JPWO2004038350A1 - Light source unit, light receiving unit, and multi-channel photodetection device using them - Google Patents

Light source unit, light receiving unit, and multi-channel photodetection device using them Download PDF

Info

Publication number
JPWO2004038350A1
JPWO2004038350A1 JP2004546453A JP2004546453A JPWO2004038350A1 JP WO2004038350 A1 JPWO2004038350 A1 JP WO2004038350A1 JP 2004546453 A JP2004546453 A JP 2004546453A JP 2004546453 A JP2004546453 A JP 2004546453A JP WO2004038350 A1 JPWO2004038350 A1 JP WO2004038350A1
Authority
JP
Japan
Prior art keywords
light
light receiving
dichroic mirrors
emitting elements
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004546453A
Other languages
Japanese (ja)
Other versions
JP4665097B2 (en
Inventor
古里 紀明
紀明 古里
村上 淳
村上  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Publication of JPWO2004038350A1 publication Critical patent/JPWO2004038350A1/en
Application granted granted Critical
Publication of JP4665097B2 publication Critical patent/JP4665097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control

Abstract

反応容器1と、出射光の波長が異なる発光素子21a〜21d及び反射可能な光の波長の範囲が異なる出射用ダイクロイックミラー22a〜22dで構成した光源ユニット2と、受光素子31a〜31d及び反射可能な光の波長の範囲が異なる受光用ダイクロイックミラー32a〜32dで構成した受光ユニット3とを用いる。発光素子は出射方向が平行となるよう配置し、出射用ダイクロイックミラーは反射光が同一の光路を同一方向に通過するように配置する。受光素子は受光面が平行となるよう配置し、受光用ダイクロイックミラーは反応容器1からの放出光が波長に応じて反射されて受光素子に入射するよう配置する。Light source unit 2 composed of reaction vessel 1, light emitting elements 21a to 21d having different wavelengths of emitted light and emitting dichroic mirrors 22a to 22d having different wavelength ranges of light that can be reflected, light receiving elements 31a to 31d and reflective A light receiving unit 3 constituted by light receiving dichroic mirrors 32a to 32d having different light wavelength ranges is used. The light emitting elements are arranged so that the emission directions are parallel, and the emission dichroic mirror is arranged so that the reflected light passes through the same optical path in the same direction. The light receiving element is arranged so that the light receiving surfaces are parallel, and the light receiving dichroic mirror is arranged so that the light emitted from the reaction vessel 1 is reflected according to the wavelength and enters the light receiving element.

Description

本発明は、光源ユニット、受光ユニット及びこれらを用いたマルチチャンネル光検出装置に関し、例えば遺伝子診断に用いられるマルチチャンネル光検出装置に関する。  The present invention relates to a light source unit, a light receiving unit, and a multichannel photodetection device using these, and relates to a multichannel photodetection device used for genetic diagnosis, for example.

近年、遺伝子解析技術の進展により、遺伝子診断による疾患の原因究明や発症の予測が盛んに行われている。遺伝子診断では、PCR(Polymerase Chain Reaction)法に代表される種々の遺伝子増幅方法が利用され、ターゲットとなる遺伝子の検出が行われる。
遺伝子の検出には、例えば、特表2002−515602号公報(第23−40頁、第1図〜第9図参照)に開示されたマルチチャンネル光検出装置が用いられる。図5は、従来のマルチチャンネル光検出装置の構成を概略的に示す図である。図5に示すマルチチャンネル光検出装置は、蛍光色素と混合された試料に温度制御をかけて遺伝子を増幅し、その後、試料に光を照射し、これによって励起された蛍光を受光して分析を行う装置である。
図5に示すように、マルチチャンネル光検出装置は、主に、反応ユニット41と、光源ユニット42と、受光ユニット43とで構成されている。図5では、これら以外の構成部材については省略している。
反応ユニット41の内部には、反応試薬や蛍光色素等と混合された試料が添加されている。また、反応ユニット41には、上述した遺伝子増幅方法を実施するための温度制御システム(図示せず)が取り付けられている。
光源ユニット42は、出射する波長がそれぞれ異なるLED44a〜44dを備えている。このため、光源ユニット42は、試料に混合する蛍光色素に応じて、出射する光の波長を変えることができる。また、光源ユニット42は、特定の波長の光のみを透過させるフィルターセット47a〜47dと、集光用のレンズ46a〜46dとを備えている。
また、光源ユニット42は、各LED(44a〜44d)から出射した光が、レンズ49とハウジング45に設けられた出射窓50とを通過して反応ユニット41に入射するように、ダイクロイックミラー48a〜48eも備えている。更に、LED44a〜44d、フィルターセット47a〜47d、集光用のレンズ46a〜46d及びダイクロイックミラー48a〜48eは、各LED(44a〜44d)から出射した光のエネルギーが一定となるように、ハウジング45に配置されている。
受光ユニット43は、蛍光色素の種類によって励起される蛍光の波長が異なることから、四つの受光素子51a〜51dを備えている。また、受光ユニット43は、受光素子(51a〜51d)毎に、特定の波長の光のみを透過させるフィルターセット52a〜52dと、レンズ53a〜53dとを備えている。
更に、受光ユニット43は、ダイクロイックミラー54a〜54eを備えている。このため、反応ユニット41から出射され、且つ、ハウジング55に設けられた入射窓57とレンズ56とを通過した光は、波長に応じて幾つかのダイクロイックミラーを透過又は反射し、対応する受光素子(51a〜51d)に入射する。
このように、図5に示すマルチチャンネル光検出装置では、波長の異なる光を出射でき、又波長の異なる光を受光できるため、使用される蛍光色素に対応した波長を選択して、遺伝子の検出を行うことができる。
ところで、遺伝子診断においては、今後の遺伝子解析技術の進展によって更に診断項目が増加し、これによって試料に混合される蛍光色素が追加される場合がある。更に、今後の新たな蛍光色素の開発によって、遺伝子診断で使用できる蛍光色素が増加する場合もある。このような場合、マルチチャンネル光検出装置においては、新たに使用される蛍光色素に対応した波長の光を照射できることが求められる。
また、図5に示すマルチチャンネル光検出装置は、遺伝子の検出以外の蛍光色素を用いた蛍光測定にも用いられるが、この場合も新たに使用される蛍光色素に対応した波長の光を照射できることが求められる。
しかしながら、上記図5に示したマルチチャンネル光検出装置においては、光源ユニット42から照射される光のエネルギーを一定とできる利点はあるが、LED44a〜44d、フィルターセット47a〜47d、集光用のレンズ46a〜46d及びダイクロイックミラー48a〜48eは、複雑に配置されている。
このため、LEDを追加することが構造的に困難であると言え、使用される蛍光色素が新たに追加された場合に対応できないという問題がある。更に、このことは受光ユニット43についても言える。
また、上記図5に示したマルチチャンネル光検出装置では、構造上、光源ユニット42から光を出射するために必要なダイクロイックミラーの数は、波長の数よりも多くなってしまう。同様に、受光ユニット43に入射した光を各受光素子に導くために必要なダイクロイックミラーの数も、波長の数より多くなってしまう。このため、上記図5に示したマルチチャンネル光検出装置では、コストの低減を図るのが難しいという問題がある。
本発明の目的は、上記問題を解決し、発光素子の追加や取り外しが容易に行える光源ユニット、受光素子の追加や取り外しが容易に行える受光ユニット、及びこれらを用いたマルチチャンネル光検出装置を提供することにある。
In recent years, with the advancement of gene analysis technology, investigation of the cause of diseases and prediction of onset by gene diagnosis have been actively conducted. In gene diagnosis, various gene amplification methods represented by the PCR (Polymerase Chain Reaction) method are used to detect a target gene.
For the detection of genes, for example, a multi-channel photodetection device disclosed in JP-T-2002-515602 (see pages 23-40 and FIGS. 1 to 9) is used. FIG. 5 is a diagram schematically showing a configuration of a conventional multi-channel photodetection device. The multi-channel photodetection device shown in FIG. 5 performs temperature control on a sample mixed with a fluorescent dye to amplify a gene, and then irradiates the sample with light, receives the excited fluorescence and analyzes it. It is a device to perform.
As shown in FIG. 5, the multi-channel photodetector is mainly composed of a reaction unit 41, a light source unit 42, and a light receiving unit 43. In FIG. 5, constituent members other than these are omitted.
Inside the reaction unit 41, a sample mixed with a reaction reagent, a fluorescent dye, or the like is added. The reaction unit 41 is attached with a temperature control system (not shown) for carrying out the gene amplification method described above.
The light source unit 42 includes LEDs 44a to 44d that emit different wavelengths. For this reason, the light source unit 42 can change the wavelength of the emitted light according to the fluorescent dye mixed with the sample. The light source unit 42 includes filter sets 47a to 47d that transmit only light of a specific wavelength and condensing lenses 46a to 46d.
In addition, the light source unit 42 passes through the lens 49 and the emission window 50 provided in the housing 45 and enters the reaction unit 41 so that the light emitted from each LED (44a to 44d) enters the reaction unit 41. 48e is also provided. Further, the LEDs 44a to 44d, the filter sets 47a to 47d, the condensing lenses 46a to 46d, and the dichroic mirrors 48a to 48e are arranged so that the energy of the light emitted from the LEDs (44a to 44d) is constant. Is arranged.
The light receiving unit 43 includes four light receiving elements 51a to 51d because the wavelength of the excited fluorescence differs depending on the type of fluorescent dye. The light receiving unit 43 includes filter sets 52a to 52d that transmit only light of a specific wavelength and lenses 53a to 53d for each light receiving element (51a to 51d).
Further, the light receiving unit 43 includes dichroic mirrors 54a to 54e. For this reason, the light emitted from the reaction unit 41 and passed through the incident window 57 and the lens 56 provided in the housing 55 is transmitted or reflected through several dichroic mirrors according to the wavelength, and the corresponding light receiving element. Incident on (51a-51d).
As described above, the multi-channel photodetection device shown in FIG. 5 can emit light having different wavelengths and can receive light having different wavelengths. Therefore, a wavelength corresponding to the fluorescent dye to be used is selected to detect a gene. It can be performed.
By the way, in gene diagnosis, the number of diagnosis items further increases due to the advancement of gene analysis technology in the future, and in this case, a fluorescent dye mixed with the sample may be added. Furthermore, the development of new fluorescent dyes in the future may increase the number of fluorescent dyes that can be used in genetic diagnosis. In such a case, the multi-channel photodetector is required to be able to irradiate light having a wavelength corresponding to a newly used fluorescent dye.
The multi-channel photodetection device shown in FIG. 5 is also used for fluorescence measurement using a fluorescent dye other than gene detection. In this case as well, light having a wavelength corresponding to the newly used fluorescent dye can be irradiated. Is required.
However, the multi-channel photodetection device shown in FIG. 5 has an advantage that the energy of light emitted from the light source unit 42 can be constant, but the LEDs 44a to 44d, the filter sets 47a to 47d, and the condensing lens. 46a to 46d and the dichroic mirrors 48a to 48e are arranged in a complicated manner.
For this reason, it can be said that it is structurally difficult to add an LED, and there is a problem that it cannot cope with a case where a fluorescent dye to be used is newly added. This is also true for the light receiving unit 43.
Further, in the multi-channel photodetector shown in FIG. 5, the number of dichroic mirrors necessary for emitting light from the light source unit 42 is larger than the number of wavelengths. Similarly, the number of dichroic mirrors required to guide the light incident on the light receiving unit 43 to each light receiving element is larger than the number of wavelengths. For this reason, the multi-channel photodetector shown in FIG. 5 has a problem that it is difficult to reduce the cost.
An object of the present invention is to provide a light source unit that can easily add or remove light emitting elements, a light receiving unit that can easily add or remove light receiving elements, and a multi-channel photodetection device using them. There is to do.

上記目的を達成するために本発明にかかる光源ユニットは、波長の異なる複数の光を同一の光路で出射する光源ユニットであって、複数の発光素子と、反射可能な光の波長の範囲がそれぞれ異なる複数のダイクロイックミラーとを少なくとも有し、前記複数のダイクロイックミラーの数は前記複数の発光素子の数と同数であり、前記複数の発光素子は、各発光素子の出射方向が平行となるように配置されており、前記複数のダイクロイックミラーは、各ダイクロイックミラーが前記複数の発光素子から出射される出射光の一つを反射でき、各ダイクロイックミラーの反射光が同一の光路を同一方向に通過するように配置されていることを特徴とする。
上記本発明にかかる光源ユニットにおいては、前記複数の発光素子が出射する光の波長が、それぞれ異なっており、前記複数の発光素子が、前記出射する光の波長の順に、配置されているのが好ましい態様である。
また、上記目的を達成するために本発明にかかる受光ユニットは、同一の光路で入射される波長の異なる複数の入射光を受光する受光ユニットであって、複数の受光素子と、反射可能な光の波長の範囲がそれぞれ異なる複数のダイクロイックミラーとを少なくとも有し、前記複数のダイクロイックミラーの数は前記複数の受光素子の数と同数であり、前記複数の受光素子は、各受光素子の受光面が互いに平行となるように配置されており、前記複数のダイクロイックミラーは、前記入射光が、その波長に応じて、いずれか一つのダイクロイックミラーで反射されて前記複数の受光素子の一つに入射するように配置されていることを特徴とする。
更に、上記目的を達成するために本発明にかかるマルチチャンネル光検出装置は、反応容器と、波長の異なる複数の光を同一の光路で出射して前記反応容器に入射させる光源ユニットと、前記反応容器の内部から放出される光を受光する受光ユニットとを少なくとも有し、前記光源ユニットは、複数の発光素子と、反射可能な光の波長の範囲がそれぞれ異なる複数の出射用ダイクロイックミラーとを少なくとも有し、前記複数の出射用ダイクロイックミラーの数は前記複数の発光素子の数と同数であり、前記複数の発光素子は、各発光素子の出射方向が平行となるように配置され、前記複数の出射用ダイクロイックミラーは、各出射用ダイクロイックミラーが前記複数の発光素子から出射される光の一つを反射でき、各出射用ダイクロイックミラーの反射光が同一の光路を同一方向に通過するように配置されており、前記受光ユニットは、複数の受光素子と、反射可能な光の波長の範囲がそれぞれ異なる複数の受光用ダイクロイックミラーとを少なくとも有し、前記複数の受光用ダイクロイックミラーの数は前記複数の受光素子の数と同数であり、前記複数の受光素子は、各受光素子の受光面が互いに平行となるように配置され、前記複数の受光用ダイクロイックミラーは、前記反応容器の内部から放出される光が、その波長に応じて、いずれか一つの受光用ダイクロイックミラーで反射されて前記複数の受光素子の一つに入射するように配置されていることを特徴とする。
上記本発明にかかるマルチチャンネル光検出装置においては、前記複数の発光素子が出射する光の波長が、それぞれ異なっており、前記複数の発光素子が、前記出射する光の波長の順に、配置されているのが好ましい態様である。
更に、上記本発明にかかるマルチチャンネル光検出装置においては、前記反応容器の内部に、測定対象となる試料と蛍光色素とを少なくとも含む混合物を添加できる。この場合、前記反応容器の内部から放出される光は、前記光源ユニットから出射された光によって励起された前記蛍光色素の蛍光である。
In order to achieve the above object, a light source unit according to the present invention is a light source unit that emits a plurality of lights having different wavelengths through the same optical path, and each of the plurality of light-emitting elements and the range of wavelengths of light that can be reflected is provided. A plurality of different dichroic mirrors, wherein the number of the plurality of dichroic mirrors is the same as the number of the plurality of light emitting elements, and the plurality of light emitting elements are arranged such that the emission directions of the light emitting elements are parallel to each other. The plurality of dichroic mirrors are arranged such that each dichroic mirror can reflect one of the emitted light emitted from the plurality of light emitting elements, and the reflected light of each dichroic mirror passes through the same optical path in the same direction. It is arranged so that it may be arranged.
In the light source unit according to the present invention, the wavelengths of the light emitted from the plurality of light emitting elements are different from each other, and the plurality of light emitting elements are arranged in the order of the wavelengths of the emitted light. This is a preferred embodiment.
In order to achieve the above object, a light receiving unit according to the present invention is a light receiving unit that receives a plurality of incident lights having different wavelengths incident on the same optical path, and includes a plurality of light receiving elements and light that can be reflected. A plurality of dichroic mirrors having different wavelength ranges, and the number of the plurality of dichroic mirrors is the same as the number of the plurality of light receiving elements, and the plurality of light receiving elements are light receiving surfaces of the light receiving elements. Are arranged so as to be parallel to each other, and the plurality of dichroic mirrors are configured such that the incident light is reflected by one of the dichroic mirrors and incident on one of the plurality of light receiving elements according to the wavelength thereof. It arrange | positions so that it may do.
Furthermore, in order to achieve the above object, a multi-channel photodetector according to the present invention includes a reaction vessel, a light source unit that emits a plurality of lights having different wavelengths through the same optical path, and enters the reaction vessel, and the reaction A light receiving unit that receives light emitted from the inside of the container, and the light source unit includes at least a plurality of light emitting elements and a plurality of emission dichroic mirrors each having a different wavelength range of light that can be reflected. And the number of the plurality of emission dichroic mirrors is the same as the number of the plurality of light emitting elements, and the plurality of light emitting elements are arranged so that emission directions of the respective light emitting elements are parallel to each other, The outgoing dichroic mirror is configured such that each outgoing dichroic mirror can reflect one of the light emitted from the plurality of light emitting elements, and each outgoing dichroic mirror The light receiving unit includes a plurality of light receiving elements and a plurality of light receiving dichroic mirrors having different wavelength ranges of light that can be reflected, respectively. The number of the plurality of light receiving dichroic mirrors is the same as the number of the plurality of light receiving elements, and the plurality of light receiving elements are arranged so that the light receiving surfaces of the light receiving elements are parallel to each other, In the plurality of light receiving dichroic mirrors, light emitted from the inside of the reaction vessel is reflected by one of the light receiving dichroic mirrors and incident on one of the plurality of light receiving elements according to the wavelength. It is arranged so that it may be arranged.
In the multichannel photodetector according to the present invention, the wavelengths of the light emitted from the plurality of light emitting elements are different from each other, and the plurality of light emitting elements are arranged in the order of the wavelengths of the emitted light. It is a preferred embodiment.
Furthermore, in the multichannel photodetection device according to the present invention, a mixture containing at least a sample to be measured and a fluorescent dye can be added to the inside of the reaction container. In this case, the light emitted from the inside of the reaction vessel is the fluorescence of the fluorescent dye excited by the light emitted from the light source unit.

図1は、本発明にかかる光源ユニット、受光ユニット及びマルチチャンネル光検出装置の一例の外観を概略的に示す斜視図である。
図2は、図1に示す光源ユニット、受光ユニット及びマルチチャンネル光検出装置の内部構成を概略的に示す斜視図である。
図3は、図2に示す光源ユニットの内部構成を示す側面図である。
図4は、図2に示す受光ユニットの内部構成を示す側面図である。
図5は、従来のマルチチャンネル光検出装置の構成を概略的に示す図である。
FIG. 1 is a perspective view schematically showing an appearance of an example of a light source unit, a light receiving unit, and a multi-channel photodetector according to the present invention.
FIG. 2 is a perspective view schematically showing an internal configuration of the light source unit, the light receiving unit, and the multi-channel photodetector shown in FIG.
FIG. 3 is a side view showing an internal configuration of the light source unit shown in FIG.
4 is a side view showing an internal configuration of the light receiving unit shown in FIG.
FIG. 5 is a diagram schematically showing a configuration of a conventional multi-channel photodetection device.

(実施の形態1)
以下、本発明にかかる光源ユニット、受光ユニット及びマルチチャンネル光検出装置の一例について、図1〜図4に基づいて説明する。図1は、本発明にかかる光源ユニット、受光ユニット及びマルチチャンネル光検出装置の一例の外観を概略的に示す斜視図である。
図1の例に示すように、マルチチャンネル光検出装置は、反応容器1と、光源ユニット2と、受光ユニット3とを少なくとも有している。図1の例に示すマルチチャンネル光検出装置は、遺伝子診断に用いられる装置であり、後述するように、遺伝子増幅方法が適用された試料に光を照射でき、この照射した光によって励起された蛍光を受光することができる。なお、図1では、マルチチャンネル光検出装置を構成するこれら以外の構成要素については省略している。また、図1の例に示すマルチチャンネル光検出装置は、遺伝子診断以外の蛍光色素を用いる蛍光測定にも用いられる。
以下に、図1に示すマルチチャンネル光検出装置を構成する反応容器1、光源ユニット2及び受光ユニット3の構成について説明する。図2は、図1に示す光源ユニット、受光ユニット及びマルチチャンネル光検出装置の内部構成を概略的に示す斜視図である。図3は、図2に示す光源ユニットの内部構成を示す側面図である。図4は、図2に示す受光ユニットの内部構成を示す側面図である。
先ず反応容器1について説明する。図2の例に示すように、反応容器1は、透明容器12と、透明容器12を収納する収納ケース11とで構成されている。図2の例では、透明容器12は円柱状に形成されており、断面形状が円形の部分を有している。透明容器12には、遺伝子診断の対象となる試料、試薬及び蛍光色素等を含む混合物13が添加されている。
また、図示していないが、収納ケース11には、例えばPCR法に代表される遺伝子増幅方法を実施するためのヒータ等の加熱手段が設けられている。このため、遺伝子増幅方法を実施して遺伝子が増幅した場合は、光源ユニット2から反応容器1へ光を出射することにより、蛍光色素が励起され、反応容器1の内部から光が放出される。受光ユニット3では、この放出された光が受光される。
更に、収納ケース11(反応容器1)には、光源ユニット2から出射された光を透明容器12の内部に入射させるための入射窓14と、透明容器12の内部から放出される光を外部に出射するための出射窓15とが設けられている。なお、入射窓14及び出射窓15の位置は特に限定されるものではなく、収納ケース11の上面、下面及び側面のいずれであっても良い。
但し、透明容器12が、断面形状が円形の部分を有している場合は、図2に示すように、入射窓14及び出射窓15は、断面形状が円形の部分と対向する位置(側面)に設けるのが好ましいといえる。これは断面形状が円形の部分では内面で光の反射が繰り返されるため、このような態様とすることにより、エネルギーの大きい光を受光ユニット3へと導くことができるからである。
また、透明容器12の形状は、特に限定されるものではないが、図2に示すように側面から光を入射させ、側面から光を取り出すのであれば、上述のように、断面形状が円形の部分を有する形状、例えば円柱状であるのが好ましい。更に、本発明においては、反応容器1の構成は特に限定されるものではない。例えば、透明容器12の表面における入射窓14及び出射窓15となる領域以外の領域に遮光膜を設けた態様としても良い。
次に、光源ユニット2について説明する。図2及び図3の例に示すように、光源ユニット2は、発光素子21a〜21dと、これと同数の出射用ダイクロイックミラー22a〜22dとを少なくとも有している。
図2及び図3の例では、発光素子21a〜21dは、出射する光の波長がそれぞれ異なっており、出射する光の波長の順に、各発光素子の出射方向が平行となるように配置されている。具体的には、発光素子21a、21b、21c、21dの順で出射する光の波長が大きくなっている。
また、図2及び図3の例では、出射用ダイクロイックミラー22a〜22dは、特定波長以下の波長の光だけを反射する(ハイパス)特性を備えており、反射可能な光の波長の範囲がそれぞれ異なっている。出射用ダイクロイックミラー22a、22b、22c、22dの順で、反射可能な光の最大波長が大きくなっている。
更に、出射用ダイクロイックミラー22a〜22dは、各出射用ダイクロイックミラーが複数の発光素子から出射される光の一つを反射でき、各出射用ダイクロイックミラーの反射光が同一の光路26を同一方向に通過するように配置されている。図2及び図3の例では、出射用ダイクロイックミラー22a〜22dは、並列に配置された発光素子21a〜21dの並びに沿って、反射面が互いに平行な状態で配列されている。
図2及び図3において、23a〜23dは、発光素子21a〜21dから出射された光を集光するためのレンズである。24は出射用ダイクロイックミラー22a〜22dで反射された光を集光するためのレンズである。25は、出射用ダイクロイックミラー22a〜22dで反射された光を反応容器1の出射窓15に導くための全反射ミラーである。
このような構成により、光源ユニット2は、波長の異なる複数の光を同一の光路で出射して反応容器1に入射させることができる。また、光源ユニット2によれば、従来のマルチチャンネル光検出装置で用いられる光源ユニットに比べて、発光素子やダイクロイックミラーの配置を単純とできる。このため、図3に示すように、使用する蛍光色素に合わせて発光素子の追加や取り外しを容易に行うことができる。更に、発光素子の数と出射用ダイクロイックミラーの数とを同一とできるため、従来に比べてコストの低減を図ることができる。
更に、図2及び図3に示す例では、出射する光の波長が短い発光素子ほど反応容器1の近くに配置されており、出射光の光路長は波長が短い光ほど短くなっている。このため、光源ユニット2を用いれば、波長の大きさに拘わらず、反応容器1に入射する光のエネルギーを略一定とできる。
本発明にかかる光源ユニットにおいて、発光素子の数は上記に示した例に限定されるものではない。発光素子の数は、遺伝子診断で使用される蛍光色素に応じて決定すれば良い。例えば、遺伝子診断で使用される蛍光色素が5種類であり、各蛍光色素の励起ピーク波長が異なっている場合は、発光素子の数は5つである。また、遺伝子診断で使用される蛍光色素が5種類でも、これらが同時に使用されず、又同じ励起ピーク波長のものがある場合は、発光素子の数は5つ以下であっても良い。なお、出射用ダイクロイックミラーは、発光素子の数と同数である。
また、本発明にかかる光源ユニットにおいては、発光素子から出射される光の波長は、蛍光測定で用いられる一般的な蛍光色素の励起ピーク波長に応じて決定される。このため、必要とされる波長に応じて、発光素子が選択される。例えば、下記の表1に記載の蛍光色素が遺伝子診断において用いられる場合は、発光素子21a〜21dとして下記の表2に記載の波長の光を出射する発光ダイオードや半導体レーザが用いられる。
なお、本発明においては、発光素子は上記の発光ダイオードや半導体レーザに限定されるものではない。これら以外の発光素子、例えばキセノンランプやハロゲンランプ等であっても良い。また、各発光素子が出射する光の波長はそれぞれ同一であっても良い。

Figure 2004038350
Figure 2004038350
上記表2に示す波長の光を出射する発光素子が用いられる場合は、図2及び図3に示す出射用ダイクロイックミラー22a〜22dとしては、下記の表3に示す範囲の波長の光を反射するダイクロイックミラーが用いられる。
Figure 2004038350
また、本発明にかかる光源ユニットは、出射光の光量をモニターするための光量モニターを備えた態様としても良い。この場合、光量モニターによるモニター結果から、発光素子の劣化や、周囲の温度変化による発光素子への影響を監視することができるので、遺伝子診断の精度を高めることができる。なお、光量モニターの取り付け位置は、図2及び図3の例では、出射用ダイクロイックミラー22aと反応容器1との間の光路中であれば良く、特に限定されない。
次に、本発明にかかる受光ユニット3について説明する。図2及び図4の例に示すように、本発明にかかる受光ユニット3は、受光素子31a〜31dと、これと同数の受光用ダイクロイックミラー32a〜32dとを少なくとも有している。受光素子31a〜31dは、各受光素子の受光面が平行となるように配置されている。
受光用ダイクロイックミラー32a〜32dは、出射用ダイクロイックミラー22a〜22dと異なり、特定波長以上の波長の光だけを反射する(ローパス)特性を備えており、反射可能な光の波長の範囲がそれぞれ異なっている。図2及び図4の例では、受光用ダイクロイックミラー32a、32b、32c、32dの順で、反射可能な光の最小波長が小さくなっている。
また、受光用ダイクロイックミラー32a〜32dは、反応容器1の内部から放出される光が、その波長に応じて、いずれか一つの受光用ダイクロイックミラーで反射されて受光素子31a〜31dの一つに入射するように配置されている。図2及び図4の例では、受光用ダイクロイックミラー32a〜32dは、並列に配置された受光素子31a〜31dの並びに沿って、反射面が互いに平行な状態で配列されている
図2及び図4において、33a〜33dは、受光用ダイクロイックミラー32a〜32dで反射された光を集光するためのレンズである。34は反応容器1の内部から出射窓15を介して放出された光を集光するためのレンズである。35は、反応容器内部から放出された光を受光ユニットに導くための全反射ミラーである。
このような構成により、本発明にかかる受光ユニット3は、同一の光路で入射される波長の異なる複数の入射光を受光することができる。また、本発明にかかる受光ユニット3によれば、従来のマルチチャンネル光検出装置で用いられる受光ユニットに比べて、受光素子やダイクロイックミラーの配置を単純とできる。このため、図4に示すように、使用する蛍光色素に合わせて受光素子の追加や取り外しを容易に行うことができる。更に、受光素子の数と受光用ダイクロイックミラーの数とを同一とできるため、従来に比べてコストの低減を図ることができる。
更に、図2及び図4に示す例では、反射可能な光の最小波長が大きい受光用ダイクロイックミラーほど、反応容器1の近くに配置されており、入射光の光路長は波長が短い光ほど長くなっている。
本発明にかかる受光ユニットにおいて、受光素子及び受光用ダイクロイックミラーの数は上記に示した例に限定されるものではない。受光素子及び受光用ダイクロイックミラーの数も、発光素子の数と同様に、蛍光測定で使用される一般的な蛍光色素に応じて決定すれば良い。
また、本発明にかかる受光ユニットにおいて、受光用ダイクロイックミラーが反射可能な光の波長の範囲は、遺伝子診断で使用される蛍光色素に応じて設定される。例えば、上記の表1に記載の蛍光色素が遺伝子診断において用いられる場合は、図2及び図4に示す受光用ダイクロイックミラー32a〜32dとしては、下記の表4に示す範囲の波長の光を反射するダイクロイックミラーが用いられる。
Figure 2004038350
また、本発明にかかる受光ユニットも、光源ユニットと同様に、入射光の光量をモニターするための光量モニターを備えた態様としても良い。この場合、光量モニターによるモニター結果から、反応容器における異常(例えば反応容器内部への異物の混入等)を監視することができるので、遺伝子診断の精度を高めることができる。なお、光量モニターの取り付け位置は、図2及び図4の例では、受光用ダイクロイックミラー32aと反応容器1との間の光路中であれば良く、特に限定されない。
このように、本発明にかかるマルチチャンネル光検出装置によれば、従来のマルチチャンネル光検出装置と同等の性能を確保しつつ、これよりも光源ユニット及び受光ユニットの内部構造を簡単なものとできる。このため、使用する蛍光色素が増加する場合に対しても簡単に対応することができる。
なお、上記の例においては、本発明にかかる光源ユニット、受光ユニット及びマルチチャンネル光検出装置を遺伝子診断で用いる場合について説明しているが、本発明はこの例に限定されるものではない。例えば、本発明にかかる光源ユニット、受光ユニット及びマルチチャンネル光検出装置は、免疫測定や従来からの吸光度測定にも適用することができる。(Embodiment 1)
Hereinafter, an example of a light source unit, a light receiving unit, and a multi-channel photodetector according to the present invention will be described with reference to FIGS. FIG. 1 is a perspective view schematically showing an appearance of an example of a light source unit, a light receiving unit, and a multi-channel photodetector according to the present invention.
As shown in the example of FIG. 1, the multi-channel photodetector has at least a reaction vessel 1, a light source unit 2, and a light receiving unit 3. The multi-channel photodetection device shown in the example of FIG. 1 is a device used for genetic diagnosis. As will be described later, a sample to which a gene amplification method is applied can be irradiated with light, and fluorescence excited by this irradiated light. Can be received. In FIG. 1, the other components constituting the multichannel photodetection device are omitted. In addition, the multi-channel photodetector shown in the example of FIG. 1 is also used for fluorescence measurement using a fluorescent dye other than gene diagnosis.
Below, the structure of the reaction container 1, the light source unit 2, and the light-receiving unit 3 which comprises the multichannel photon detection apparatus shown in FIG. 1 is demonstrated. FIG. 2 is a perspective view schematically showing an internal configuration of the light source unit, the light receiving unit, and the multi-channel photodetector shown in FIG. FIG. 3 is a side view showing an internal configuration of the light source unit shown in FIG. 4 is a side view showing an internal configuration of the light receiving unit shown in FIG.
First, the reaction vessel 1 will be described. As shown in the example of FIG. 2, the reaction container 1 includes a transparent container 12 and a storage case 11 that stores the transparent container 12. In the example of FIG. 2, the transparent container 12 is formed in a columnar shape, and has a circular section. The transparent container 12 is added with a mixture 13 containing a sample, a reagent, a fluorescent dye, and the like to be subjected to genetic diagnosis.
Although not shown, the storage case 11 is provided with heating means such as a heater for carrying out a gene amplification method typified by the PCR method, for example. For this reason, when a gene is amplified by performing the gene amplification method, the fluorescent dye is excited by emitting light from the light source unit 2 to the reaction vessel 1, and light is emitted from the inside of the reaction vessel 1. In the light receiving unit 3, the emitted light is received.
Further, the storage case 11 (reaction vessel 1) has an incident window 14 for allowing the light emitted from the light source unit 2 to enter the inside of the transparent vessel 12, and the light emitted from the inside of the transparent vessel 12 to the outside. An exit window 15 for exiting is provided. The positions of the entrance window 14 and the exit window 15 are not particularly limited, and may be any of the upper surface, the lower surface, and the side surface of the storage case 11.
However, when the transparent container 12 has a portion with a circular cross-sectional shape, as shown in FIG. 2, the entrance window 14 and the exit window 15 are opposed to the portion with a circular cross-sectional shape (side surface). It can be said that it is preferable to provide it. This is because light is repeatedly reflected on the inner surface in the circular cross-sectional portion, so that light having a large energy can be guided to the light receiving unit 3 by adopting such a mode.
Further, the shape of the transparent container 12 is not particularly limited. However, as shown in FIG. 2, if the light is incident from the side surface and the light is extracted from the side surface, the cross-sectional shape is circular as described above. A shape having a part, for example, a columnar shape is preferable. Furthermore, in the present invention, the configuration of the reaction vessel 1 is not particularly limited. For example, it is good also as an aspect which provided the light shielding film in area | regions other than the area | region used as the entrance window 14 and the exit window 15 in the surface of the transparent container 12. FIG.
Next, the light source unit 2 will be described. 2 and 3, the light source unit 2 includes at least light emitting elements 21a to 21d and the same number of outgoing dichroic mirrors 22a to 22d.
In the example of FIGS. 2 and 3, the light emitting elements 21 a to 21 d have different wavelengths of emitted light, and are arranged so that the emission directions of the respective light emitting elements are parallel to each other in the order of the wavelengths of the emitted light. Yes. Specifically, the wavelength of light emitted in the order of the light emitting elements 21a, 21b, 21c, and 21d is increased.
In the example of FIGS. 2 and 3, the outgoing dichroic mirrors 22a to 22d have a characteristic of reflecting only light having a wavelength equal to or less than a specific wavelength (high pass), and the range of wavelengths of light that can be reflected is respectively Is different. The maximum wavelength of light that can be reflected increases in the order of the outgoing dichroic mirrors 22a, 22b, 22c, and 22d.
Further, the outgoing dichroic mirrors 22a to 22d can reflect one of the light emitted from the plurality of light emitting elements by the outgoing dichroic mirrors, and the reflected light of the outgoing dichroic mirrors passes through the same optical path 26 in the same direction. It is arranged to pass. In the example of FIGS. 2 and 3, the outgoing dichroic mirrors 22a to 22d are arranged in parallel with each other along the light emitting elements 21a to 21d arranged in parallel.
2 and 3, reference numerals 23a to 23d denote lenses for collecting the light emitted from the light emitting elements 21a to 21d. Reference numeral 24 denotes a lens for collecting the light reflected by the outgoing dichroic mirrors 22a to 22d. Reference numeral 25 denotes a total reflection mirror for guiding the light reflected by the emission dichroic mirrors 22 a to 22 d to the emission window 15 of the reaction vessel 1.
With such a configuration, the light source unit 2 can emit a plurality of lights having different wavelengths through the same optical path and enter the reaction container 1. Further, according to the light source unit 2, the arrangement of the light emitting elements and the dichroic mirrors can be simplified as compared with the light source unit used in the conventional multi-channel photodetector. For this reason, as shown in FIG. 3, a light emitting element can be easily added or removed in accordance with the fluorescent dye to be used. Furthermore, since the number of light emitting elements and the number of outgoing dichroic mirrors can be made the same, the cost can be reduced as compared with the conventional case.
Further, in the example shown in FIGS. 2 and 3, the light emitting element having a shorter wavelength of the emitted light is arranged closer to the reaction vessel 1, and the light path length of the emitted light is shorter as the light has a shorter wavelength. For this reason, if the light source unit 2 is used, the energy of light incident on the reaction vessel 1 can be made substantially constant regardless of the size of the wavelength.
In the light source unit according to the present invention, the number of light emitting elements is not limited to the above-described example. The number of light emitting elements may be determined according to the fluorescent dye used in gene diagnosis. For example, when there are five types of fluorescent dyes used in genetic diagnosis and the excitation peak wavelengths of the fluorescent dyes are different, the number of light emitting elements is five. Further, even if five types of fluorescent dyes are used in genetic diagnosis, these may not be used at the same time, and if there are those having the same excitation peak wavelength, the number of light emitting elements may be five or less. Note that the number of outgoing dichroic mirrors is the same as the number of light emitting elements.
In the light source unit according to the present invention, the wavelength of the light emitted from the light emitting element is determined according to the excitation peak wavelength of a general fluorescent dye used in fluorescence measurement. For this reason, a light emitting element is selected according to the required wavelength. For example, when the fluorescent dyes shown in Table 1 below are used in genetic diagnosis, light emitting diodes or semiconductor lasers that emit light having the wavelengths shown in Table 2 below are used as the light emitting elements 21a to 21d.
In the present invention, the light emitting element is not limited to the above light emitting diode or semiconductor laser. Other light emitting elements such as a xenon lamp and a halogen lamp may be used. Moreover, the wavelength of the light which each light emitting element radiate | emits may each be the same.
Figure 2004038350
Figure 2004038350
When a light emitting element that emits light having the wavelength shown in Table 2 is used, the dichroic mirrors 22a to 22d for emission shown in FIGS. 2 and 3 reflect light having a wavelength in the range shown in Table 3 below. A dichroic mirror is used.
Figure 2004038350
The light source unit according to the present invention may be provided with a light amount monitor for monitoring the amount of emitted light. In this case, since the deterioration of the light emitting element and the influence on the light emitting element due to the ambient temperature change can be monitored from the monitoring result by the light quantity monitor, the accuracy of the genetic diagnosis can be improved. In the example of FIGS. 2 and 3, the attachment position of the light quantity monitor is not particularly limited as long as it is in the optical path between the emission dichroic mirror 22a and the reaction vessel 1.
Next, the light receiving unit 3 according to the present invention will be described. 2 and 4, the light receiving unit 3 according to the present invention includes at least light receiving elements 31a to 31d and the same number of light receiving dichroic mirrors 32a to 32d. The light receiving elements 31a to 31d are arranged so that the light receiving surfaces of the respective light receiving elements are parallel to each other.
The light-receiving dichroic mirrors 32a to 32d are different from the light-emitting dichroic mirrors 22a to 22d in that they reflect only light having a wavelength equal to or greater than a specific wavelength (low pass), and the range of wavelengths of light that can be reflected is different. ing. In the example of FIGS. 2 and 4, the minimum wavelength of light that can be reflected decreases in the order of the light receiving dichroic mirrors 32a, 32b, 32c, and 32d.
The light receiving dichroic mirrors 32a to 32d are configured such that light emitted from the inside of the reaction vessel 1 is reflected by any one of the light receiving dichroic mirrors according to the wavelength and is reflected to one of the light receiving elements 31a to 31d. It arrange | positions so that it may inject. 2 and 4, the light receiving dichroic mirrors 32a to 32d are arranged in parallel with each other along the light receiving elements 31a to 31d arranged in parallel. , 33a to 33d are lenses for collecting the light reflected by the light receiving dichroic mirrors 32a to 32d. Reference numeral 34 denotes a lens for collecting the light emitted from the inside of the reaction vessel 1 through the emission window 15. 35 is a total reflection mirror for guiding the light emitted from the inside of the reaction vessel to the light receiving unit.
With such a configuration, the light receiving unit 3 according to the present invention can receive a plurality of incident lights having different wavelengths incident on the same optical path. Further, according to the light receiving unit 3 according to the present invention, the arrangement of the light receiving elements and the dichroic mirrors can be simplified as compared with the light receiving unit used in the conventional multi-channel photodetector. For this reason, as shown in FIG. 4, it is possible to easily add or remove the light receiving element in accordance with the fluorescent dye to be used. Furthermore, since the number of light receiving elements and the number of light receiving dichroic mirrors can be made the same, the cost can be reduced as compared with the conventional case.
Further, in the example shown in FIGS. 2 and 4, the light receiving dichroic mirror having a larger minimum wavelength of light that can be reflected is arranged closer to the reaction vessel 1, and the light path length of incident light is longer as the wavelength is shorter. It has become.
In the light receiving unit according to the present invention, the number of light receiving elements and light receiving dichroic mirrors is not limited to the example described above. Similar to the number of light emitting elements, the number of light receiving elements and light receiving dichroic mirrors may be determined according to a general fluorescent dye used in fluorescence measurement.
In the light receiving unit according to the present invention, the wavelength range of light that can be reflected by the light receiving dichroic mirror is set according to the fluorescent dye used in the genetic diagnosis. For example, when the fluorescent dyes shown in Table 1 are used in genetic diagnosis, the light receiving dichroic mirrors 32a to 32d shown in FIGS. 2 and 4 reflect light having a wavelength in the range shown in Table 4 below. A dichroic mirror is used.
Figure 2004038350
Further, the light receiving unit according to the present invention may be provided with a light amount monitor for monitoring the amount of incident light, similarly to the light source unit. In this case, an abnormality in the reaction container (for example, contamination of a foreign substance into the reaction container) can be monitored from the monitoring result by the light quantity monitor, so that the accuracy of genetic diagnosis can be improved. In the example of FIGS. 2 and 4, the light intensity monitor is not particularly limited as long as it is in the optical path between the light receiving dichroic mirror 32 a and the reaction container 1.
As described above, according to the multichannel photodetection device of the present invention, the internal structure of the light source unit and the light receiving unit can be simplified while ensuring the same performance as the conventional multichannel photodetection device. . For this reason, it is possible to easily cope with the case where the fluorescent dye used increases.
In the above example, the case where the light source unit, the light receiving unit, and the multichannel photodetection device according to the present invention are used for genetic diagnosis has been described. However, the present invention is not limited to this example. For example, the light source unit, the light receiving unit, and the multichannel photodetector according to the present invention can be applied to immunoassays and conventional absorbance measurements.

以上のように本発明にかかる光源ユニットによれば、発光素子の追加や取り外しを容易に行なうことができ、又本発明にかかる受光ユニットによれば、受光素子の追加や取り外しを容易に行なうことができる。このため、本発明にかかるマルチチャンネル光検出装置を用いれば、遺伝子解析技術の進展によって診断項目が増加した場合や、新たな蛍光色素が開発された場合に対応できる。また、部品点数を従来よりも少なくすることができるため、コストの低減を図ることもできる。  As described above, according to the light source unit of the present invention, it is possible to easily add or remove light emitting elements, and according to the light receiving unit of the present invention, it is possible to easily add or remove light receiving elements. Can do. For this reason, if the multichannel optical detection apparatus concerning this invention is used, it can respond to the case where a diagnostic item increases by progress of a gene analysis technique, or the case where a new fluorescent dye is developed. In addition, since the number of parts can be reduced as compared with the prior art, the cost can be reduced.

Claims (6)

波長の異なる複数の光を同一の光路で出射する光源ユニットであって、複数の発光素子と、反射可能な光の波長の範囲がそれぞれ異なる複数のダイクロイックミラーとを少なくとも有し、
前記複数のダイクロイックミラーの数は前記複数の発光素子の数と同数であり、
前記複数の発光素子は、各発光素子の出射方向が平行となるように配置されており、
前記複数のダイクロイックミラーは、各ダイクロイックミラーが前記複数の発光素子から出射される出射光の一つを反射でき、各ダイクロイックミラーの反射光が同一の光路を同一方向に通過するように配置されている光源ユニット。
A light source unit that emits a plurality of light beams having different wavelengths in the same optical path, and includes at least a plurality of light emitting elements and a plurality of dichroic mirrors having different wavelength ranges of light that can be reflected;
The number of the plurality of dichroic mirrors is the same as the number of the plurality of light emitting elements,
The plurality of light emitting elements are arranged so that the emission directions of the respective light emitting elements are parallel,
The plurality of dichroic mirrors are arranged such that each dichroic mirror can reflect one of the emitted light emitted from the plurality of light emitting elements, and the reflected light of each dichroic mirror passes through the same optical path in the same direction. Light source unit.
前記複数の発光素子が出射する光の波長が、それぞれ異なっており、前記複数の発光素子が、前記出射する光の波長の順に、配置されている請求の範囲1記載の光源ユニット。The light source unit according to claim 1, wherein wavelengths of light emitted by the plurality of light emitting elements are different from each other, and the plurality of light emitting elements are arranged in order of the wavelengths of the emitted light. 同一の光路で入射される波長の異なる複数の入射光を受光する受光ユニットであって、複数の受光素子と、反射可能な光の波長の範囲がそれぞれ異なる複数のダイクロイックミラーとを少なくとも有し、
前記複数のダイクロイックミラーの数は前記複数の受光素子の数と同数であり、
前記複数の受光素子は、各受光素子の受光面が互いに平行となるように配置されており、
前記複数のダイクロイックミラーは、前記入射光が、その波長に応じて、いずれか一つのダイクロイックミラーで反射されて前記複数の受光素子の一つに入射するように配置されている受光ユニット。
A light receiving unit that receives a plurality of incident light beams having different wavelengths incident on the same optical path, and includes at least a plurality of light receiving elements and a plurality of dichroic mirrors having different wavelength ranges of light that can be reflected;
The number of the plurality of dichroic mirrors is the same as the number of the plurality of light receiving elements,
The plurality of light receiving elements are arranged such that the light receiving surfaces of the respective light receiving elements are parallel to each other,
The plurality of dichroic mirrors are arranged so that the incident light is reflected by any one dichroic mirror and incident on one of the plurality of light receiving elements according to the wavelength.
反応容器と、波長の異なる複数の光を同一の光路で出射して前記反応容器に入射させる光源ユニットと、前記反応容器の内部から放出される光を受光する受光ユニットとを少なくとも有し、
前記光源ユニットは、複数の発光素子と、反射可能な光の波長の範囲がそれぞれ異なる複数の出射用ダイクロイックミラーとを少なくとも有し、前記複数の出射用ダイクロイックミラーの数は前記複数の発光素子の数と同数であり、前記複数の発光素子は、各発光素子の出射方向が平行となるように配置され、前記複数の出射用ダイクロイックミラーは、各出射用ダイクロイックミラーが前記複数の発光素子から出射される光の一つを反射でき、各出射用ダイクロイックミラーの反射光が同一の光路を同一方向に通過するように配置されており、
前記受光ユニットは、複数の受光素子と、反射可能な光の波長の範囲がそれぞれ異なる複数の受光用ダイクロイックミラーとを少なくとも有し、前記複数の受光用ダイクロイックミラーの数は前記複数の受光素子の数と同数であり、前記複数の受光素子は、各受光素子の受光面が互いに平行となるように配置され、前記複数の受光用ダイクロイックミラーは、前記反応容器の内部から放出される光が、その波長に応じて、いずれか一つの受光用ダイクロイックミラーで反射されて前記複数の受光素子の一つに入射するように配置されているマルチチャンネル光検出装置。
A reaction vessel, a light source unit that emits a plurality of lights having different wavelengths through the same optical path and enters the reaction vessel, and at least a light receiving unit that receives light emitted from the reaction vessel;
The light source unit includes at least a plurality of light emitting elements and a plurality of outgoing dichroic mirrors having different wavelength ranges of light that can be reflected, and the number of the plurality of outgoing dichroic mirrors is the number of the plurality of light emitting elements. The plurality of light emitting elements are arranged so that the emission directions of the respective light emitting elements are parallel to each other, and the plurality of emission dichroic mirrors are arranged so that each of the emission dichroic mirrors emits from the plurality of light emitting elements. Is arranged such that the reflected light of each outgoing dichroic mirror passes through the same optical path in the same direction,
The light receiving unit includes at least a plurality of light receiving elements and a plurality of light receiving dichroic mirrors having different wavelength ranges of light that can be reflected, and the number of the plurality of light receiving dichroic mirrors is equal to that of the plurality of light receiving elements. The plurality of light receiving elements are arranged such that the light receiving surfaces of the respective light receiving elements are parallel to each other, and the plurality of light receiving dichroic mirrors are configured to receive light emitted from the reaction vessel, A multi-channel photodetector that is arranged so as to be reflected by one of the light-receiving dichroic mirrors and to enter one of the plurality of light-receiving elements according to the wavelength.
前記複数の発光素子が出射する光の波長が、それぞれ異なっており、前記複数の発光素子が、前記出射する光の波長の順に、配置されている請求の範囲4記載のマルチチャンネル光検出装置。The multi-channel photodetector according to claim 4, wherein wavelengths of light emitted from the plurality of light emitting elements are different from each other, and the plurality of light emitting elements are arranged in order of wavelengths of the emitted light. 前記反応容器の内部に、測定対象となる試料と蛍光色素とを少なくとも含む混合物が添加されており、
前記反応容器の内部から放出される光が、前記光源ユニットから出射された光によって励起された前記蛍光色素の蛍光である請求の範囲4記載のマルチチャンネル光検出装置。
A mixture containing at least a sample to be measured and a fluorescent dye is added to the inside of the reaction container,
The multichannel light detection device according to claim 4, wherein the light emitted from the inside of the reaction vessel is fluorescence of the fluorescent dye excited by light emitted from the light source unit.
JP2004546453A 2002-10-25 2003-10-23 Light source unit, light receiving unit, and multi-channel photodetection device using them Expired - Fee Related JP4665097B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002311726 2002-10-25
JP2002311726 2002-10-25
PCT/JP2003/013517 WO2004038350A1 (en) 2002-10-25 2003-10-23 Light source unit, light-receiving unit, and multichannel optical sensing apparatus using those

Publications (2)

Publication Number Publication Date
JPWO2004038350A1 true JPWO2004038350A1 (en) 2006-02-23
JP4665097B2 JP4665097B2 (en) 2011-04-06

Family

ID=32171094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004546453A Expired - Fee Related JP4665097B2 (en) 2002-10-25 2003-10-23 Light source unit, light receiving unit, and multi-channel photodetection device using them

Country Status (6)

Country Link
US (1) US7304723B2 (en)
EP (1) EP1560007A4 (en)
JP (1) JP4665097B2 (en)
CN (1) CN100472192C (en)
AU (1) AU2003277517A1 (en)
WO (1) WO2004038350A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186745B2 (en) 2001-03-06 2007-03-06 Astrazeneca Ab Indolone derivatives having vascular damaging activity
KR100647317B1 (en) 2005-02-03 2006-11-23 삼성전자주식회사 Optical system for multi-channel fluorescence measurement of microfluidic chip and multi-channel fluorescence sample analyzer
US8551408B2 (en) 2006-01-24 2013-10-08 Life Technologies Corporation Device and methods for quantifying analytes
US9921101B2 (en) 2008-10-09 2018-03-20 Douglas Scientific, LLC Scanner photometer and methods
US8759795B2 (en) 2011-04-07 2014-06-24 Douglas Scientific, Llc. Scanner photometer and methods
ES2950088T3 (en) * 2008-10-09 2023-10-05 Lgc Genomics Llc Scanner photometer head and associated method
CN104614356A (en) * 2015-02-10 2015-05-13 优品保技术(北京)有限公司 Luminescent substance detection device and article identification system
CN106053404A (en) * 2016-05-09 2016-10-26 崔京南 A portable multi-waveband fluorescence detection trace compound analyzer
DE102016110743B4 (en) * 2016-06-10 2018-07-05 Airbus Ds Optronics Gmbh Optronic sensor device and position stabilized platform
SG11201907605YA (en) * 2017-02-27 2019-09-27 Becton Dickinson Co Light detection systems and methods for using thereof
DE112018007972T5 (en) * 2018-10-12 2021-05-27 Hitachi High-Tech Corporation ARRANGEMENT OF DICHROITIC MIRRORS AND LIGHT DETECTION DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245942A (en) * 1986-04-18 1987-10-27 Canon Inc Particle analyzer
JPH0593724A (en) * 1979-07-13 1993-04-16 Ortho Diagnostic Syst Inc Automated identifying and counting device of subclass of specified blood cell
JPH09321335A (en) * 1996-03-25 1997-12-12 Omron Corp Light projector and optical apparatus using the same
JPH11101691A (en) * 1997-09-29 1999-04-13 Canon Inc Inspecting device for colored member and its manufacture
JP2001117013A (en) * 1999-10-20 2001-04-27 Olympus Optical Co Ltd Confocal laser microscope

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144661A (en) * 1986-12-06 1988-06-16 Dainippon Printing Co Ltd Recorder for laser microscope magnified image
US5535052A (en) * 1992-07-24 1996-07-09 Carl-Zeiss-Stiftung Laser microscope
US6399397B1 (en) * 1992-09-14 2002-06-04 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
DE69904043T2 (en) 1998-05-19 2003-07-31 Cepheid Sunnyvale MULTI-CHANNEL OPTICAL DETECTION SYSTEM
US6577453B2 (en) * 2000-04-26 2003-06-10 Fuji Photo Film Co., Ltd. Image reading apparatus
US6683314B2 (en) * 2001-08-28 2004-01-27 Becton, Dickinson And Company Fluorescence detection instrument with reflective transfer legs for color decimation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593724A (en) * 1979-07-13 1993-04-16 Ortho Diagnostic Syst Inc Automated identifying and counting device of subclass of specified blood cell
JPS62245942A (en) * 1986-04-18 1987-10-27 Canon Inc Particle analyzer
JPH09321335A (en) * 1996-03-25 1997-12-12 Omron Corp Light projector and optical apparatus using the same
JPH11101691A (en) * 1997-09-29 1999-04-13 Canon Inc Inspecting device for colored member and its manufacture
JP2001117013A (en) * 1999-10-20 2001-04-27 Olympus Optical Co Ltd Confocal laser microscope

Also Published As

Publication number Publication date
US7304723B2 (en) 2007-12-04
EP1560007A4 (en) 2008-07-23
CN100472192C (en) 2009-03-25
US20060102828A1 (en) 2006-05-18
WO2004038350A1 (en) 2004-05-06
JP4665097B2 (en) 2011-04-06
AU2003277517A1 (en) 2004-05-13
EP1560007A1 (en) 2005-08-03
CN1708676A (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US7248361B2 (en) Fluorescence reader based on anti-resonant waveguide excitation
JP2022031290A (en) Systems and methods for assessing biological samples
US7928408B2 (en) Multi-channel fluorescence measuring optical system and multi-channel fluorescence sample analyzer
JP4057607B2 (en) Photodetector for multichannel multicolor measurement and multichannel sample analyzer employing the same
US7474399B2 (en) Dual illumination system for an imaging apparatus and method
US7248359B2 (en) Combining multi-spectral light from spatially separated sources
JP5859527B2 (en) Increased dynamic range for photometry
JP4665097B2 (en) Light source unit, light receiving unit, and multi-channel photodetection device using them
JP2003524754A5 (en)
JP2002514739A (en) Optical array system and reader for microtiter plates
US7843568B2 (en) Enhanced instrumentation and method for optical measurement of samples
EP1517135B1 (en) Instrument for optical measurement of samples
US7221449B2 (en) Apparatus for assaying fluorophores in a biological sample
JP2020512541A (en) Optical system and method for sample separation
JP2012515910A (en) Main module for optical measuring instruments
KR20030037314A (en) Apparatus for analyzing fluorescence image of biochip
US20080253409A1 (en) Multi-Channel Bio-Chip Scanner
US20120313008A1 (en) Fluorescent detector
JP6820122B2 (en) Methods and systems for optical-based measurements with selectable excitation light paths
JP2004144678A (en) Manufacturing method for optical unit, optical sensor, multichannel light detection system, and optical unit
US20070190642A1 (en) Concentrators for Luminescent Emission
EP3921627B1 (en) Method of analyzing samples, analyzing device and computer program
KR20050050858A (en) Bio chip scanner for use of laser beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees