JPWO2003012903A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JPWO2003012903A1
JPWO2003012903A1 JP2003517971A JP2003517971A JPWO2003012903A1 JP WO2003012903 A1 JPWO2003012903 A1 JP WO2003012903A1 JP 2003517971 A JP2003517971 A JP 2003517971A JP 2003517971 A JP2003517971 A JP 2003517971A JP WO2003012903 A1 JPWO2003012903 A1 JP WO2003012903A1
Authority
JP
Japan
Prior art keywords
gas
passage
hole
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003517971A
Other languages
Japanese (ja)
Inventor
寛 折島
寛 折島
平川 雅弘
雅弘 平川
加島 昭一
昭一 加島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Publication of JPWO2003012903A1 publication Critical patent/JPWO2003012903A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

この発明は、セルの空気及び燃料のガスの流れや分布を均一にしてサーマルサイクル耐性が生じ難い構成からなるSOFCの提供を目的とし、基板中央部に板の軸中心にガス通路用の中心貫通孔を有しかつこれを中心として対称位置に複数のガス通路用の周囲貫通孔を配置したガス通路孔部を形成すると、積層した各セル基板などを中央部のガス通路孔部で支持、締め付けが可能で、燃料ガス及び酸化剤ガスの各ガス流れの最適化を図りかつガス分布を各々均一にでき、特に温度分布が半径方向に均一となり、熱膨張に伴う熱応力等の発生が少なく、さらに金属基板の両面にエッチングでガス通路パターンを形成してガスセパレータ板となすと、積層構成部品が少なく、小型軽量なSOFCを提供できる。An object of the present invention is to provide an SOFC having a structure in which the flow and distribution of air and fuel gas in a cell are made uniform and thermal cycle resistance hardly occurs. When a gas passage hole having a plurality of gas passage peripheral through holes is formed at a symmetrical position around the hole, the stacked cell substrates and the like are supported and tightened by the central gas passage hole. It is possible to optimize each gas flow of the fuel gas and the oxidizing gas and make the gas distributions uniform, respectively, and in particular, the temperature distribution becomes uniform in the radial direction, and the occurrence of thermal stress due to thermal expansion is small, Further, when a gas passage pattern is formed on both surfaces of a metal substrate by etching to form a gas separator plate, a small and lightweight SOFC having few laminated components can be provided.

Description

技術分野
この発明は、固体酸化物燃料電池(Solid Oxide Fuel Cells、以下SOFCと略記する)の新規な構成に係り、ガス通路孔部を基板の中心部に設ける構成によって、セル構成板と金属製ガスセパレータ板を極めて薄く形成でき、例えば積層したセル構成板のピッチを2mm以下となし、また基板の中央のガス通路孔部で積層した基板全体を締結して高温作動時に生じるサーマルサイクル耐性を高めることが可能で、特に金属板の両面にエッチングでガス通路の形成をしたガスセパレータ板を用いることで、部品点数が少なく小型、軽量化が可能で安価に提供できる燃料電池に関する。
背景技術
今日、実用化されているSOFCの構成に、燃料極としてニッケルとイットリア安定化ジルコニアとのサーメット多孔体、固定電解質としてイットリア安定化ジルコニア、空気極としてランタンマンガナイト、インターコネクト材としてランタンクロマイトを用い、一端を閉塞した円筒型のセルとして、これを多数個束ねるようにしてスタックユニットを形成する、いわゆる円筒型SOFCがある。
また、板状の多孔体からなる燃料極、電解質、多孔体からなる酸素極を順次積層したセルを、緻密体のインターコネクト板で挟む構成となして、これを積層スタック配置する、いわゆる平板型SOFCが実用化されている。
燃料電池発電の基本構成は、上記のごとく燃料の改質、電池本体、電池から発生する直流を交流に変換するインバータからなるが、SOFCは、燃料として水素(H)の他にメタン(CH)などを燃料として取り入れることができ、電池部でも燃料ガスの改質(内部改質)が可能であるとされている。すなわち、電池で反応した残りの未燃ガスは燃焼させ、その燃焼熱を改質反応(吸熱反応)に利用することが可能である。
SOFCは、熱の利用効率が高いことにより、50%以上の発電効率が期待でき、また、電池作動温度が1000℃と高温であることから、その排熱を蒸気回収器により高温蒸気を回収するコージェネレーションシステムへの適用が期待できると考えられている。
セルは、耐熱性を考慮して一般に固体セラミックスに形成され、また発電効率を図るためセルを束ねたり、スタック配置するため、各部材間の温度差や熱膨張係数の差異などに起因する割れに対する対策が求められている。
前記平板型SOFCは、セル密度を高くできるが、積層体構造のため、セルの各部の熱膨張率差や平面方向の温度分布のばらつきを少なくして、サーマルサイクル耐性を向上させるかが重要であって、基本的にサーマルサイクル耐性に劣る問題がある。
円筒型SOFCは、セル上端だけ固定する構成を採用すると、サーマルサイクル耐性に対する円筒長手方向の膨張収縮に関して信頼性が高い特徴を有する。しかし、円筒型セルを多数束ねて配置する構造、並びに空気や燃料を効率よく流れるようにした構造は複雑で、空間利用効率が低くスペースを取り、セラミックス材の電気伝導が劣ることから電力出力が低くなり、電気接続もニッケルフェルトを挟むなどの特別の配慮を行う必要がある。
発明の開示
この発明は、セルのガス配管、通路系統を極めて簡素にできる基本構成を目的としている。また、この発明は、発電効率を大きく向上させるため、未燃ガスをできるだけ減少させるためにスタック構造を有するSOFCを提案することを目的としている。
また、この発明は、部品点数が少なく軽量、コンパクトで安価に製造できる構成からなるSOFCを提案することを目的としている。
さらに、この発明は、セルの空気及び燃料のガスの流れや分布を均一にしてサーマルサイクル耐性が生じ難い構成からなるSOFCを提案することを目的としている。
発明者らは、SOFCにおいて、空気(酸化剤)ガス及び水素(燃料)ガスの流れや分布を均一にできる構成について種々検討した結果、ディスク基板の中央から放射状にガス通路を設けること、そのためにディスク基板の中央に貫通孔を設けてガスの導入出部を集中させることに着目したところ、基板中央部に板の軸中心にガス通路用の中心貫通孔を有しかつこれを中心として対称位置に複数のガス通路用の周囲貫通孔を配置したガス通路孔部を形成すると、積層した各セル基板などを中央部のガス通路孔部で支持、締め付けが可能で、燃料ガス及び酸化剤ガスの各ガス流れの最適化を図りかつガス分布を各々均一にでき、特に温度分布が半径方向に均一となり、熱膨張に伴う熱応力等の発生が少なく、サーマルストレスが発生し難い構成であることを知見した。
また、発明者らは、前記中心貫通孔とこれを中心として対称位置に複数の周囲貫通孔を配置したガス通路孔部は、前述の積層したスタックユニットの中央部での支持、締め付け用にシャフトを挿通配置することが可能である他、該シャフトを利用したり、ヒートパイプや二重管等を用いてガスの加熱や排熱処理を行うなどの熱交換手段を適宜配置できることを知見した。
また、発明者らは、基板中央部に前記ガス通路孔部を形成することによって、固体電解質基板の軸中心部のガス通路孔部の外周側の各基板主面に燃料側電極層と空気側電極層をそれぞれ成膜した構成のセル構成板を採用でき、セル構成板を薄板化できるため、金属製の薄板のガスセパレータ板とを適宜積層配置することで、前記セルのスタックを中央部で支持、締め付けできることと相まって極めて軽量、コンパクトな燃料電池を構成できることを知見した。
また、発明者らは、ガスセパレータ板には、ガス通路孔部の外周側の各基板の片面又は両主面に燃料通路又は空気通路パターンがそれぞれ形成された構成を採用できること、この通路パターンは、板の主面に金属又は合金材のメッシュ部材あるいは打ち抜き又はエッチング部材を配置して容易に形成でき、また、金属又は合金板を用いてその表面をエッチングすることで容易に通路パターンを形成でき、前記の固体電解質基板の両面に電極を成膜したセル構成板とともに薄板化が可能で、例えばセル構成板とガスセパレータ板が交互に積層された構成で、その積層ピッチを2mm以下、1mm程度にもでき、極めて軽量、コンパクトな燃料電池を構成できることを知見した。
さらに、発明者らは、上述の薄板の主面に電極層やガス通路パターンを形成した構成を採用することで、ガスセパレータ板はインターコネクターとして2つのガス通路形状を各々のガス組成と流量に合わせて別々に設計して形成することが可能となること、ガスセパレータ板の両面にエッチングにて形成するかあるいはメッシュ部材、エッチング部材を配置してガス通路の精密なパターン形成できることから、ガス流れの最適化による電池性能の向上を図ることができ、また金属を使用することで集電能力が高く発電ロスが少ない構成を実現できることを知見し、この発明を完成した。
すなわち、この発明は、中心軸と同心配置の中心貫通孔とその周囲に設ける複数個の周囲貫通孔とから形成される通路孔部を円板中心部に有したセル構成板と、前記と同様構成の通路孔部を円板中心部に有してその外周側主面にガス通路を有するガスセパレータ板とを積層した積層体であり、各貫通孔のいずれか又は全てを燃料又は酸化剤のガス通路となし、かつ通路孔部に形成するガス通路パターンにより積層板間のガス通路とを接続又は遮断した構成からなることを特徴とする燃料電池である。
また、発明者らは、上記構成の燃料電池において、中心貫通孔と周囲貫通孔のうち少なくと1孔を積層体の締結用シャフトの挿通用孔として専用使用またはガス通路と兼用使用する構成を採用すると、薄円板を多数積層したスタック構造の燃料電池、すなわち円柱状積層体の軸心部で支持することから、熱バランスかつサーマルサイクル耐性に優れることを知見した。
また、発明者らは、上記構成の燃料電池において、燃料ガスと酸化剤ガスのガス流に、中央の通路孔部から積層板間の放射方向の反応用ガス通路を経て積層体外周部へ放出されるフローアウト、又は逆に積層体外周部から積層板間の反応用ガス通路を経て中央の通路孔部へ導入されるフローインするオープンガス流構成、あるいは中央の通路孔部から積層板間の反応用のガス通路を経て積層体外周側から再度中央の通路孔部へ戻るクローズドガス流構成を採用することが可能であること、すなわち燃料ガスと酸化剤ガスが共にフローアウトのオープンガス流かクローズドガス流である構成、あるいは燃料ガスと酸化剤ガスのガス流れが相互に異なってオープンガス流(フローアウト又はフローイン)かクローズドガス流のいずれかである構成を採用でき、発電効率の向上、構造の簡素化、ガス回収の高効率化等の用途や機能の追求に応じた種々構成の燃料電池を提供できることを知見した。
発明を実施するための最良の形態
この発明は、薄板状のセル構成板とガスセパレータ板とを積層して形成した燃料電池の構成、特に反応ガスの流れは基本的に各薄板の主面に沿って中央部から放射状に外周部へと流れるか、又は外周部から再度中央部に戻るように、あるいは外周部から中央部へと流れるガス通路を設け、酸化剤ガス及び燃料ガスの供給通路と分配のための通路を全て各薄板の中心部に貫通孔を設けて形成したもので、積層した際に積層方向の貫通孔にガスの供給通路が形成される燃料電池の構成を特徴としている。
図1に示すセル構成板1は、ここでは薄円板からなる固体電解質基板2の軸中心に燃料ガス通路用の中心貫通孔3を有し、かつこれを中心として対称位置に複数の酸化剤ガス通路用、ここでは4個の周囲貫通孔4a〜4dを配置したガス通路孔部5を形成してある。すなわち、ガス通路孔部5は、軸中心にある1つの中心貫通孔3と、その周囲に軸対称に配置された2つ以上の周囲貫通孔4により構成される。
また、セル構成板1は、ここでは固体電解質基板2の両主面の全面に、それぞれ燃料側電極層6と酸化剤側電極層7を成膜してある。
図2にガスセパレータ板10を示すが、上記のガスセパレータ板10と同様にここでは薄円板からな金属基板11の軸中心に燃料ガス通路用の中心貫通孔12を有し、これを中心として対称位置に4個の酸化剤ガス通路用の周囲貫通孔13a〜13dを配置したガス通路孔部14を形成してある。
また、ガスセパレータ板10は、その主面にガス通路パターンを形成してあるが、図2Aに示す例は、酸化剤ガス用パターンであり、中心貫通孔12と周囲貫通孔13a〜13dとの間のガス通路孔部14に凸部15を形成してあり、また周囲貫通孔13a〜13dの外周側に放射状に小突起16を形成し、セル構成板1と積層した際に中心貫通孔12は前記凸部15に外周部を閉塞されるため、セル構成板1とガスセパレータ板10との間には中心貫通孔12から燃料ガスは供給されない。
しかし、周囲貫通孔13a〜13dの周囲は、小突起16が間隔を置いて配置されるために、同孔より酸化剤ガスがセル構成板1とガスセパレータ板10との間に供給されて分散することとなる。
また、図2Bに示す例は、ガスセパレータ板10の燃料ガス用通路パターンであり、周囲貫通孔13a〜13dの周囲に凸部17a〜17dを形成してあり、また周囲貫通孔13a〜13dの外周側に同心円状多数の円弧状凸部18と放射状凸部19とを形成して、ガス通路孔部14から放射方向にかつ蛇行するガス通路パターンを設けてある。従って、セル構成板1と積層した際に周囲貫通孔13a〜13dは前記凸部17に外周部を閉塞されるため、セル構成板1とガスセパレータ板10との間に酸化剤ガスが進入することなく、中心貫通孔12から燃料ガスが供給、分散されることになる。
図2に示すガスセパレータ板10は、ステンレス鋼のように金属又は合金材より構成することで、前述のガス通路パターンを構成する各種の凸部15,17a〜17d,18,19や小突起16を残すように所要部をマスキングして行うエッチング処理にて容易にかつ精密に形成することが可能である。
このエッチング処理にて前記の蛇行する燃料ガス用通路内に集電用突起部を設けることができる。ガス流れに影響を与えないように所要間隔で針を配置するように、例えば1mm以下の幅又は径の突起や条を3mm以下のピッチで製作できる。
ガスセパレータ板10の主面に設けるガス通路パターンは、ステンレス鋼薄板の片面に燃料ガス用通路パターンあるいは酸化剤ガス用通路パターンのいずれかを設けることもでき、両面にそれぞれ燃料ガス用と酸化剤ガス用ガス通路パターンを設けることができる。
ガスセパレータ板には、インターコネクト材として使用可能な公知の金属材料が適宜選定でき、耐熱性や耐食性、さらには他部材との熱膨張係数の整合性を考慮すると、フェライト系合金、オーステナイト系合金、Fe−Cr−W系合金材料が好ましい。例えばフェライト系合金としてはSUS430など、オーステナイト系合金としてはSUS310などがある。また、Fe−18Cr−7W系等に代表されるFe−Cr−W系合金材料なども採用できる。
また、ガスセパレータ板表面には、各種コーティング材を設けることが可能で、例えば、酸化剤ガス側に電気接触抵抗の低減とフェライト鋼からのCr蒸発防止のために、(La,Sr)CrOなどの酸化剤側電極材料と同様材料等を用いたり、燃料ガス側に電気接触抵抗の低減のためにCe0.80.21.9などの導電性の高い材料を用いることができる。
なお、セル構成板1は、図1Bに示すように固体電解質基板2の両面にそれぞれ燃料側電極層6又は酸化剤側電極層7を成膜した構成とすることが可能であり、固体電解質並びに燃料側電極層、酸化剤側電極層の各材料には、公知のいずれの材料も採用できる。
例えば、固体電解質には、一般的な安定化ジルコニア、燃料側電極材料には、Ni/YSZサーメット、酸化剤側電極材料には、(La,Sr)MnO等、公知のいずれの材料も採用できる。
この発明において、セル構成板1とガスセパレータ板10の積層構成は、各基板のガス通路構成などに応じて種々の積層パターンが採用できる。例えば、図3に示す積層体例は、図1に示す固体電解質基板2の両面にそれぞれ燃料側電極層6又は酸化剤側電極層7を成膜したセル構成板1と、図2に示す燃料ガス用通路パターンと酸化剤ガス用通路パターンをステンレス鋼薄板の両面に設けたガスセパレータ板10とを交互に積層配置した構成からなる。
特に、ガスセパレータ板10の両面にエッチングでガス通路を形成すると、該板10の軽量化が顕著であり、かつ積層枚数の低減も可能であるから、積層したセルスタックユニットの軽量化が達成できる。
セル構成板1とガスセパレータ板10のガス通路孔部5,14は、前述したように軸中心に燃料ガス(F)通路用の中心貫通孔3,12を有し、これを中心として対称位置に4個の酸化剤ガス(A)通路用の周囲貫通孔4a〜4d、13a〜13dを配置したガス通路孔部5,14を形成してある。従って、図3に示すごとくセル構成板1とガスセパレータ板10を交互に積層することによって、積層方向に各貫通孔が連通して5本のガス通路が形成される。
図3では各薄板が当接した状態を示していないが、中心貫通孔3,12による燃料ガス通路から供給される燃料ガス(F)の水素は、各ガスセパレータ板10の下側面に導入分散されてセル構成板1の上側の燃料側電極層6と接触し、また周囲貫通孔4a〜4d、13a〜13dによる酸化剤ガス通路から供給される酸化剤ガス(A)の空気は、各ガスセパレータ板10の上側面に導入分散されてセル構成板1の下側の酸化剤側電極層7と接触し、セル構成板1とガスセパレータ板10の外周側に排出される。
図4に示す積層体例は、図3と同様構成のセル構成板1とガスセパレータ板20であるが、図4のガスセパレータ板10の両主面のガス通路は、金属基板をエッチング処理にて形成した溝により通路を構成しているのに対して、図5のガスセパレータ板20は、例えばガス通路孔部24はエッチング処理にて図2A,Bと同等に構成し、その外周側にリング状の金属メッシュ部材25を配置することで両主面にガス通路を形成している。
この場合、金属メッシュ部材25による集電能力の向上、すなわち発電ロスが少ない構成とすることができる。金属メッシュ部材には、JIS規格のステンレス鋼線、ニッケル合金線による平織り、綾織り等の構成が採用でき、線径も0.05〜0.2mm程度のものから適宜選定できる。
なお、上記の金属メッシュ部材に換えて、ガス通路パターンを形成できる金属又は合金材の打ち抜き部材又はエッチング部材を用いて積層しても、同様の作用効果を奏することは言うまでもない。
図3と図4に示す積層体構成では、セル構成板1とガスセパレータ板10,20を積層して、中心貫通孔3,12,22内にシャフトを挿通して積層体の両端部に締結用ディスクを当接させ、これをシャフトにナット止めすることで、積層される板を各ガス通路孔部5,14,24で当接させて締結できるため、いわゆるスタック配置するセルを各円板の中央部で支持し、かつ締結用シャフトで締め付けて一体化でき、円板の同士の密着にてガス通路が形成されて、各ガスを中央から放射状に流すことが可能で、サーマルサイクル耐性の低減とともにガス流れを均等化できる。
この発明において、締結用シャフトを挿通する孔は、上記の例のように中心貫通孔のみの場合のほか、中心貫通孔と周囲貫通孔の一部又は全部を用いる場合、周囲貫通孔の一部又は全部を用いる場合など、種々のレイアウトが採用でき、いずれも単数又は複数のシャフトを軸対称配置して積層体を締結する構成が採用できる。
中心貫通孔と周囲貫通孔はガスの供給又は排出通路となるため、複数の締結用シャフトを所要の貫通孔内に挿通すると、ガス種により熱を受ける場合があり、各締結用シャフトへの入熱等が均等となるように通路とガス種を適宜選定するとよい。また、この締結用シャフトをバルクやヒートパイプの熱伝導体として、あるいは二重管などを利用して、セルスタックユニットからの熱放出や熱回収を積極的に行う構成、あるいは所定ガスの加熱、温度管理を行う構成として利用することができる。
図3と図4に示すセルをスタック配置した積層構成では、積層したセルユニットを円筒体内に入れて、前記した外周部に排出されるガスを回収する構成が採用できる。又、図示しないが、セル構成板1とガスセパレータ板10,20の外周部に貫通孔を適宜配置してかつ前述のガス通路孔部と同様に酸化剤ガスと燃料ガスをそれぞれ個別に回収する連通孔を形成することも可能である。
図3と図4に示すセルユニット例では、酸化剤ガスと燃料ガスをそれぞれ中央の通路孔部から積層板間の放射方向のガス通路を経て積層体外周部へ放出されるオープンガス流構成である。
さらに、この発明の構成では、中央の通路孔部から積層板間の放射方向のガス通路を経て積層体外周側から再度中央の通路孔部へ戻るクローズドガス流構成を採用するが可能であり、酸化剤ガスおよび燃料ガスを共にクローズドガス流とするほか、酸化剤ガスと燃料ガスにオープンガス流構成とクローズドガス流構成を組み合せることが可能である。
図5Aに示すガスセパレータ板30は、図2Aに示す例と同様に、オープンガス流構成の酸化剤ガス用通路パターンであり、金属基板31の中心に設けた比較的内径の大きな1つの中心貫通孔32と、その周囲に配置した内径の小さな8つの周囲貫通孔33a〜33hとでガス通路孔部34が形成され、周囲貫通孔33a〜33hの周囲に環状凸部35a〜35hを形成してあり、また周囲貫通孔33a〜33hの外周側に同心円状に多数の小突起36を形成してある。
図示しないが、中心貫通孔32と8つの周囲貫通孔33a〜33hとで構成されるガス通路孔部を有し、各基板主面に燃料側電極層と酸化剤側電極層をそれぞれ成膜したセル構成板と、図5Aに示すガスセパレータ板30とが当接積層された際に、周囲貫通孔33a〜33hは環状凸部35a〜35hで閉塞されて、中心貫通孔32はセル構成板と当該ガスセパレータ板30との間に連通して、中心貫通孔32から供給される酸化剤ガスが環状凸部35a〜35hの間を通って放射方向に供給され、小突起36にて分散されて板外周端より放出される。
また、図5Bに示す例は、ガスセパレータ板30の他主面に形成した燃料ガス用通路パターンであり、クローズドガス流構成をなしている。すなわち、金属基板31の中心に設けた中心貫通孔32の外周全てのうち周囲貫通孔33a〜33hの周囲の一部を残して略環状の凸部37を形成してあり、また周囲貫通孔13a〜13dの外周側に同心円状に多数の円弧状凸部38aと放射状凸部38bとを形成して略環状の凸部37と接続形成し、金属基板外周端にリング状凸部39を形成することで、前記の同様通路孔部を有するセル構成板と当該ガスセパレータ板30とが積層された際に、特定の周囲貫通孔33b,33c,33f,33gから供給される燃料ガスが放射方向に導入されてかつ蛇行して外周側へ進み、外周部から再度蛇行して中心側へ戻り、先とは別の特定の周囲貫通孔33a,33d,33e,33hに入るガス通路パターンを形成してある。
従って、図5に示すガスセパレータ板30とセル構成板とからなるセルをスタック配置した積層体の場合は、酸化剤ガスは中心貫通孔32から供給されてオープンガス流構成でセル外周側に排出され、燃料ガスは周囲貫通孔33b,33c,33f,33gから供給されて、先とは別の特定の周囲貫通孔33a,33d,33e,33hに入るクローズドガス流構成で回収されることになる。
図6に示すガスセパレータ板40は、燃料ガス用通路パターンと酸化剤ガス用通路パターンとが共にクローズドガス流構成となるように各通路が形成されている。図6Aに示す構成は燃料ガス用通路パターンであり、金属基板41の中心に設けた比較的内径の大きな1つの中心貫通孔42と、その周囲に配置した内径の小さな6つの周囲貫通孔43a〜43fとでガス通路孔部44が形成され、周囲貫通孔43aの一部を除いて周囲貫通孔43b,43cの周囲に略半円状凸部44aを形成してあり、同様に周囲貫通孔43dの一部を除いて周囲貫通孔43e,43fの周囲に略半円状凸部44bを形成して、2つの略半円状凸部44a,44bで中心貫通孔42を挟み、直径方向の通路を形成してある。
また、金属基板41上の略半円状凸部44a,44bには、その外周側に設けた円弧状凸部45を放射状凸部46と接続形成してあり、外周部にはリング状凸部47が形成され、同様構成の貫通孔を配置したガス通路孔部を有して各基板主面に燃料側電極層と酸化剤側電極層をそれぞれ成膜したセル構成板と積層した際に、中心貫通孔42から供給される燃料ガスを、放射状凸部46、円弧状凸部45に沿って蛇行させて、再度中央部へ戻して特定の周囲貫通孔43a、43dより回収する構成である。
図6Bに示す構成は、ガスセパレータ板40の他主面に形成された酸化剤ガス用通路パターンであり、貫通孔の配置は全く同じであり、中心貫通孔42の周囲と全ての周囲貫通孔43a〜43fの周囲を覆うように略円状の凸部48が形成されるが、周囲貫通孔43b,43c,43e,43fの周囲には外周側を望むように凸部が除かれて通路部が形成されている。隣接配置される周囲貫通孔43b,43c間及び周囲貫通孔43e,43f間の凸部48と円弧状凸部45とをそれぞれ放射状凸部46で接続することで、外周部リング状凸部47との間に半円主面上を蛇行する通路が形成されている。
図6Bに示す酸化剤ガス用通路パターンは、例えば囲貫通孔43eから導入された酸化剤ガスは、放射状凸部46、円弧状凸部45に沿って蛇行させて、再度中央部へ戻して導入側に隣接する周囲貫通孔43fより排出回収される。
従って、図6に示すガスセパレータ板40とセル構成板とからなるセルをスタック配置した積層体の場合は、燃料ガスは中心貫通孔42から供給されてクローズドガス流構成で特定の周囲貫通孔43a,43dに排出され、酸化剤ガスは周囲貫通孔43b,33eから供給されて、先とは別の特定の周囲貫通孔43c,43fに入るクローズドガス流構成で回収されることになる。
また、図6Bに示すクローズドガス流構成のガス通路パターンは、これをガスセパレータ板50の両面に形成することで、酸化剤ガスと燃料ガスをそれぞれクローズドガス流となすことができる。
すなわち、図7A,Bに示すごとく、金属基板51の中心に設けた比較的内径の大きな1つの中心貫通孔52と、その周囲に配置した内径の小さな8つの周囲貫通孔53a〜53hとでガス通路孔部54が形成され、中心貫通孔52と周囲貫通孔53a〜53hの周囲を囲むように貫通孔と通路の接続、遮断を決定する凸部55a,55bが配置される。
図7Aでは、凸部55aは周囲貫通孔53a,53h,53d,53eの周囲には外周側を望むように凸部が除かれて通路部が形成され、隣接配置される周囲貫通孔53a,53h間及び周囲貫通孔53d,53e間の凸部55aと円弧状凸部56とをそれぞれ放射状凸部57で接続することで、外周部リング状凸部58との間に半円主面上を蛇行する通路が形成されている。
この構成によって、図7Aのパターンを酸化剤ガスのガス通路とすることが可能であり、さらに図7Bに示すごとく、通路と連通する周囲貫通孔を変えるように図7Aの凸部55aのパターンから90度ずらした凸部55bの構成とすることで、図7Aとは異なる周囲貫通孔53b,53c間及び周囲貫通孔53f,53g間で燃料ガスをそれぞれクローズドガス流となすことができる。
図8に示すガスセパレータ板60は、金属板の両面にエッチングでガス通路を形成する利点を最大限に追求したものである。すなわち供給ガス種類、ガスの圧力や流量等の違いに応じて、滞留なく均等に流れて反応効率が向上するように考慮した流路パターンでかつ充分な集電性能が発揮されるパターンを選定して金属板の両面にそれぞれエッチングしたものである。
エッチングは、このように任意パターンでかつ精密に形成でき、また微細パターンで集電性能とガス拡散性の良いインターコネクタを製造できる。
通路パターンを詳述すると、図8は酸化剤ガス用通路パターンを示すもので、基本的には図5Aに示す中央から外周部へ流れるオープンガス流構成の酸化剤ガス用通路パターンと同様の考え方で構成されている。金属基板の中心に設けた内径の大きな1つの中心貫通孔と、その周囲に配置した内径の小さな8つの周囲貫通孔63とでガス通路孔部が形成され、かつこの周囲貫通孔の周囲に略環状凸部が形成され、また図5Aに示す同心円状に多数配置した小突起を千鳥状に接続するがごとく、細いクランク状凸部を所定間隔で放射状に配置することで、中心貫通孔から細いクランク状の通路を経て外周へ至る酸化剤ガス用通路が形成され、細いクランク状凸部(溝部)の連続でいわゆるヘリーンボーン模様を呈している。
図示しないが、図8に示す金属基板の裏面側主面に燃料ガス用通路パターンを設けるが、これも同様に細いクランク状凸部を形成し、また外周部にはリターン用連続通路を設けることで、周囲貫通孔から出た燃料ガスがヘリーンボーン模様の通路を往復して又隣接の周囲貫通孔へ戻るクローズドガス流を構成することができる。
実 施 例
実施例1
図1に示す構造のセル構成板1として、直径60mm、厚み0.1mmの安定化ジルコニア(8YSZ)基板の両面に、厚み0.015mmのNi/YSZサーメット材の燃料側電極膜、厚み0.015mmの(La,Sr)CrO材の酸化剤側電極膜を成膜して作製した。
図2に示す構造のガスセパレータ板10として、直径60mm、厚み0.8mmのフェライト鋼基板の両面に、エッチングにて基板厚み0.2mm、通路高さ0.3mmとなるようにガス通路パターンを形成して作製した。
得られたセル構成板1とガスセパレータ板10を交互に積層して、中心貫通孔3,12,22内にシャフトを挿通して積層体の両端部にフェライト鋼製の締結用ディスクを当接させ、これをシャフトにナット止めすることで、積層される板を各ガス通路孔部5,14,24で当接させて締結して、セルが30段となるセルスタックユニットを作製し、円筒内に配置してオープンガス流構成で排気される酸化剤ガスと燃料ガスを筒内で回収するように構成した。なお、セル構成板1とガスセパレータ板10を交互に積層する際のガス通路部のシールは材料同士の当接のみでシール材は使用しなかった。
以上の構成からなる燃料電池は、構成部品としてスタックユニット自体は基本的にセル構成板とガスセパレータ板の2点であり、付随的に締結用シャフト、ディスクと外筒と極めて部品点数が少なく、厚み0.13mmのセル構成板と厚み0.8mmのガスセパレータ板を交互に積層するため、極めて小型軽量の燃料電池を得ることができた。
実施例2
図1に示す構造のセル構成板1として、直径120mm、厚み0.5mmのNi/YSZサーメット材の燃料側電極基板の一方面に、厚み0.008mmの安定化ジルコニア(8YSZ)膜を成膜し、さらに厚み0.05mmの(La,Sr)CrO材の酸化剤側電極膜を成膜して、総厚み0.558mmのセル構成板を作製した。
実施例1と同じ材料と構成からなるガスセパレータ板10を用いて、上記セル構成板とを交互に積層し、上述した実施例1と同じ図3のセルスタックユニットを50段構成で作製した。
なお、線膨張係数(0〜1000℃、α×10−6)は、Ni/YSZサーメット材が12.5、(La,Sr)MnO材が12.5、フェライト鋼が12.7と、各材料とも同等で、また安定化ジルコニア材は10.3であるが、これを薄膜で用いるため、線膨張係数を積層方向に厚みとともに見ると近似性が良好となり、円板を積層して中央部で締結する基本構造と相まって、サーマルサイクル耐性に優れている。
酸化剤ガスに空気(1〜10wt%の水蒸気を含む)、燃料ガスに水素を使用し、圧力500Ps、反応温度700〜800℃で作動させて、発電効率を測定したところ、ガスの燃焼がそれぞれ一回であり効率としては不利なオープンガス流構成ではあるが、30〜42%の発電効率が得られた。
実施例3
実施例1と同様材料、寸法で図5の構成のガスセパレータ板30、及びこれと同様のガス通路部を形成したセル構成板とを作製して、セルが30段となるセルスタックユニットを作製して円筒内に配置し、燃料ガスはクローズドガス流構成で再燃焼可能にし、酸化剤ガスはオープンガス流構成でセル外に排気されて円筒内で回収するように構成した燃料電池を作製した。なお、セル構成板1とガスセパレータ板10を交互に積層する際のガス通路部のシールは材料同士の当接のみでシール材は使用しなかった。
酸化剤ガスに空気(1〜10wt%の水蒸気を含む)、燃料ガスに水素を使用し、圧力1000Ps、反応温度700〜800℃で作動させて、発電効率を測定したところ、38〜45%の効率が得られた。
また、作動温度状態からさらにユニット全体を200℃加熱昇温して、セルスタックユニット内のクローズドガス流構成で流れる燃料ガスの漏れの有無を観察したところ、過熱部や低温部などの異常箇所が全く見られず、漏れなどは発生していないことを確認した。
産業上の利用可能性
この発明による燃料電池は、実施例に明らかなように、ガス通路孔部を基板の中心部に設ける構成によって、セル構成板と金属製ガスセパレータ板を極めて薄く形成でき、例えば積層したセル構成板のピッチを2mm以下となし、燃料電池を著しく小型、軽量化することができ、前述のごとく部品点数が基本的に2種の基板2点と少なく、安価に提供できる。また、この発明により積層したスタックユニット全体を各基板の中央部のガス通路孔部で締結する構造から、高温作動時に生じるサーマルサイクル耐性を高めることが可能となった。
また、この発明による金属製ガスセパレータ板は、エッチングで精密にガス通路パターンや集電突起を形成できるため、オープン系、クローズド系のガス流れ、ガス圧力などを考慮してガス種に応じた最適のガス通路を設定でき、ガス圧損の低減、発電効率の向上が可能である。
特に、金属製ガスセパレータ板は、その両面に燃料ガス通路と酸化剤ガス通路パターンをそれぞれに形成できるもので、実施例に示すごとく、板厚みが1mm以下の金属板に溝深さと溝幅がそれぞれ0.5mm以下の溝を2mm以下のピッチで、各ガス流れに最適の通路パターンを各主面に形成するため、該板の軽量化が顕著であり、またガスセパレータ板の両面使用にて積層枚数の低減も可能であるから、積層したセルスタックユニットの軽量化が達成できる。
さらに、金属製ガスセパレータ板に実施例のフェライト鋼など、を用いた場合、他電極材料と線膨張係数を近似させることが可能であり、セルスタックユニット自体が中央部のガス通路孔部で締結支持されることと相まってサーマルサイクル耐性を高めることができる。
【図面の簡単な説明】
図1Aはこの発明によるセル構成板の正面説明図、図1Bは側面説明図である。
図2Aはこの発明によるガスセパレータ板の正面説明図、図2Bはその裏面側説明図である。
図3は、この発明によるセル構成板とガスセパレータ板の積層構成を示す分解説明図である。
図4は、この発明によるセル構成板とガスセパレータ板の他の積層構成を示す分解説明図である。
図5Aはこの発明による他のガスセパレータ板の正面説明図、図5Bはその裏面側説明図である。
図6Aはこの発明による他のガスセパレータ板の正面説明図、図6Bはその裏面側説明図である。
図7Aはこの発明による他のガスセパレータ板の正面説明図、図7Bはその裏面側説明図である。
図8はこの発明による他のガスセパレータ板の正面説明図である。
Technical field
The present invention relates to a novel configuration of a solid oxide fuel cell (Solid Oxide Fuel Cells, hereinafter abbreviated as SOFC), in which a gas passage hole is provided in the center of a substrate, and a cell configuration plate and a metal gas separator are provided. The plate can be formed extremely thin, for example, the pitch of the laminated cell component plates is set to 2 mm or less, and the entire laminated substrate is fastened at the gas passage hole in the center of the substrate to enhance the thermal cycle resistance generated at the time of high temperature operation. The present invention relates to a fuel cell which can be provided, in particular, has a small number of parts, can be reduced in size and weight, and can be provided at low cost by using a gas separator plate in which gas passages are formed on both surfaces of a metal plate by etching.
Background art
The composition of a SOFC that has been put into practical use today includes a cermet porous body of nickel and yttria-stabilized zirconia as a fuel electrode, yttria-stabilized zirconia as a fixed electrolyte, lanthanum manganite as an air electrode, and lanthanum chromite as an interconnect material. There is a so-called cylindrical SOFC in which a stack unit is formed by bundling a large number of cylindrical cells having one end closed.
In addition, a so-called flat SOFC in which a cell in which a fuel electrode made of a plate-shaped porous body, an electrolyte, and an oxygen electrode made of a porous body are sequentially stacked is sandwiched by a dense interconnect plate, and the stacked stack is arranged. Has been put to practical use.
As described above, the basic configuration of fuel cell power generation includes fuel reforming, a battery body, and an inverter that converts direct current generated from the battery into alternating current. However, SOFCs use hydrogen (H 2 ) Besides methane (CH 4 ) Can be used as fuel, and it is said that the fuel gas can be reformed (internal reforming) also in the battery section. That is, the remaining unburned gas reacted by the battery is burned, and the heat of combustion can be used for the reforming reaction (endothermic reaction).
SOFCs are expected to have a power generation efficiency of 50% or more due to high heat utilization efficiency, and since the operating temperature of the battery is as high as 1000 ° C., the exhaust heat is recovered by a steam recovery device to recover high-temperature steam. It is thought that application to a cogeneration system can be expected.
Cells are generally formed of solid ceramics in consideration of heat resistance, and cells are bundled or placed in a stack for power generation efficiency, preventing cracks due to differences in temperature and coefficient of thermal expansion between members. Measures are required.
Although the flat plate type SOFC can increase the cell density, it is important to improve the thermal cycle resistance by reducing the difference in the coefficient of thermal expansion of each part of the cell and the variation in the temperature distribution in the planar direction because of the laminated structure. Therefore, there is a problem that the thermal cycle resistance is basically inferior.
When a configuration in which only the upper end of the cell is fixed is adopted, the cylindrical SOFC has a feature that the expansion and contraction in the longitudinal direction of the cylinder with respect to the thermal cycle resistance is highly reliable. However, the structure in which a large number of cylindrical cells are bundled and arranged, and the structure in which air and fuel flow efficiently are complicated, space utilization efficiency is low, space is required, and power output is low due to poor electric conduction of ceramic materials. It is necessary to take special care such as sandwiching nickel felt for electrical connection.
Disclosure of the invention
An object of the present invention is to provide a basic configuration capable of extremely simplifying a gas pipe and a passage system of a cell. Another object of the present invention is to propose an SOFC having a stack structure for reducing unburned gas as much as possible in order to greatly improve power generation efficiency.
Another object of the present invention is to propose an SOFC having a configuration in which the number of parts is small, lightweight, compact, and inexpensive to manufacture.
Another object of the present invention is to propose an SOFC having a configuration in which the flow and distribution of air and fuel gas in a cell are made uniform and thermal cycle resistance hardly occurs.
The inventors of the present invention have conducted various studies on a configuration in which the flow and distribution of air (oxidant) gas and hydrogen (fuel) gas can be made uniform in an SOFC, and as a result, providing a gas passage radially from the center of the disk substrate. Focusing on providing a through hole in the center of the disk substrate and concentrating the gas inlet / outlet, there is a central through hole for gas passage in the center of the substrate at the center of the plate axis and symmetrical position around this When a plurality of gas passage holes are provided around the gas passage holes, the stacked cell substrates and the like can be supported and clamped by the gas passage holes in the center, and the fuel gas and the oxidizing gas can be Each gas flow can be optimized and the gas distribution can be made uniform.Especially, the temperature distribution becomes uniform in the radial direction, and there is little occurrence of thermal stress due to thermal expansion and thermal stress does not easily occur. It was found that there is.
In addition, the inventors have proposed that the center through-hole and the gas passage hole in which a plurality of peripheral through-holes are arranged symmetrically with respect to the center through-hole are shafts for supporting and tightening at the center of the stacked unit described above. In addition to the above, it has been found that the heat exchange means such as the use of the shaft or the heating or exhaust heat treatment of gas using a heat pipe or a double pipe can be appropriately arranged.
In addition, the inventors formed the gas passage hole in the center of the substrate, so that the fuel-side electrode layer and the air-side were formed on the main surfaces of the substrates on the outer peripheral side of the gas passage hole in the center of the axis of the solid electrolyte substrate. Since a cell component plate having a configuration in which the electrode layers are formed can be adopted, and the cell component plate can be thinned, the stack of the cells is arranged at the center by appropriately arranging a thin metal gas separator plate. It has been found that an extremely lightweight and compact fuel cell can be configured in combination with the ability to support and tighten.
In addition, the present inventors can adopt a configuration in which a fuel passage or an air passage pattern is formed on one or both main surfaces of each substrate on the outer peripheral side of the gas passage hole, respectively, in the gas separator plate. , A metal or alloy mesh member or a punched or etched member can be disposed on the main surface of the plate to facilitate formation, and a passage pattern can be easily formed by etching the surface using a metal or alloy plate. It is possible to reduce the thickness of the solid electrolyte substrate together with a cell component plate having electrodes formed on both surfaces thereof. For example, a cell component plate and a gas separator plate are alternately laminated, and the lamination pitch is about 2 mm or less and about 1 mm. And found that a very lightweight and compact fuel cell can be constructed.
Further, the inventors adopt a configuration in which an electrode layer and a gas passage pattern are formed on the main surface of the above-mentioned thin plate, so that the gas separator plate has two gas passage shapes as interconnectors, each having a gas composition and a flow rate. Since it can be designed and formed separately, and can be formed by etching on both sides of the gas separator plate, or a precise pattern of the gas passage can be formed by arranging a mesh member and an etching member, the gas flow It has been found that the battery performance can be improved by optimizing the structure, and that the use of metal can realize a configuration having a high current collecting capability and a small power generation loss, and completed the present invention.
That is, the present invention provides a cell configuration plate having a passage hole formed in a center portion of a disc formed by a center through hole concentrically arranged with a center axis and a plurality of peripheral through holes provided therearound; A laminate having a passage hole having a configuration in the center portion of the disk and a gas separator plate having a gas passage on the outer peripheral main surface thereof, wherein any or all of the through holes are formed of fuel or oxidant. A fuel cell having a structure in which a gas passage is formed and a gas passage pattern formed in a passage hole portion connects or disconnects a gas passage between laminated plates.
In addition, in the fuel cell having the above configuration, the inventors have a configuration in which at least one of the center through-hole and the peripheral through-hole is exclusively used as a hole for inserting the fastening shaft of the laminate or is also used as a gas passage. It has been found that when adopted, the fuel cell has a stack structure in which a large number of thin disks are stacked, that is, is supported by the axial center portion of a columnar stacked body, and thus has excellent heat balance and thermal cycle resistance.
In addition, in the fuel cell having the above-described structure, the inventors discharge the gas flow of the fuel gas and the oxidizing gas from the central passage hole to the outer peripheral portion of the stacked body through the radial reaction gas passage between the stacked plates. Flow-out, or conversely, an open gas flow configuration in which the flow from the outer periphery of the laminate is introduced into the central passage hole through the reaction gas passage between the laminates, or between the central passage hole and the laminate It is possible to adopt a closed gas flow configuration that returns from the outer peripheral side of the laminated body to the center passage hole portion again through the reaction gas passage, that is, the open gas flow where the fuel gas and the oxidizing gas flow out together. Or a closed gas flow, or a configuration in which the fuel gas and the oxidizing gas flow are different from each other and are either an open gas flow (flow-out or flow-in) or a closed gas flow. Employed can, improvement in the power generation efficiency, simplification of the structure, and knowledge to be able to provide a fuel cell of the various configurations in response to the pursuit of applications and functions such as high efficiency of gas recovery.
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a fuel cell structure formed by laminating a thin plate cell component plate and a gas separator plate, and in particular, a flow of a reaction gas is basically radially distributed from a central portion to an outer peripheral portion along a main surface of each thin plate. Or a gas passage that flows from the outer periphery to the center again or from the outer periphery to the center. The fuel cell has a configuration in which a gas supply passage is formed in the through hole in the stacking direction when the fuel cell is stacked.
The cell constituting plate 1 shown in FIG. 1 has a central through hole 3 for a fuel gas passage at the center of the axis of a solid electrolyte substrate 2 made of a thin disk here, and a plurality of oxidizing agents at symmetric positions with respect to the center. For the gas passage, here, a gas passage hole 5 in which four peripheral through holes 4a to 4d are arranged is formed. That is, the gas passage hole portion 5 is constituted by one central through hole 3 at the center of the axis and two or more peripheral through holes 4 arranged axially symmetrically around the central through hole 3.
Further, in this case, the fuel cell electrode layer 6 and the oxidant-side electrode layer 7 are formed on the entire surface of both main surfaces of the solid electrolyte substrate 2 of the cell constituting plate 1.
FIG. 2 shows the gas separator plate 10. As in the case of the gas separator plate 10, here, a metal substrate 11 made of a thin circular plate has a central through hole 12 for a fuel gas passage at the center of the axis thereof. A gas passage hole portion 14 in which four oxidant gas passage peripheral through holes 13a to 13d are arranged at symmetrical positions is formed.
In addition, the gas separator plate 10 has a gas passage pattern formed on the main surface thereof. The example shown in FIG. 2A is a pattern for an oxidizing gas, and the gas separator plate 10 has a central through hole 12 and peripheral through holes 13a to 13d. A convex portion 15 is formed in the gas passage hole portion 14 therebetween, and small projections 16 are radially formed on the outer peripheral side of the peripheral through holes 13a to 13d. The fuel gas is not supplied from the central through hole 12 between the cell constituting plate 1 and the gas separator plate 10 because the outer peripheral portion is closed by the convex portion 15.
However, since the small projections 16 are arranged at intervals around the peripheral through holes 13a to 13d, the oxidizing gas is supplied between the cell constituting plate 1 and the gas separator plate 10 through the holes to disperse. Will be done.
The example shown in FIG. 2B is a fuel gas passage pattern of the gas separator plate 10, in which convex portions 17a to 17d are formed around the peripheral through holes 13a to 13d. A large number of concentric arc-shaped convex portions 18 and radial convex portions 19 are formed on the outer peripheral side, and a gas passage pattern meandering radially and meandering from the gas passage hole 14 is provided. Therefore, when the peripheral through holes 13 a to 13 d are stacked with the cell constituting plate 1, the outer peripheral portion is closed by the convex portion 17, so that the oxidizing gas enters between the cell constituting plate 1 and the gas separator plate 10. Without this, the fuel gas is supplied and dispersed from the center through hole 12.
The gas separator plate 10 shown in FIG. 2 is made of a metal or an alloy material such as stainless steel, so that the various projections 15, 17 a to 17 d, 18, 19, and the small projections 16 constituting the above-described gas passage pattern are formed. Can be easily and precisely formed by an etching process performed by masking a required portion so as to leave a portion.
By this etching process, a current collecting projection can be provided in the meandering fuel gas passage. For example, protrusions or strips having a width or diameter of 1 mm or less can be manufactured at a pitch of 3 mm or less so that the needles are arranged at required intervals so as not to affect the gas flow.
As the gas passage pattern provided on the main surface of the gas separator plate 10, either a fuel gas passage pattern or an oxidizing gas passage pattern can be provided on one surface of a stainless steel thin plate, and the fuel gas and oxidizing gas passage patterns can be provided on both surfaces. A gas passage pattern for gas can be provided.
For the gas separator plate, a known metal material that can be used as an interconnect material can be appropriately selected, and in consideration of heat resistance and corrosion resistance, and further matching of thermal expansion coefficient with other members, a ferritic alloy, an austenitic alloy, Fe-Cr-W alloy materials are preferred. For example, SUS430 or the like is used as a ferrite alloy, and SUS310 is used as an austenitic alloy. Further, an Fe-Cr-W-based alloy material typified by an Fe-18Cr-7W-based material or the like can be employed.
Various coating materials can be provided on the surface of the gas separator plate. For example, (La, Sr) CrO 2 is provided on the oxidizing gas side to reduce electrical contact resistance and prevent Cr from evaporating from ferritic steel. 3 Use the same material as the oxidant-side electrode material such as, or use Ce on the fuel gas side to reduce the electrical contact resistance. 0.8 Y 0.2 O 1.9 For example, a highly conductive material such as a high conductivity material can be used.
1B, the fuel cell electrode plate 6 or the oxidant electrode layer 7 may be formed on both surfaces of the solid electrolyte substrate 2, respectively. As each material of the fuel-side electrode layer and the oxidant-side electrode layer, any known material can be adopted.
For example, general stabilized zirconia is used for the solid electrolyte, Ni / YSZ cermet is used for the fuel-side electrode material, and (La, Sr) MnO is used for the oxidant-side electrode material. 3 And any other known materials.
In the present invention, various lamination patterns can be adopted for the lamination configuration of the cell constituting plate 1 and the gas separator plate 10 according to the gas passage configuration of each substrate. For example, the laminated body example shown in FIG. 3 includes a cell configuration plate 1 in which a fuel-side electrode layer 6 or an oxidant-side electrode layer 7 is formed on both surfaces of the solid electrolyte substrate 2 shown in FIG. And a gas separator plate 10 provided with a passage pattern for oxidant gas and a passage pattern for oxidant gas on both sides of a stainless steel thin plate.
In particular, when gas passages are formed on both surfaces of the gas separator plate 10 by etching, the weight of the plate 10 is remarkably reduced and the number of stacked layers can be reduced, so that the weight of the stacked cell stack units can be reduced. .
The gas passage holes 5 and 14 of the cell constituting plate 1 and the gas separator plate 10 have the center through holes 3 and 12 for the fuel gas (F) passage at the axial center as described above, and are symmetrically positioned with respect to this center. Are formed with gas passage holes 5, 14 in which four peripheral through holes 4a to 4d and 13a to 13d for the oxidant gas (A) passage are arranged. Therefore, as shown in FIG. 3, by alternately stacking the cell constituting plates 1 and the gas separator plates 10, five through-holes communicate with each other in the stacking direction to form five gas passages.
Although FIG. 3 does not show a state where the thin plates are in contact with each other, the hydrogen of the fuel gas (F) supplied from the fuel gas passage through the central through holes 3 and 12 is introduced and dispersed on the lower surface of each gas separator plate 10. Then, the air of the oxidizing gas (A) supplied from the oxidizing gas passage formed by the peripheral through holes 4a to 4d and 13a to 13d comes into contact with the fuel-side electrode layer 6 on the upper side of the cell constituting plate 1, It is introduced and dispersed on the upper surface of the separator plate 10, comes into contact with the oxidant-side electrode layer 7 below the cell constituting plate 1, and is discharged to the outer peripheral side of the cell constituting plate 1 and the gas separator plate 10.
The example of the laminate shown in FIG. 4 is a cell configuration plate 1 and a gas separator plate 20 having the same configuration as in FIG. 3, but the gas passages on both main surfaces of the gas separator plate 10 in FIG. While the passage is formed by the formed groove, in the gas separator plate 20 of FIG. 5, for example, the gas passage hole 24 is formed in the same manner as in FIGS. The gas passages are formed on both main surfaces by disposing the metal mesh member 25 in a shape of a circle.
In this case, it is possible to improve the current collecting ability by the metal mesh member 25, that is, to adopt a configuration in which the power generation loss is small. As the metal mesh member, a structure such as plain weave or twill weave made of JIS standard stainless steel wire or nickel alloy wire can be adopted, and the wire diameter can be appropriately selected from those of about 0.05 to 0.2 mm.
It is needless to say that the same operation and effect can be obtained by laminating using a punching member or an etching member of a metal or alloy material capable of forming a gas passage pattern instead of the above-described metal mesh member.
In the laminate structure shown in FIGS. 3 and 4, the cell constituting plate 1 and the gas separator plates 10 and 20 are laminated, and shafts are inserted into the central through holes 3, 12, and 22 and fastened to both ends of the laminate. The disks for stacking can be contacted and fastened by nuts to the shaft, so that the plates to be laminated can be contacted and fastened at the gas passage holes 5, 14, and 24. It can be supported at the center of the plate, and can be integrated by tightening with a fastening shaft.The gas passage is formed by the close contact of the discs, and each gas can flow radially from the center, and it has thermal cycle resistance. The gas flow can be equalized with the reduction.
In the present invention, in addition to the case where only the center through hole is used as in the above-described example, the hole through which the fastening shaft is inserted, and a case where a part or all of the center through hole and the surrounding through hole is used, a part of the surrounding through hole is used. Various layouts can be adopted, such as when all or all are used, and in any case, a configuration in which one or a plurality of shafts are arranged axially symmetrically to fasten the laminate can be adopted.
Since the central through-hole and the peripheral through-hole serve as gas supply or discharge passages, if a plurality of fastening shafts are inserted into the required through-holes, heat may be received depending on the type of gas, and the heat may enter each fastening shaft. The passage and the gas type may be appropriately selected so that heat and the like are equalized. In addition, this fastening shaft is used as a heat conductor of a bulk or a heat pipe, or a double pipe or the like is used to actively release or recover heat from the cell stack unit, or to heat a predetermined gas, It can be used as a configuration for performing temperature management.
In the stacked configuration in which the cells shown in FIGS. 3 and 4 are arranged in a stack, a configuration in which the stacked cell units are placed in a cylindrical body and the gas discharged to the outer peripheral portion is collected can be adopted. Although not shown, through holes are appropriately arranged in the outer peripheral portions of the cell constituting plate 1 and the gas separator plates 10 and 20, and the oxidizing gas and the fuel gas are individually collected similarly to the above-described gas passage holes. It is also possible to form a communication hole.
The example of the cell unit shown in FIGS. 3 and 4 has an open gas flow configuration in which the oxidizing gas and the fuel gas are respectively discharged from the central passage hole to the outer periphery of the laminate through the radial gas passage between the laminates. is there.
Further, in the configuration of the present invention, it is possible to adopt a closed gas flow configuration that returns from the outer peripheral side of the laminate to the central passage hole portion again through the radial gas passage between the laminated plates from the center passage hole portion, In addition to using both the oxidizing gas and the fuel gas as a closed gas flow, it is possible to combine an open gas flow configuration and a closed gas flow configuration with the oxidizing gas and the fuel gas.
The gas separator plate 30 shown in FIG. 5A is a passage pattern for an oxidizing gas having an open gas flow structure, similarly to the example shown in FIG. The gas passage hole portion 34 is formed by the hole 32 and eight peripheral through holes 33a to 33h having a small inner diameter arranged around the hole 32, and annular convex portions 35a to 35h are formed around the peripheral through holes 33a to 33h. In addition, a number of small projections 36 are formed concentrically on the outer peripheral side of the peripheral through holes 33a to 33h.
Although not shown, it has a gas passage hole composed of a central through hole 32 and eight peripheral through holes 33a to 33h, and a fuel electrode layer and an oxidant electrode layer are formed on the main surfaces of the respective substrates. When the cell constituting plate and the gas separator plate 30 shown in FIG. 5A are laminated in contact with each other, the peripheral through holes 33a to 33h are closed by the annular convex portions 35a to 35h, and the center through hole 32 is connected to the cell constituting plate. The oxidizing gas supplied from the central through hole 32 is supplied in a radial direction through the space between the annular convex portions 35a to 35h and communicates with the gas separator plate 30, and is dispersed by the small protrusions 36. Released from the outer edge of the plate.
The example shown in FIG. 5B is a fuel gas passage pattern formed on the other main surface of the gas separator plate 30, and has a closed gas flow configuration. That is, a substantially annular convex portion 37 is formed except for a part of the periphery of the peripheral through holes 33a to 33h in the entire outer periphery of the central through hole 32 provided at the center of the metal substrate 31. A large number of arc-shaped convex portions 38a and radial convex portions 38b are formed concentrically on the outer peripheral side of 〜13d to form a connection with the substantially annular convex portion 37, and a ring-shaped convex portion 39 is formed on the outer peripheral end of the metal substrate. Thus, when the cell constituting plate having the same passage hole and the gas separator plate 30 are stacked, the fuel gas supplied from the specific peripheral through holes 33b, 33c, 33f, and 33g is emitted in the radial direction. The gas passage pattern is introduced and meanders, proceeds to the outer peripheral side, meanders again from the outer peripheral part, returns to the center side, and forms a gas passage pattern that enters another specific peripheral through-hole 33a, 33d, 33e, 33h different from the previous one. is there.
Therefore, in the case of a stacked body in which cells composed of the gas separator plate 30 and the cell constituting plate shown in FIG. 5 are stacked, the oxidizing gas is supplied from the central through hole 32 and discharged to the cell outer peripheral side in an open gas flow configuration. Then, the fuel gas is supplied from the peripheral through holes 33b, 33c, 33f, and 33g, and is collected in a closed gas flow configuration that enters another specific peripheral through hole 33a, 33d, 33e, and 33h. .
In the gas separator plate 40 shown in FIG. 6, each passage is formed such that both the fuel gas passage pattern and the oxidizing gas passage pattern have a closed gas flow configuration. The configuration shown in FIG. 6A is a fuel gas passage pattern in which one center through-hole 42 having a relatively large inner diameter is provided at the center of the metal substrate 41, and six peripheral through-holes 43a to 43 having a small inner diameter are arranged therearound. 43f, a gas passage hole 44 is formed, and a substantially semicircular convex portion 44a is formed around the peripheral through holes 43b and 43c except for a part of the peripheral through hole 43a. The semi-circular convex portions 44b are formed around the peripheral through-holes 43e and 43f except for a part of the central through-hole 42, and the central through-hole 42 is sandwiched between the two substantially semi-circular convex portions 44a and 44b to form a diametrical passage. Is formed.
The semi-circular convex portions 44a and 44b on the metal substrate 41 have an arc-shaped convex portion 45 provided on the outer peripheral side thereof connected to the radial convex portion 46, and a ring-shaped convex portion on the outer peripheral portion. 47 is formed, when the fuel cell electrode layer and the oxidant-side electrode layer are formed on the main surface of each substrate with a gas passage hole in which a through-hole of the same configuration is arranged, and the cell-containing plate is laminated, The fuel gas supplied from the central through-hole 42 is meandered along the radial convex portion 46 and the arc-shaped convex portion 45, returned to the central portion again, and collected from the specific peripheral through-holes 43a, 43d.
The configuration shown in FIG. 6B is a passage pattern for the oxidizing gas formed on the other main surface of the gas separator plate 40, the arrangement of the through holes is exactly the same, the periphery of the central through hole 42 and all the peripheral through holes. A substantially circular convex portion 48 is formed so as to cover the periphery of 43a to 43f. However, the convex portion is removed around the peripheral through holes 43b, 43c, 43e, and 43f so that the outer peripheral side is desired. Is formed. By connecting the convex portion 48 and the arc-shaped convex portion 45 between the peripheral through holes 43b and 43c and between the peripheral through holes 43e and 43f which are arranged adjacent to each other by the radial convex portion 46, the outer peripheral ring-shaped convex portion 47 is formed. A passage meandering on the semicircular main surface is formed between the two.
In the oxidizing gas passage pattern shown in FIG. 6B, for example, the oxidizing gas introduced from the surrounding through-hole 43e is meandered along the radial convex portion 46 and the arc-shaped convex portion 45, and is returned to the central portion and introduced again. It is discharged and collected from the peripheral through hole 43f adjacent to the side.
Therefore, in the case of a stacked body in which the cells composed of the gas separator plate 40 and the cell constituting plate shown in FIG. 6 are arranged in a stack, the fuel gas is supplied from the central through-hole 42 and the specific peripheral through-hole 43a is formed in a closed gas flow configuration. , 43d, and the oxidant gas is supplied from the peripheral through holes 43b, 33e, and is recovered in a closed gas flow configuration that enters another specific peripheral through hole 43c, 43f.
Further, the gas passage pattern having the closed gas flow configuration shown in FIG. 6B can be formed on both surfaces of the gas separator plate 50, so that the oxidizing gas and the fuel gas can each be closed gas flows.
That is, as shown in FIGS. 7A and 7B, the gas is formed by one central through hole 52 having a relatively large inner diameter provided at the center of the metal substrate 51 and eight peripheral through holes 53a to 53h having a small inner diameter disposed therearound. A passage hole portion 54 is formed, and convex portions 55a and 55b for determining connection and cutoff between the through hole and the passage are arranged so as to surround the center through hole 52 and the surrounding through holes 53a to 53h.
In FIG. 7A, the convex portion 55a is formed around the peripheral through holes 53a, 53h, 53d, and 53e so that the convex portion is removed so that the outer peripheral side is desired. The convex portion 55a and the arc-shaped convex portion 56 are connected to each other by the radial convex portion 57 between the outer peripheral ring-shaped convex portion 58 and the outer peripheral ring-shaped convex portion 58 by meandering on the semicircular main surface. A passage is formed.
With this configuration, the pattern of FIG. 7A can be used as a gas passage for the oxidizing gas, and as shown in FIG. 7B, the pattern of the convex portion 55a of FIG. 7A is changed so as to change the surrounding through hole communicating with the passage. With the configuration of the convex portion 55b shifted by 90 degrees, the fuel gas can be made a closed gas flow between the peripheral through holes 53b and 53c and between the peripheral through holes 53f and 53g different from FIG. 7A.
The gas separator plate 60 shown in FIG. 8 pursues the advantage of forming gas passages on both surfaces of a metal plate by etching to the utmost. In other words, according to the type of supply gas, the pressure and flow rate of the gas, etc., select a flow path pattern that takes into account the uniform flow without stagnation to improve the reaction efficiency and a pattern that demonstrates sufficient current collection performance. The metal plate is etched on both sides.
Etching can be performed in an arbitrary pattern and precisely as described above, and an interconnector having a fine current pattern and excellent current collecting performance and gas diffusivity can be manufactured.
FIG. 8 shows an oxidizing gas passage pattern, which is basically the same as the oxidizing gas passage pattern of the open gas flow configuration that flows from the center to the outer peripheral portion shown in FIG. 5A. It is composed of A gas passage hole is formed by one central through-hole having a large inner diameter provided at the center of the metal substrate and eight peripheral through-holes 63 having a small inner diameter arranged around the central through-hole. As shown in FIG. 5A, a large number of small projections arranged concentrically are connected in a zigzag pattern, and thin crank-shaped projections are radially arranged at predetermined intervals to form a thin ring from the center through hole. An oxidant gas passage extending to the outer periphery through the crank-shaped passage is formed, and has a so-called heline bone pattern formed by a series of thin crank-shaped protrusions (grooves).
Although not shown, a fuel gas passage pattern is provided on the main surface on the back surface side of the metal substrate shown in FIG. 8, but also a thin crank-shaped convex portion is similarly formed, and a continuous return passage is provided on the outer peripheral portion. Thus, a closed gas flow in which the fuel gas exiting from the peripheral through-hole reciprocates in the passage in the shape of a heirbone and returns to the adjacent peripheral through-hole can be formed.
Example
Example 1
As a cell configuration plate 1 having the structure shown in FIG. 1, a fuel-side electrode film made of a 0.015 mm thick Ni / YSZ cermet material was formed on both sides of a stabilized zirconia (8YSZ) substrate having a diameter of 60 mm and a thickness of 0.1 mm. 015mm (La, Sr) CrO 3 An oxidant-side electrode film of the material was formed.
As a gas separator plate 10 having the structure shown in FIG. 2, a gas passage pattern is formed on both surfaces of a ferrite steel substrate having a diameter of 60 mm and a thickness of 0.8 mm by etching so that the substrate thickness is 0.2 mm and the passage height is 0.3 mm. It was formed and manufactured.
The obtained cell constituting plates 1 and the gas separator plates 10 are alternately laminated, a shaft is inserted into the central through holes 3, 12, and 22, and a ferrite steel fastening disc is brought into contact with both ends of the laminated body. The nuts are fixed to the shaft, and the plates to be laminated are brought into contact with the gas passage holes 5, 14, and 24 and fastened to produce a cell stack unit having 30 steps of cells. The oxidizing gas and the fuel gas exhausted in an open gas flow configuration are disposed inside the cylinder. When the cell constituting plates 1 and the gas separator plates 10 were alternately laminated, the gas passage portion was sealed only by contact between the materials, and no sealing material was used.
In the fuel cell having the above configuration, the stack unit itself is basically two points of a cell configuration plate and a gas separator plate as constituent components, and the number of parts such as a fastening shaft, a disk and an outer cylinder is extremely small, Since the cell constituting plates having a thickness of 0.13 mm and the gas separator plates having a thickness of 0.8 mm were alternately laminated, a very small and lightweight fuel cell could be obtained.
Example 2
As a cell configuration plate 1 having the structure shown in FIG. 1, a stabilized zirconia (8YSZ) film having a thickness of 0.008 mm is formed on one surface of a fuel-side electrode substrate made of a Ni / YSZ cermet material having a diameter of 120 mm and a thickness of 0.5 mm. And a 0.05 mm thick (La, Sr) CrO 3 An oxidant-side electrode film of the material was formed to prepare a cell constituting plate having a total thickness of 0.558 mm.
Using the gas separator plate 10 made of the same material and configuration as in Example 1, the above-mentioned cell component plates were alternately laminated, and the same cell stack unit as in Example 1 described above with reference to FIG.
The linear expansion coefficient (0 to 1000 ° C., α × 10 -6 ) Is Ni / YSZ cermet material of 12.5, (La, Sr) MnO 3 The material is 12.5, the ferrite steel is 12.7, which is the same for each material, and the stabilized zirconia material is 10.3. Since this is used as a thin film, the coefficient of linear expansion is observed along with the thickness in the stacking direction. And the basic structure in which the disks are stacked and fastened at the center is excellent in thermal cycle resistance.
Using air (including water vapor of 1 to 10 wt%) as the oxidizing gas and hydrogen as the fuel gas, operating at a pressure of 500 Ps and a reaction temperature of 700 to 800 ° C., and measuring the power generation efficiency, the combustion of the gas was Although it is an open gas flow configuration that is one time and disadvantageous in efficiency, a power generation efficiency of 30 to 42% was obtained.
Example 3
A gas separator plate 30 having the same material and dimensions as in Example 1 and having the configuration shown in FIG. 5 and a cell configuration plate having a gas passage portion similar to the above were prepared to produce a cell stack unit having 30 cells. A fuel cell was constructed in which the fuel gas was recombustible in a closed gas flow configuration and the oxidizing gas was exhausted out of the cell in an open gas flow configuration and recovered in the cylinder. . When the cell constituting plates 1 and the gas separator plates 10 were alternately stacked, the gas passages were sealed only by contact between the materials, and no sealing material was used.
Using air (including water vapor of 1 to 10 wt%) as the oxidizing gas and hydrogen as the fuel gas, operating at a pressure of 1000 Ps and a reaction temperature of 700 to 800 ° C., and measuring the power generation efficiency, it was found that the power generation efficiency was 38 to 45%. Efficiency was obtained.
Further, the entire unit was further heated to 200 ° C. from the operating temperature state, and the presence or absence of leakage of fuel gas flowing in a closed gas flow configuration in the cell stack unit was observed. It was confirmed that no leakage was observed at all.
Industrial applicability
In the fuel cell according to the present invention, as is apparent from the embodiment, the cell structure plate and the metal gas separator plate can be formed extremely thin by the structure in which the gas passage hole is provided at the center of the substrate. The pitch is set to 2 mm or less, so that the fuel cell can be remarkably reduced in size and weight, and as described above, the number of components is basically as small as two types of two substrates, and the fuel cell can be provided at low cost. Further, according to the present invention, the structure in which the entire stacked unit is fastened by the gas passage hole at the center of each substrate makes it possible to enhance the thermal cycle resistance generated during high-temperature operation.
In addition, since the metal gas separator plate according to the present invention can precisely form a gas passage pattern and a current collecting projection by etching, it is optimal for a gas type in consideration of an open system, a closed system gas flow, a gas pressure, and the like. Gas passage can be set, thereby reducing gas pressure loss and improving power generation efficiency.
In particular, the metal gas separator plate can be formed with a fuel gas passage and an oxidizing gas passage pattern on both surfaces thereof. As shown in the examples, a metal plate having a plate thickness of 1 mm or less has a groove depth and a groove width. Since grooves each having a diameter of 0.5 mm or less are formed at a pitch of 2 mm or less on each main surface, an optimal passage pattern for each gas flow is obtained, so that the weight of the plate is remarkably reduced. Since the number of stacked cells can be reduced, the weight of the stacked cell stack units can be reduced.
Furthermore, when the ferrite steel of the example or the like is used for the metal gas separator plate, it is possible to approximate the linear expansion coefficient with other electrode materials, and the cell stack unit itself is fastened at the gas passage hole in the center. Thermal cycle resistance can be enhanced in combination with the support.
[Brief description of the drawings]
FIG. 1A is a front explanatory view of a cell constituting plate according to the present invention, and FIG. 1B is a side explanatory view.
FIG. 2A is an explanatory front view of a gas separator plate according to the present invention, and FIG.
FIG. 3 is an exploded explanatory view showing a laminated structure of a cell constituting plate and a gas separator plate according to the present invention.
FIG. 4 is an exploded explanatory view showing another laminated structure of the cell constituting plate and the gas separator plate according to the present invention.
FIG. 5A is a front view of another gas separator plate according to the present invention, and FIG. 5B is a back side view.
FIG. 6A is a front view of another gas separator plate according to the present invention, and FIG. 6B is a back side view.
FIG. 7A is a front view of another gas separator plate according to the present invention, and FIG. 7B is a back side view.
FIG. 8 is an explanatory front view of another gas separator plate according to the present invention.

Claims (13)

中心軸と同心配置の中心貫通孔とその周囲に設ける複数個の周囲貫通孔とから形成される通路孔部を円板中心部に有したセル構成板と、前記と同様構成の通路孔部を円板中心部に有してその外周側主面に反応用ガス通路を有するガスセパレータ板とを積層した積層体であり、各貫通孔のいずれか又は全てを燃料又は酸化剤ガスのガス通路となし、かつ通路孔部に形成するガス通路パターンにより積層板間の反応用ガス通路とを接続又は遮断した構成からなる燃料電池。A cell constituting plate having a passage hole formed at the center of the disc formed by a center through hole concentrically arranged with the center axis and a plurality of peripheral through holes provided therearound, and a passage hole having the same configuration as described above. A laminate having a gas separator plate having a reaction gas passage on its outer peripheral side main surface, which is provided at the center of the disc, and any or all of the through holes are provided with a fuel or oxidant gas gas passage. A fuel cell having a configuration in which a gas passage pattern formed in a passage hole portion connects or disconnects a reaction gas passage between laminated plates. 中心貫通孔と周囲貫通孔のうち少なくとも1孔を積層体の締結用シャフトの挿通用孔として専用使用またはガス通路と兼用使用する請求項1に記載の燃料電池。The fuel cell according to claim 1, wherein at least one of the central through-hole and the peripheral through-hole is used for exclusive use or as a gas passage as an insertion hole for the fastening shaft of the laminate. 中心貫通孔と周囲貫通孔のうち少なくとも1孔に熱交換手段を配置する請求項1に記載の燃料電池。The fuel cell according to claim 1, wherein heat exchange means is arranged in at least one of the center through hole and the peripheral through hole. 燃料ガス及び酸化剤ガスが、中央の通路孔部から積層板間の反応用ガス通路を経て積層体外周部へ放出されるオープンガス流構成の請求項1に記載の燃料電池。2. The fuel cell according to claim 1, wherein the fuel gas and the oxidizing gas have an open gas flow configuration in which the fuel gas and the oxidizing gas are discharged from the central passage hole to the outer periphery of the laminate through the reaction gas passage between the laminates. 燃料ガス及び酸化剤ガスが、中央の通路孔部から積層板間の放射方向の反応用ガス通路を経て積層体外周側から再度中央の通路孔部へ戻るクローズドガス流構成の請求項1に記載の燃料電池。2. The closed gas flow structure according to claim 1, wherein the fuel gas and the oxidizing gas return from the outer peripheral side of the laminated body to the central passage hole portion through the reaction gas passage in the radial direction between the laminated plates from the central passage hole portion. Fuel cell. 燃料ガスと酸化剤ガスのいずれか一方が、中央の通路孔部から積層板間の反応用ガス通路を経て積層体外周部へ放出されるオープンガス流構成であり、前記の残る他方が、中央の通路孔部から積層板間の放射方向の反応用ガス通路を経て積層体外周側から再度中央の通路孔部へ戻るクローズドガス流構成である請求項1に記載の燃料電池。One of the fuel gas and the oxidizing gas has an open gas flow configuration in which the gas is discharged from the central passage hole to the outer periphery of the laminate through the reaction gas passage between the laminates, and the remaining one is the center. 2. The fuel cell according to claim 1, wherein the fuel cell has a closed gas flow configuration that returns from the outer peripheral side of the laminated body to the central passage hole through the reaction gas passage in the radial direction between the laminated plates from the passage hole of the laminated body. 燃料ガスと酸化剤ガスのいずれか一方が、積層体外周部から積層板間の反応用ガス通路を経て中央の通路孔部へ導入されるフローインガス流構成であり、前記の残る他方が、中央の通路孔部から積層板間の放射方向の反応用ガス通路を経て積層体外周側から再度中央の通路孔部へ戻るクローズドガス流構成である請求項1に記載の燃料電池。Either the fuel gas or the oxidizing gas is a flow-in gas flow configuration that is introduced from the outer peripheral portion of the laminate to the central passage hole through the reaction gas passage between the laminates, and the remaining other is 2. The fuel cell according to claim 1, wherein the fuel cell has a closed gas flow configuration that returns from the outer peripheral side of the laminate to the central passage hole again from the central passage hole through the reaction gas passage in the radial direction between the laminated plates. 3. セル構成板が、燃料側電極基板、固体電解質基板、酸化剤側電極基板の順に積層した積層基板からなり、該基板の軸中心部に通路孔部を形成した請求項1に記載の燃料電池。2. The fuel cell according to claim 1, wherein the cell constituting plate is formed of a laminated substrate in which a fuel-side electrode substrate, a solid electrolyte substrate, and an oxidant-side electrode substrate are laminated in this order, and a passage hole is formed in the center of the axis of the substrate. セル構成板が、燃料側電極層、固体電解質層、酸化剤側電極層の順に、前記のいずれかの材料基板の両面又は片面に各材料層を成膜して積層基板とした請求項1に記載の燃料電池。The cell constituting plate according to claim 1, wherein each of the material layers is formed on both or one side of the material substrate in the order of a fuel-side electrode layer, a solid electrolyte layer, and an oxidant-side electrode layer to form a laminated substrate. The fuel cell as described. ガスセパレータ板は、通路孔部の外周側の各片方主面に反応用の燃料ガス通路又は酸化剤ガス通路パターンのいずれかを配置形成するか、あるいは両方主面に反応用の燃料ガス通路と酸化剤ガス通路パターンをそれぞれ配置形成した請求項1に記載の燃料電池。The gas separator plate may be formed with either a fuel gas passage for reaction or an oxidizing gas passage pattern on one main surface on the outer peripheral side of the passage hole, or a fuel gas passage for reaction on both main surfaces. 2. The fuel cell according to claim 1, wherein the oxidant gas passage patterns are arranged and formed. ガスセパレータ板が金属又は合金材からなり、反応用ガス通路パターンが主面にエッチングで形成された請求項10に記載の燃料電池。The fuel cell according to claim 10, wherein the gas separator plate is made of a metal or an alloy material, and the reaction gas passage pattern is formed on the main surface by etching. ガスセパレータ板が金属又は合金材からなり、反応用ガス通路パターンを、金属又は合金材のメッシュ部材を配置して形成した請求項10に記載の燃料電池。11. The fuel cell according to claim 10, wherein the gas separator plate is made of a metal or an alloy material, and the reaction gas passage pattern is formed by arranging a metal or alloy material mesh member. ガスセパレータ板が金属又は合金材からなり、反応用ガス通路パターンを、金属又は合金材の打ち抜き又はエッチング部材を配置して形成した請求項10に記載の燃料電池。The fuel cell according to claim 10, wherein the gas separator plate is made of a metal or an alloy material, and the reaction gas passage pattern is formed by piercing or etching a metal or alloy material.
JP2003517971A 2001-07-31 2002-07-30 Fuel cell Pending JPWO2003012903A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001232029 2001-07-31
JP2001232029 2001-07-31
PCT/JP2002/007752 WO2003012903A1 (en) 2001-07-31 2002-07-30 Fuel cell

Publications (1)

Publication Number Publication Date
JPWO2003012903A1 true JPWO2003012903A1 (en) 2004-11-25

Family

ID=19064004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003517971A Pending JPWO2003012903A1 (en) 2001-07-31 2002-07-30 Fuel cell

Country Status (4)

Country Link
US (1) US20040234836A1 (en)
EP (1) EP1422774A4 (en)
JP (1) JPWO2003012903A1 (en)
WO (1) WO2003012903A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445814A4 (en) * 2001-10-26 2006-04-26 Sumitomo Prec Products Company Fuel cell
JP4669935B2 (en) * 2003-04-21 2011-04-13 住友精密工業株式会社 Fuel cell
US7297428B2 (en) 2003-10-31 2007-11-20 3M Innovative Properties Company Registration arrangement for fuel cell assemblies
JP4617711B2 (en) * 2004-04-30 2011-01-26 日産自動車株式会社 Fuel cell
JP4972861B2 (en) * 2004-12-21 2012-07-11 日産自動車株式会社 Method for starting fuel cell stack structure and fuel cell stack structure
FR2891950B1 (en) * 2005-10-11 2014-05-30 Commissariat Energie Atomique FUEL CELL SEALED STACK
JP5087894B2 (en) 2005-10-28 2012-12-05 日産自動車株式会社 Fuel cell stack structure
KR100755620B1 (en) * 2006-04-18 2007-09-06 삼성전기주식회사 High-performance micro fuel cells
JP5111810B2 (en) * 2006-08-15 2013-01-09 本田技研工業株式会社 Fuel cell
JP5269470B2 (en) * 2008-04-28 2013-08-21 本田技研工業株式会社 Fuel cell
JP5613392B2 (en) * 2009-09-08 2014-10-22 本田技研工業株式会社 Fuel cell stack
JP5613391B2 (en) * 2009-09-08 2014-10-22 本田技研工業株式会社 Fuel cell
ES2397144B1 (en) * 2010-07-16 2014-01-21 Consejo Superior De Investigaciones Científicas (Csic) FUEL BATTERY PLATE WITH FLOW GEOMETRY IN THE FORM OF "FISH SPINE".
EP3324470B1 (en) 2015-07-16 2019-08-28 Sumitomo Electric Industries, Ltd. Fuel cell
KR102546581B1 (en) 2015-07-16 2023-06-21 스미토모덴키고교가부시키가이샤 Fuel cell
CN108604690B (en) * 2016-01-29 2020-11-10 住友电气工业株式会社 Fuel cell
CA3062176C (en) * 2017-05-04 2024-01-23 Versa Power Systems Ltd. Compact high temperature electrochemical cell stack architecture
KR102587080B1 (en) * 2017-12-14 2023-10-10 현대자동차주식회사 Fuel cell stack
JP7188442B2 (en) 2018-05-01 2022-12-13 住友電気工業株式会社 Fuel cell
JP6960886B2 (en) * 2018-06-21 2021-11-05 本田技研工業株式会社 Fuel cell module and fuel cell system
JP7009317B2 (en) * 2018-06-21 2022-01-25 本田技研工業株式会社 Fuel cell module and fuel cell system
DE102019002310A1 (en) * 2019-03-29 2020-10-01 Daimler Ag Separator plate for a fuel cell
EP4220785A2 (en) * 2019-07-16 2023-08-02 CH Innovations Inc. Compact fuel cell modules and assemblies

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284362A (en) * 1989-04-25 1990-11-21 Fuji Electric Co Ltd Solid electrolyte type fuel cell
DE59108285D1 (en) * 1990-08-27 1996-11-21 Sulzer Innotec Ag Heat balance in solid electrolyte fuel cells
IT1270878B (en) * 1993-04-30 1997-05-13 Permelec Spa Nora IMPROVED ELECTROCHEMISTRY CELL USING ION EXCHANGE MEMBRANES AND METAL BIPOLAR PLATES
DK0746879T3 (en) * 1994-03-21 2000-05-08 Ztek Corp Electrochemical converter with optimum pressure distribution
US5948221A (en) * 1994-08-08 1999-09-07 Ztek Corporation Pressurized, integrated electrochemical converter energy system
WO1998035398A1 (en) * 1997-02-11 1998-08-13 Bossel Ulf G Fuel cell stack with solid electrolytes and their arrangement
JP3769958B2 (en) * 1998-12-24 2006-04-26 三菱電機株式会社 Fuel cell
US6432567B1 (en) * 1999-03-17 2002-08-13 Sulzer Hexis Ag Fuel cell battery with afterburning at the periphery of a cell stack
US6361892B1 (en) * 1999-12-06 2002-03-26 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
US20020004155A1 (en) * 2000-05-01 2002-01-10 Haltiner Karl Jacob Etched interconnect for fuel cell elements
JP2002008681A (en) * 2000-06-27 2002-01-11 Sumitomo Precision Prod Co Ltd Fuel cell

Also Published As

Publication number Publication date
EP1422774A4 (en) 2006-04-26
WO2003012903A1 (en) 2003-02-13
US20040234836A1 (en) 2004-11-25
EP1422774A1 (en) 2004-05-26

Similar Documents

Publication Publication Date Title
JPWO2003012903A1 (en) Fuel cell
US5770327A (en) Solid oxide fuel cell stack
US7718295B2 (en) Method for preparing an interconnect
JPWO2003043110A1 (en) Fuel cell
AU2005320012B2 (en) Fuel cell system
US20070243441A1 (en) Fuel Cell and Fuel Cell Stack
EP2250699A1 (en) Solid oxide fuel cell manifold and corresponding stack
AU2003243009B2 (en) Fuel cell and fuel cell stack
JP2002151106A (en) Fuel cell
EP1969659A1 (en) Fuel cell and fuel cell stack
JP4404331B2 (en) Fuel cell
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
US8283086B2 (en) Fuel cell and fuel cell stack
JP2007103343A (en) Flat laminated fuel cell stack and flat laminated fuel cell
JP2002008681A (en) Fuel cell
JP3096721B2 (en) Disc-stacked solid electrolyte fuel cell
JPH1145727A (en) Solid electrolytic fuel cell
JP2004235060A (en) Fuel cell
JP2004281353A (en) Separator for fuel cell
US8507145B2 (en) Fuel cell and method of producing the fuel cell
JPH06310164A (en) Solid electrolyte type fuel cell
US8557467B2 (en) Fuel cell and fuel cell stack
EP4070399A1 (en) Cell unit and cell stack
JP3153901B2 (en) Disc-stacked solid electrolyte fuel cell
JP4669935B2 (en) Fuel cell