may be determined based on either one. Or you may determine based on the temperature immediately after displaying "Ready" in step S11 of the initial stage process shown by FIG.
Furthermore, the heat generation amount of the heater 33 may be fixed without being variable, and may be a fixed operation time of 1.5 seconds, for example. As shown in FIG. 6 (a), when the thermistor 32 is heated above the body temperature of the person to be measured 41, heat flows from the heater 33 and the person to be measured 41. For this reason, even if the heat supplied from the heater 33 to the thermistor 32 is constant, when the body temperature of the person 41 to be measured is high, the amount of heat received by the thermistor 32 increases. As a result, the peak temperature reached by the heating of the thermistor 32 also increases. Get higher. Therefore, even if the heating time of the heater 33 is constant, the thermistor 32 is set to a temperature higher than that of the measurement subject 41 if the heating is performed for a predetermined time or longer. Here, when heating is performed for a certain period of time, excessive heating occurs, which adversely affects the person to be measured 41 and the electronic thermometer 1. Regarding this point, the temperature of the thermistor 32 after the start of heating is monitored, and a process for forcibly ending the heating of the heater 33 at a predetermined temperature such as 45 ° C. or higher is incorporated in the software, or the thermistor 32 has a self- Such a problem can be avoided by controlling the heater 33 with a resistor having a controlled positive temperature coefficient characteristic to suppress overheating above the self-saturation temperature.
Subsequently, the process proceeds to a contact diagnosis process (step S28). The contact diagnosis process is a mode for determining whether or not the time change rate ΔT / Δt of the temperature obtained from the thermistor 32 is equal to or greater than a predetermined value. When the determination result is equal to or greater than the specified value, the person under measurement 41 determines that the body temperature measuring device 1 is normally sandwiched under his armpit, and shifts to a heat amount application process for actually heating the heater 33. Processing is performed (step S29), and the heat quantity determination process and the contact diagnosis process are terminated.
On the other hand, if it is determined in step S25 that the measured value is equal to or less than the specified value, a warning sound is emitted by a buzzer built in the main body 12, and the person 41 to be measured stabilizes the body temperature measuring device 1 under the armpit. After pressing for a predetermined time (step S30), the process proceeds to step S12 of the initial operation confirmation process shown in FIG.
3. Heat application process and temperature change rate gradient judgment process (Fig. 9)
First, in the heat amount application process, heating by the heater 33 is performed for the heater operating time determined in step S27 based on the heater heat generation amount determined in step S24 while continuing to take in the temperature measurement result from the thermistor 32 to the control board. (Step S31). As a result, the thermistor 32 quickly reaches a temperature higher than the body temperature of the person to be measured 41 by superimposing the heat flowing from the person to be measured 41 and the heat from the heater 33. After the heater operation for a predetermined time is completed, the process proceeds to a temperature change rate gradient determination process when the predetermined time has passed.
In the temperature change rate gradient determination process, first, the time change rate of temperature is measured (step S32), and it is determined whether or not the time change rate of temperature is a positive gradient (step S33). When it determines, the process for transfering to a body temperature measurement process is performed (step S34), and a temperature change rate gradient determination process is complete | finished.
On the other hand, if it is determined in step S33 that the gradient is positive, it is then determined whether or not the temperature that can be reached by the thermistor 32 is a predetermined temperature that is considered to be the upper limit, for example, 43 ° C. or less (step S35). If it is determined in step S35 that the measured temperature is equal to or lower than the predetermined temperature, the heating by the heater 33 is performed again for a short time, for example, about 0.5 seconds, and after the predetermined time has elapsed, The temperature change rate gradient is determined again (step S36).
Here, the reason why it is determined to perform additional heating for a short time when the time change of the temperature after the lapse of a predetermined time after the heating is a positive gradient will be described. When a necessary amount of heat is generated from the heater 33, the temperature of the thermistor 32 reaches a temperature higher than the body temperature of the person to be measured 41, and then reaches the body temperature of the person to be measured 41 while the temperature of the thermistor 32 decreases. The measurement method according to this embodiment is performed. As shown in FIG. 5, the temperature profile of the thermistor 32 at this time has a positive temperature gradient due to the residual heat from the heater 33 for a while after the end of heating, but the influence of the residual heat from the heater 33 is affected. When it becomes negligible, the time change in temperature is reversed to a negative gradient. That is, in the body temperature measurement method according to the present embodiment, after the heating of the heater 33 is finished, when the time change of the temperature of the thermistor 32 is measured after waiting for the elapse of a predetermined time until the influence of the residual heat from the heater 33 can be ignored, minus A gradient is obtained.
On the other hand, when the heating time by the heater 33 is short and a necessary amount of heat is not generated, the temperature of the thermistor 32 may not reach a temperature higher than the body temperature of the person 41 to be measured after the heating is finished. In this case, even when the influence of the residual heat from the heater 33 is negligible, the heat from the measured person 41 toward the thermistor 32 until the temperature of the thermistor 32 reaches the body temperature of the measured person 41. The movement continues to occur. That is, in this case, the body temperature cannot be measured for a short time using the person to be measured 41 as a heat sink, and the time change of the measured temperature of the thermistor 32 continues to be in a positive gradient state.
Accordingly, when the time change of the temperature of the thermistor 32 is measured after the standby time after the heating of the heater 33 is finished until the influence of the residual heat becomes negligible, the time change is a positive gradient. Therefore, there is a high possibility that the heater 33 is not sufficiently heated and the body temperature cannot be measured in a short time according to this embodiment. Therefore, in this case, the temperature of the thermistor 32 is increased by operating the heater 33 again for a predetermined time.
When the measurement standby time from when the heating is finished until the time change rate of the temperature is measured is too short, the time change rate of the temperature is measured while the influence of the residual heat from the heater 33 remains. It is determined that the change in temperature with time is a positive gradient. In this case, operating the heater 33 again results in a delay in measurement time, which is not a desirable situation. Therefore, setting this measurement waiting time appropriately is important in realizing body temperature measurement with a short measurement time.
When it is determined in step S35 that the temperature measured by the thermistor 32 is equal to or higher than the predetermined temperature, the contact state between the temperature measuring head 13 and the person to be measured 41 is particularly inappropriate, or the inside of the electronic thermometer 1 It is thought that an abnormal abnormality has occurred. For this reason, it is more desirable from the viewpoint of safety and power consumption saving to end the body temperature measurement and prompt the person to be measured 41 to confirm rather than continue the body temperature measurement by performing reheating. Therefore, a warning sound is emitted to notify the person to be measured 41 of the occurrence of abnormality (step S37), and the temperature change rate gradient determination process is terminated.
Here, since the heater 33 is controlled by the resistor including the self-control type positive temperature coefficient characteristic provided in the thermistor 32, the temperature of the heater 33 is prevented from being overheated to the self-saturation stable temperature or higher. Therefore, the process consisting of the above steps S35 and S37 may be omitted.
4). Body temperature measurement process (Fig. 10)
In the body temperature measurement process, the CPU first measures the time change rate of the temperature (step S41), and determines whether or not the time change rate of the temperature is within a predetermined range (step S42). The predetermined range is −0.1 ° C./second or more and + 0.01 ° C./second or less. As a result of the determination in step S42, when it is determined that the time change rate of the temperature is within a predetermined range, 1 is added to the end point determination counter whose initial value is set to zero (step S43). Subsequently, it is determined whether or not the end point determination counter is a predetermined value, for example, 5 (step S44), and if it is the predetermined value, the thermistor 32 determines that the equilibrium temperature of the person to be measured 41 has been reached. . Therefore, the current measured temperature of the thermistor 32 is displayed on the display device 12b (step S45), processing for ending the body temperature measurement is performed (step S46), and the body temperature measuring process is ended. The process for completing the body temperature measurement includes storing the display temperature in the recording device, erasing the temperature data recorded in the body temperature measurement process, and resetting internal parameters and flags used in body temperature measurement such as an end point determination counter.
On the other hand, as a result of the determination in step S44, if it is determined that the end point determination counter is less than the predetermined value, the time change rate of the temperature is again measured after a predetermined time, for example, 0.1 second has elapsed since the previous measurement. Measurement is performed (step S48), and the process proceeds to the determination process of step S42.
If it is determined in step S42 that the rate of time change in temperature is lower than a predetermined negative gradient set value, the end point determination counter is first reset to zero (step S47). This is because the end point determination process needs to be performed again. Then, after a predetermined time has elapsed from the previous measurement, the time change rate of the temperature is measured again (step S48), and the process proceeds to the gradient determination process of step S42.
In the present embodiment, heating is started on the condition that the body temperature measuring device 1 is sandwiched between armpits. However, a temperature generally considered as the upper limit of the body temperature of the measurement subject 41 by performing heating in advance, for example, You may maintain at the temperature higher than 42 degreeC. In this case, the body temperature measuring device 1 does not necessarily include a heating means such as the heater 33, and the measuring head 13 may be immersed in a water bath or the like heated to a predetermined temperature. In addition, if the liquid heated in the water bath also contains an alcohol or the like and serves as a disinfectant, more efficient body temperature measurement can be performed.
In the present embodiment, the case where the body temperature is measured with the body temperature measuring instrument 1 sandwiched between the armpits has been described. However, the body temperature can be measured by the same process when the body temperature is measured under the tongue.
Second embodiment
FIG. 11 (a) schematically shows one aspect of a wearable body temperature measuring device according to the second embodiment of the present invention, and FIG. 11 (b) is a diagram of FIG. 11 (a). FIG. 2 schematically shows a state in which the subject is measuring body temperature with the wearable body temperature measuring device shown in FIG.
As shown in FIG. 11 (a), the wearable electronic thermometer 70a includes a temperature measuring head 13, a main body portion 712a, and an elastic body 71 having a substantially arc shape. Since the structure and function of the temperature measuring head 13 and the function of the main body 712a are the same as those of the body temperature measuring device 1 according to the first embodiment, the description thereof is omitted. The temperature measuring head 13 is disposed at one end of the elastic body 71 so that the temperature measuring section 2121 faces the inner side of the arc, and the main body 712 a is disposed at a substantially central portion of the arc of the elastic body 71. Further, the thermistor 32 provided in the temperature measuring head 13 and the control board provided in the main body 712 a are connected by a wiring 72. In FIG. 11, the wiring 72 is arranged outside the elastic body 71, but part or all of the wiring 72 may be arranged inside the elastic body 71. The other end 73 of the elastic body 71 is rounded so as to reduce the burden on the person being measured when worn.
In using this wearable body temperature measuring device 70a, the person 41 to be measured wears on the shoulder while expanding the arc of the arc-shaped elastic body 71 (FIG. 11 (b)). At this time, the end of the elastic body 71 on the side where the measurement head 13 is disposed is brought into contact with the armpit, and the other end of the elastic body 71 is brought into contact with the back surface of the person to be measured 41. By mounting in this way, the temperature measuring head 13 in contact with the armpit is pressed against the body surface of the person 41 to be measured by the elasticity of the elastic body 71. For this reason, even if the person to be measured 41 moves his / her shoulder during body temperature measurement, the temperature measuring head 13 does not move away from the body surface of the person to be measured 41, and the temperature environment of the temperature measuring unit 21 during body temperature measurement changes abruptly. There is nothing to do. Therefore, accurate body temperature measurement is easily performed.
Further, since it is not necessary to hold the temperature measuring head 13 in the state of being held under the armpit and the shoulder can be freely moved, the wearable electronic thermometer 70a is not only used for general body temperature measurement but also continuously. It may be used for the purpose of proper body temperature monitoring. In this case, the main body 712a may be provided with means for recording the monitored body temperature, or may be provided with means for transmitting the measured temperature to an external recording means.
The body temperature measurement principle of the wearable electronic thermometer 70a according to the second embodiment is the same as that of the body temperature measuring device 1 according to the first embodiment, and the description thereof is omitted.
FIGS. 12 (a) and 12 (b) schematically show another aspect of the wearable body temperature measuring device according to the second embodiment of the present invention. In the wearable thermometer 70b shown in FIG. 12 (a), the arrangement relationship between the elastic body 71 and the temperature measuring head 13 is the same as that of the wearable electronic thermometer 70a shown in FIG. 11 (a). However, the body portion 712b of the wearable body temperature measuring device 70b is not disposed on the elastic body 71, and is different from the wearable body temperature measuring device 70a in that it is a separate body.
In the wearable body temperature measuring device 70b, the main body 712b and the temperature measuring head 13 are connected by a wiring 72 covered with an elastic body. The main body 712b may be held in the hand when measuring body temperature, or may be stored in a pocket of clothes. Further, a clip may be provided on the back surface of the surface on which the display portion of the main body portion 712b is arranged so that it can be easily attached to clothes.
Using a wiring that can be expanded and contracted in the extending direction as the wiring 72 is a desirable mode because the possibility of disconnection is reduced. It is also desirable that the wiring 72 has a structure for connecting to the main body 712b and the temperature measuring head 13 by a detachable connection connector. This is because when the wiring 72 is disconnected, the wiring 72 that has been disconnected by the connector is removed from the wearable body temperature measuring device 70b and replaced with a new wiring 72, so that the repair is easily performed.
As described above, the body temperature measuring method and the temperature measuring instrument according to the present invention include a temperature measuring unit such as a thermistor, a temperature measuring unit having a temperature measuring unit therein and pressed against the body surface, and a temperature measuring unit. A temperature measuring section temperature adjusting means for adjusting the temperature of the temperature measuring section by applying heat to the section, and a calculation section for calculating a time change rate of the temperature measured by the temperature measuring means. The temperature of the body surface of the subject is measured after the temperature is set higher than the temperature of the body surface by the temperature measuring section temperature adjusting means and the temperature ranking is set to the temperature of the temperature measuring section, the temperature of the subject, and the environmental temperature. Therefore, it is difficult for heat to be released from the temperature measuring means to the outside air during body temperature measurement, and the influence of a heat outflow factor that makes measurement time redundant is suppressed.
Therefore, body temperature measurement that directly measures the equilibrium temperature with high measurement reliability is performed in a short time. In addition, since rapid temperature fluctuations caused by temporary heat outflow to the outside air are unlikely to occur, there is a feature that measurement reliability is hardly impaired even if body temperature is measured in a short time. Therefore, a body temperature measuring method in which the temperature measuring time is shortened while maintaining temperature measuring reliability and a body temperature measuring device using the body temperature measuring method have been realized.

本願発明に係る体温測定方法及び体温測定器は、サーミスタ等の温度測定手段と、温度測定手段を内部に有し体表面に押圧接触される測温部と、測温部に熱を印加して測温部の温度を調整する測温部温度調整手段と、温度測定手段で測定した温度の時間変化率を計算する演算部とを具備し、測温部の温度を測温部温度調整手段によって体表面の温度より一旦高くし、温度順位が当該測温部の温度、被測定者の温度、環境温度となる状態に設定してから、被測定者の体表面の温度の時間変化率を測定するものである。その結果、体温の測定時間を短くすることができ、かつ測定結果に高い信頼性を付与することができるので、家庭内は勿論のこと、救急車内や病院内等、体温を測定する必要のあるところならば何処でも広く用いることが可能である。  The body temperature measuring method and the body temperature measuring device according to the present invention include a temperature measuring unit such as a thermistor, a temperature measuring unit having a temperature measuring unit therein and pressed against the body surface, and applying heat to the temperature measuring unit. A temperature measuring section temperature adjusting means for adjusting the temperature of the temperature measuring section; and a calculation section for calculating a time change rate of the temperature measured by the temperature measuring means, and the temperature of the temperature measuring section is adjusted by the temperature measuring section temperature adjusting means. Once the temperature is higher than the body surface temperature, set the temperature ranking to the temperature of the temperature measuring unit, the temperature of the person being measured, and the environmental temperature, and then measure the rate of change in the temperature of the body surface of the person being measured over time. To do. As a result, measurement time of body temperature can be shortened and high reliability can be given to the measurement result, so it is necessary to measure body temperature not only in the home but also in an ambulance or hospital. However, it can be widely used anywhere.

Claims (17)

温度測定手段と、当該温度測定手段を内部に有し被測定者の体表面に押圧接触される測温部と、当該測温部に熱を印加して当該測温部の温度を調整する測温部温度調整手段と、前記温度測定手段で測定した温度の時間変化率を計算する演算部とを具備し、
前記測温部を前記被測定者の体表面に押圧接触させながら前記測温部の温度を前記測温部温度調整手段によって前記被測定者の体表面の温度より一旦高くし、温度順位が当該測温部の温度、前記被測定者の温度、環境温度となる状態に設定してから、前記被測定者をヒートシンクとして前記温度測定手段によって測定される前記体表面の温度の時間変化率を暫時測定する体温測定方法であって、
少なくとも前記測温部に熱量を印加する熱量印加プロセスと、
前記熱量印加プロセスによって前記測温部に熱量を印加した後に、前記温度測定手段によって温度を測定して前記演算部で求められる測定温度の時間変化率が所定の範囲内にあることを所定の回数確認した場合に、そのときの測定値を前記被測定者の体表面の体温度とみなす体温測定プロセスと、を具備することを特徴とする体温測定方法。
A temperature measuring unit, a temperature measuring unit having the temperature measuring unit therein and pressed against the body surface of the measurement subject, and a temperature measuring unit configured to adjust the temperature of the temperature measuring unit by applying heat to the temperature measuring unit. A temperature part temperature adjusting means, and a calculation part for calculating a time change rate of the temperature measured by the temperature measuring means,
While the temperature measuring unit is pressed against the body surface of the person to be measured, the temperature of the temperature measuring unit is once higher than the temperature of the body surface of the person to be measured by the temperature measuring unit temperature adjusting means, and the temperature ranking is After setting the temperature of the temperature measuring unit, the temperature of the person to be measured, and the environmental temperature, the time change rate of the temperature of the body surface measured by the temperature measuring means using the person to be measured as a heat sink for a while A body temperature measurement method for measuring,
A heat quantity application process for applying a heat quantity to at least the temperature measuring unit;
After applying the amount of heat to the temperature measuring unit by the heat amount application process, the temperature is measured by the temperature measuring means, and the time change rate of the measured temperature obtained by the calculation unit is within a predetermined range for a predetermined number of times. A body temperature measuring method comprising: a body temperature measuring process in which, when confirmed, a measured value at that time is regarded as a body temperature of the body surface of the measurement subject.
前記温度測定手段によって温度を測定して前記演算部で測定温度の時間変化率を求め、当該測定温度の時間変化率から前記測温部温度調節手段によって前記測温部に印加する熱量を決定する熱量決定プロセスを具備することを特徴とする請求項1記載の体温測定方法。The temperature is measured by the temperature measuring means, the time change rate of the measured temperature is obtained by the computing unit, and the amount of heat applied to the temperature measuring portion is determined by the temperature measuring part temperature adjusting means from the time change rate of the measured temperature. The body temperature measuring method according to claim 1, further comprising a calorie determination process. 前記体温測定プロセスでの温度の時間変化率の所定の範囲は、−0.1℃/秒以上+0.01℃/秒以下であることを特徴とする請求項1記載の体温測定方法。2. The body temperature measuring method according to claim 1, wherein the predetermined range of the time change rate of the temperature in the body temperature measuring process is −0.1 ° C./second or more and + 0.01 ° C./second or less. 前記熱量印加プロセスによって前記測温部に熱量を印加した後に、前記温度測定手段によって温度を測定して前記演算部で測定温度の時間変化率を求め、当該測定温度の時間変化率の勾配を判定する温度時間変化率勾配判定プロセスを具備することを特徴とする請求項1又は請求項2記載の体温測定方法。After applying the amount of heat to the temperature measuring unit by the heat amount application process, the temperature is measured by the temperature measuring unit, the time change rate of the measured temperature is obtained by the calculation unit, and the gradient of the time change rate of the measured temperature is determined. The body temperature measurement method according to claim 1, further comprising a temperature time change rate gradient determination process. 前記熱量印加プロセスによって前記測温部に熱量を印加した後に、前記温度変化率勾配判定プロセスで判定される勾配が正の場合に、前記温度測定手段によって測定される温度が所定の温度以下であることを確認した後に、前記測温部温度調整手段によって前記測温部を所定時間再加熱することを特徴とする請求項1又は請求項2又は請求項4記載の体温測定方法。After the heat amount is applied to the temperature measuring unit by the heat amount application process, when the gradient determined by the temperature change rate gradient determination process is positive, the temperature measured by the temperature measuring unit is equal to or lower than a predetermined temperature. 5. The body temperature measuring method according to claim 1, wherein the temperature measuring unit is reheated for a predetermined time by the temperature measuring unit temperature adjusting means after confirming this. 前記測温部は、その内部に断熱材料を有し、当該断熱材料と前記測温部との間には前記温度測定手段と前記測温部温度調整手段とが配置され、当該温度計測手段と当該測温部温度調整手段とは永久磁石によって前記測温部に吸着していること特徴とする請求項1又は請求項2記載の体温測定方法。The temperature measuring unit has a heat insulating material therein, and the temperature measuring unit and the temperature measuring unit temperature adjusting unit are arranged between the heat insulating material and the temperature measuring unit, and the temperature measuring unit The body temperature measuring method according to claim 1 or 2, wherein the temperature measuring unit temperature adjusting means is adsorbed to the temperature measuring unit by a permanent magnet. 前記温度測定手段は、サーミスタ、熱電対、金属測温抵抗対、IC温度センサ、磁気温度センサの内から選ばれた一種であることを特徴とする請求項1乃至6の何れかに記載の体温測定方法。The body temperature according to any one of claims 1 to 6, wherein the temperature measuring means is a kind selected from a thermistor, a thermocouple, a metal resistance thermometer pair, an IC temperature sensor, and a magnetic temperature sensor. Measuring method. 前記測温部の正面形状は円形であるか、又は半楕円球形状、或いは角部を丸めた直方体形状であり、当該半楕円球形状或いは角部を丸めた直方体の長軸或いは最長辺方向は、前記被測定者の測定部位に前記測温部を当接させるために前記測温部を差し込む動作方向に対して直交することを特徴とする請求項1又は請求項6記載の体温度測定方法。The front surface shape of the temperature measuring unit is circular, or a semi-elliptical sphere shape, or a rectangular parallelepiped shape with rounded corners, and the major axis or the longest side direction of the semi-elliptical spherical shape or the rectangular solid with rounded corners is The body temperature measuring method according to claim 1, wherein the body temperature measuring method is orthogonal to an operation direction in which the temperature measuring unit is inserted to bring the temperature measuring unit into contact with the measurement site of the measurement subject. . 前記測温部温度調整手段は、発熱体であることを特徴とする請求項1又は請求項2又は請求項4又は請求項5記載の体温測定方法。6. The body temperature measuring method according to claim 1, wherein the temperature measuring unit temperature adjusting means is a heating element. 前記測温部温度調整手段は、自己制御型正温度係数特性を有する抵抗体を含む加熱自律制御手段であることを特徴とする請求項1又は請求項2又は請求項4又は請求項5記載の体温測定方法。The said temperature measurement part temperature adjustment means is a heating autonomous control means containing the resistor which has a self-control type | mold positive temperature coefficient characteristic, The claim 1 or Claim 2 or Claim 4 or Claim 5 characterized by the above-mentioned. Body temperature measurement method. 温度測定手段と、当該温度測定手段を内部に有し被測定者の体表面に押圧接触される測温部と、当該測温部に熱を印加して当該測温部の温度を調整する測温部温度調整手段と、前記温度測定手段で測定した温度の時間変化率を計算する演算部とを具備し、
前記測温部を前記被測定者の体表面に押圧接触させながら前記測温部の温度を前記測温部温度調整手段によって前記被測定者の体表面の温度より一旦高くし、温度順位が当該測温部の温度、前記被測定者の温度、環境温度となる状態に設定してから、前記被測定者をヒートシンクとして前記体表面の温度の時間変化率を測定するように構成して成ることを特徴とする体温測定器。
A temperature measuring unit, a temperature measuring unit having the temperature measuring unit therein and pressed against the body surface of the measurement subject, and a temperature measuring unit configured to adjust the temperature of the temperature measuring unit by applying heat to the temperature measuring unit. A temperature part temperature adjusting means, and a calculation part for calculating a time change rate of the temperature measured by the temperature measuring means,
While the temperature measuring unit is pressed against the body surface of the person to be measured, the temperature of the temperature measuring unit is once higher than the temperature of the body surface of the person to be measured by the temperature measuring unit temperature adjusting means, and the temperature ranking is The temperature measuring section, the temperature of the person to be measured, and the ambient temperature are set, and then the time change rate of the temperature of the body surface is measured using the person to be measured as a heat sink. Body temperature measuring instrument.
前記測温部は、その内部に断熱材料を有し、当該断熱材料と前記測温部との間には前記温度計測手段と前記測温部温度調整手段とが配置され、当該温度計測手段と当該測温部温度調整手段とは永久磁石によって前記測温部に吸着するように構成して成ること特徴とする請求項11記載の体温測定器。The temperature measuring unit includes a heat insulating material therein, and the temperature measuring unit and the temperature measuring unit temperature adjusting unit are disposed between the heat insulating material and the temperature measuring unit, and the temperature measuring unit 12. The body temperature measuring device according to claim 11, wherein the temperature measuring unit temperature adjusting means is configured to be attracted to the temperature measuring unit by a permanent magnet. 前記温度測定手段は、サーミスタ、熱電対、金属測温抵抗対、IC温度センサ、磁気温度センサの内から選ばれた一種を特徴とする請求項11又は請求項12記載の体温測定器。The body temperature measuring device according to claim 11 or 12, wherein the temperature measuring means is one selected from a thermistor, a thermocouple, a metal resistance temperature detector pair, an IC temperature sensor, and a magnetic temperature sensor. 前記測温部の正面形状は円形であるか、又は半楕円球形状、或いは角部を丸めた直方体形状であり、当該半楕円球形状或いは角部を丸めた直方体の長軸或いは最長辺方向は、前記被測定者の測定部位に前記測温部を当接させるために前記測温部を差し込む動作方向に対して直交するように構成して成ることを特徴とする請求項11乃至13の何れかに記載の体温測定器。The front surface shape of the temperature measuring unit is circular, or a semi-elliptical sphere shape, or a rectangular parallelepiped shape with rounded corners, and the major axis or the longest side direction of the semi-elliptical spherical shape or the rectangular solid with rounded corners is 14. The apparatus according to claim 11, wherein the temperature measuring unit is configured to be orthogonal to an operation direction in which the temperature measuring unit is inserted in order to bring the temperature measuring unit into contact with the measurement site of the measurement subject. The body temperature measuring instrument according to crab. 前記測温部温度調整手段は、発熱体であることを特徴とする請求項11乃至14の何れかに記載の体温測定器。15. The body temperature measuring device according to claim 11, wherein the temperature measuring unit temperature adjusting means is a heating element. 前記測温部温度調整手段は、自己制御型正温度係数特性を有する抵抗体を含む加熱自律制御手段を備えることを特徴とする請求項11乃至14の何れかに記載の体温測定器。15. The body temperature measuring device according to claim 11, wherein the temperature measuring unit temperature adjusting means includes heating autonomous control means including a resistor having a self-control type positive temperature coefficient characteristic. 一方の端部に前記測温部が配設された略円弧状の弾性体を有し、当該一方の端部に配設された前記測温部が被測定者の腋下に、他方の端部が被測定者の肩部に当接され、前記弾性体の形状快復力によってそれぞれの端部が前記被測定者に押圧されることで前記測温部が前記被測定者に対して固定されるように構成して成ることを特徴とする請求項11から16の何れかに記載の体温測定器。It has a substantially arc-shaped elastic body in which the temperature measuring unit is disposed at one end, and the temperature measuring unit disposed at the one end is under the subject's armpit and the other end The temperature measuring unit is fixed to the subject by pressing the respective end portions against the subject by the shape recovery force of the elastic body. The body temperature measuring device according to any one of claims 11 to 16, wherein the body temperature measuring device is configured as described above.
JP2005505751A 2003-04-22 2004-04-20 Thermometer Expired - Fee Related JP4699900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505751A JP4699900B2 (en) 2003-04-22 2004-04-20 Thermometer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003116594 2003-04-22
JP2003116594 2003-04-22
JP2003154711 2003-05-30
JP2003154711 2003-05-30
JP2005505751A JP4699900B2 (en) 2003-04-22 2004-04-20 Thermometer
PCT/JP2004/005673 WO2004094970A1 (en) 2003-04-22 2004-04-20 Method and device for measuring body temperature

Publications (2)

Publication Number Publication Date
JPWO2004094970A1 true JPWO2004094970A1 (en) 2006-07-13
JP4699900B2 JP4699900B2 (en) 2011-06-15

Family

ID=33312617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005505751A Expired - Fee Related JP4699900B2 (en) 2003-04-22 2004-04-20 Thermometer

Country Status (1)

Country Link
JP (1) JP4699900B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126012B2 (en) * 1977-12-22 1986-06-18 Omron Tateisi Electronics Co
JPS61296224A (en) * 1985-06-24 1986-12-27 Matsushita Electric Works Ltd Electronic clinical thermometer
JPS62148638A (en) * 1985-12-23 1987-07-02 松下電工株式会社 Electronic clinical thermometer
JPH10274566A (en) * 1997-03-31 1998-10-13 Terumo Corp Clinical thermometer device
JP2002202205A (en) * 2000-10-24 2002-07-19 Terumo Corp Deep part temperature measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126012B2 (en) * 1977-12-22 1986-06-18 Omron Tateisi Electronics Co
JPS61296224A (en) * 1985-06-24 1986-12-27 Matsushita Electric Works Ltd Electronic clinical thermometer
JPS62148638A (en) * 1985-12-23 1987-07-02 松下電工株式会社 Electronic clinical thermometer
JPH10274566A (en) * 1997-03-31 1998-10-13 Terumo Corp Clinical thermometer device
JP2002202205A (en) * 2000-10-24 2002-07-19 Terumo Corp Deep part temperature measuring device

Also Published As

Publication number Publication date
WO2004094970A2 (en) 2004-11-04
WO2004094970A3 (en) 2005-02-24
JP4699900B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP7005513B2 (en) Single heat flux sensor device
US9113774B2 (en) Electronic thermometer and body temperature measurement method
JP5509195B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
TWI278611B (en) Thermometer, electronic device having a thermometer, and method for measuring body temperature
TW424139B (en) Fast response digital thermometer
EP3595520A1 (en) Method, system and device for noninvasive core body temperature monitoring
JP2024102852A (en) DEVICES, SYSTEMS, AND METHODS FOR NON-INVASIVE THERMAL INTERROGATION
WO2017140525A1 (en) Heat-flow sensor and sensor arrangement
JP2010513911A (en) Apparatus and method for measuring core temperature
WO2008110949A1 (en) Methods and devices for measuring core body temperature
JP2006503307A (en) Body temperature probe calibration method
WO2018179779A1 (en) Skin simulation device, electronic device evaluation method, and electronic device evaluation system
JP2009236624A (en) Deep temperature measurement apparatus of living body
JP4798280B2 (en) Thermometer, electronic device having thermometer, and body temperature measuring method
JP4699900B2 (en) Thermometer
JP2016109518A (en) Temperature measurement device and temperature measurement method
Anuar et al. Non-invasive core body temperature sensor for continuous monitoring
CN1233750A (en) Electronic clinical thermometer for quick measuring
JP5854078B2 (en) Temperature measuring device
JP2008194253A (en) Toilet seat and body temperature measuring method
JP6957398B2 (en) Body temperature measuring device
JP7344312B2 (en) Sensor module for blood pressure measurement and wrist-worn portable blood pressure measurement device using the same
JP5780340B2 (en) Temperature measuring apparatus and temperature measuring method
JP5527160B2 (en) Temperature measuring device
WO2013080652A1 (en) Internal contact thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees