JPWO2002053825A1 - Acrylic short fiber and method for dyeing acrylic short fiber - Google Patents

Acrylic short fiber and method for dyeing acrylic short fiber Download PDF

Info

Publication number
JPWO2002053825A1
JPWO2002053825A1 JP2002554314A JP2002554314A JPWO2002053825A1 JP WO2002053825 A1 JPWO2002053825 A1 JP WO2002053825A1 JP 2002554314 A JP2002554314 A JP 2002554314A JP 2002554314 A JP2002554314 A JP 2002554314A JP WO2002053825 A1 JPWO2002053825 A1 JP WO2002053825A1
Authority
JP
Japan
Prior art keywords
acrylic short
dyeing
dry heat
shrinkage
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002554314A
Other languages
Japanese (ja)
Inventor
二之宮 清道
Original Assignee
カネボウ株式会社
カネボウ合繊株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネボウ株式会社, カネボウ合繊株式会社 filed Critical カネボウ株式会社
Publication of JPWO2002053825A1 publication Critical patent/JPWO2002053825A1/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/70Material containing nitrile groups
    • D06P3/76Material containing nitrile groups using basic dyes

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

本発明の目的は、小ロット多品種の染色に適した染色方法によって製造することのできる、高い乾熱収縮性を維持したアクリル系短繊維を得ることである。本発明は、カチオン染料で染色されたアクリル系短繊維であって、120〜150℃で20〜50%の乾熱収縮性を発揮するアクリル系短繊維が、80℃以下の温浴にてカチオン染料で染色されたものであることを特徴とするアクリル系短繊維であり、およびその製造方法である。本発明のアクリル系短繊維は、濃色、淡色に拘わらず、目標の色相及び、堅牢度を有し、かつ残留収縮率の高いものである。その結果、乾熱条件下で収縮させる用途にも使用可能である。An object of the present invention is to obtain an acrylic short fiber which can be produced by a dyeing method suitable for dyeing small lots of various varieties while maintaining high dry heat shrinkability. The present invention relates to an acrylic short fiber dyed with a cationic dye, wherein the acrylic short fiber exhibiting a dry heat shrinkage of 20 to 50% at 120 to 150 ° C. is dried in a warm bath at 80 ° C. or lower. Acrylic staple fibers characterized by being dyed with, and a method for producing the same. The acrylic short fiber of the present invention has a target hue and fastness irrespective of a dark color or a light color, and has a high residual shrinkage. As a result, it can be used for applications that shrink under dry heat conditions.

Description

技術分野
本発明は、温浴染色によっても、乾熱収縮性の低下が少ない、アクリル系短繊維及びアクリル系短繊維の染色方法に関するものである。
背景技術
アクリル系繊維の染色方法としては、沸騰浴中でカチオン染料を吸着させる方法や、湿式紡糸法において紡糸口金から押し出された直後にカチオン染料水溶液に浸して染料を物理的に繊維間に練り込ませるいわゆる原着加工法等がある。
この沸騰浴中でカチオン染料を繊維に吸着させる方法は、原着加工法に比べて小ロット多品種の染色に適している反面、高温で沸騰させる際に繊維が収縮しきってしまい、染色後にはアクリル原綿の乾熱収縮性が殆ど残らないという欠点がある。これは、乾熱条件下でわざと収縮させる用途に使用できないことを意味している。
一方、原着加工法では、カチオン染料を紡糸直後の繊維構造が柔軟なうちに、繊維の内部に染料を押し込むため染色スピードが各段に高く、大量生産向きであり、また、染料吸着後、短繊維にカットされるまでにかけられる熱延伸により、繊維構造にひずみが生じ、カット後の短繊維に、乾熱収縮性が残存するという利点があるものの、紡糸と熱延伸の間に、染料溶液に通す特別の工程が必要となるため、小ロット多品種の染色に不向きであるという欠点がある。
本発明の目的は、小ロット多品種の染色に適した染色方法によって、高い乾熱収縮性を維持した短繊維を得ることにある。
発明の開示
上述の目的は、乾熱収縮性を発揮するアクリル系短繊維が、80℃以下の温浴にてカチオン染料で染色された、アクリル系短繊維,乾熱収縮性を発揮するアクリル系短繊維が、120〜150℃で20〜50%の乾熱収縮性を満たすものである当該アクリル系短繊維,乾熱残留収縮率が、120〜130℃で14%以上であることを特徴とする当該アクリル系短繊維,アクリル系短繊維を、カチオン染料を用いて温浴染色するアクリル系短繊維の染色方法において、アクリル系短繊維として、120〜150℃で20%〜50%の乾熱収縮性を発揮する短繊維を用い、80℃以下の温浴にて染色することを特徴とするアクリル系短繊維の染色方法,及び、温浴へのアクリル系短繊維の詰め込み密度を、0.2g/cm以上とすることを特徴とする当該アクリル系短繊維の染色方法によって達成される。
発明を実施するための最良の形態
本発明において用いられるアクリル系短繊維は、120〜150℃で20%〜50%の乾熱収縮性を発揮するものであれば特に問わない。
具体的には、例えば下記のような組成のアクリル系短繊維が挙げられるが、これに限定されるものではない。
(Aタイプ)
下記の(I)及び(II)の重合体溶液を、公知のあらゆる方法で混合して紡糸原液とし、紡糸延伸、一次延伸、乾熱延伸など必要に応じて所定の延伸をかけ、常法にて、短繊維化することによって得ることができる。
この繊維は、乾熱収縮率が20%以上有するものである。
(I)アクリロニトリル40重量%以上とハロゲン含有モノマー及び20〜60重量%とからなる重合体;60〜95重量部
(II)アクリロニトリル30〜75重量%とメチルアクリレート25〜70重量%とからなる重合体;5〜40重量部
なお、重合体(II)がスルホン酸含有モノマーを0〜10重量%含むようにしたものも、使用できる。
(Bタイプ)
また、別の態様として、上記のメチルアクリレート25〜70重量%に変えて、塩化ビニル25〜70重量%を用いたものも、使用できる。
この繊維も、乾熱収縮率が20%以上有するものである。
(Cタイプ)
さらに別の態様として、上記の重合体(I)中のハロゲン含有モノマーを20〜54重量%とし、スルホン酸含有モノマーを0.5〜6重量%とし、また上記の重合体(II)中のアクリロニトリルを20〜60重量%とし、メチルアクリレートの代わりに(メタ)アクリル酸エステル35〜78重量%を用い、さらにスルホン酸含有モノマーを2〜5重量%含むようにしたものも、使用できる。
この繊維も、乾熱収縮率が20%以上有するものである。
120〜150℃で20%〜50%の乾熱収縮性を発揮するアクリル系短繊維の具体的な製造方法をAタイプの一例を下記に詳述するが、Bタイプの場合やCタイプの場合も、ほぼ同様にして製造することができる。
重合体(I)の製造は、アクリロニトリル40重量%以上とハロゲン含有モノマー20〜60重量%及び0.5〜5重量%のスルホン酸含有モノマーを水系乳化重合又は溶液重合という公知の方法にて重合し、残存モノマーを除去後、紡糸溶剤へ溶解或いはそのまま紡糸原液とする工程が一般的であるが、以下の工程にて重合した重合体が紡糸時のボイドの生成が少なく染色後の光沢が失なわれないので好ましい。
重合体(I)は塩化ビニル、塩化ビニリデン、或いは臭化ビニル又はそれらの混合物からなるハロゲン含有モノマー20〜60重量%とアクリロニトリルと少量の例えば0.5〜5重量%のアリルスルホン酸ナトリウム、スチレンスルホン酸ナトリウム或いは2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム等の染色性改良モノマーをジメチルホルムアミド、ジメチルスルホキシド或いはジメチルアセトアミド等の有機溶剤中にてアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等の重合開始剤にて重合させる。
特に好ましくは、アリルスルホン酸ナトリウム5〜40重量%、アクリロニトリル10〜85重量%、ハロゲン含有モノマー10〜50重量%の組成を有する重合体をジメチルホルムアミド中にて上記重合方法にて重合し、その重合体を含有したジメチルホルムアミド溶液中にて更にハロゲン含有モノマー20〜60重量%及びアクリロニトリル及び必要ならばアリルスルホン酸ナトリウムを着色防止剤等他の添加剤の存在下で重合させる。
得られた重合ドープ中の未反応モノマーの除去をロータリーエバポレーター或いは回転薄膜式蒸発機を用いてなるべく低温にて行ない、その後重合体濃度を20〜30重量%に調整し、添加剤の添加等を行ない重合体(I)の紡糸原液を得る。
一方、重合体(II)はアクリロニトリル30〜75重量%、メチルアクリレート70〜25重量%及びスルホン酸含有モノマー0〜10重量%の重合体をジメチルホルムアミド中にて上記重合法にて重合し、得られた重合ドープ中の未反応モノマーを除去し、その後重合体(II)の濃度を20〜30重量%に調整する。
次いで、重合体(I)と(II)の溶液を60〜95重量部:5〜40重量部の割合で混合して(混合する方法は公知のあらゆる方法が採用できる。)、紡糸原液を得る。紡糸原液は通常の紡糸口金より凝固浴中へ紡出される。凝固浴は溶剤回収のコスト及び回収プロセスの簡略化の為に紡糸原液の有機溶剤と同じ有機溶剤の水溶液とするのが好ましく、有機溶剤濃度は40〜70重量%、好ましくは50〜65重量%であり、温度は15〜35℃、好ましくは18〜28℃とする。
紡糸原液を凝固浴中へ紡出し、凝固糸状は通常溶剤濃度の順次低下する数値の紡糸浴を通じて紡糸延伸をうける。紡糸延伸倍率は通常3倍以上、好ましくは4〜10倍、更に好ましくは5〜8倍である。紡糸延伸後50℃以上の水洗槽にて水洗し、前オイル付着後ホットローラー型或いは熱風乾燥機との併用の乾燥機にて乾燥、焼きつぶしをうける。この乾燥工程では、定長緊張乾燥よりも10%前後の若干の収縮を行なわせた方が乾燥、焼きつぶし効果及び機械的な無理の防止などの点で好ましい。
通常のレギュラーアクリル繊維では乾燥前に一次延伸を行なう方法が多く用いられているが、高収縮繊維の製造においては、乾燥後に一次延伸を行なった方が収縮性能、繊維の光沢や染色性という点でより効果的である。
一次延伸は湿熱60〜110℃、好ましくは80〜100℃であり、一次延伸倍率は重合体(I)中のハロゲン含有モノマーの量及び繊維中の重合体(II)の含有率によって異なってくるが、収縮性能、強度、光沢、染色性といった繊維性能及び操業性、生産性等より過延伸領域に入る直前の延伸倍率で行なう方がよい。
一次延伸倍率と繊維性能(ここでは収縮率)との関係をみると、延伸倍率の低いところでは延伸倍率の増加とともに収縮率も増大していくが、延伸倍率がある倍率以上になると収縮率が飽和に達したり、或いは逆に延伸倍率の低下が生じる。この延伸倍率以上を過延伸領域と呼ぶ。この過延伸領域では収縮率の飽和及び低下はもちろんであるが、繊維の強伸度の低下、染色性の低下、単糸切れ等の欠点が発生してくる。
乾燥焼きつぶしの後かつ一次延伸前に一度大きな連続収縮例えば20〜50%の収縮を行ない、次いで一次延伸を行なうという工程もとりうる。
一次延伸後の繊維は後オイル付着、機械クリンプの付与を行ない、100℃、好ましくは80℃以下の温度で収縮が生じないよう乾燥する。
次いで、常法により、適当な繊維長にカットすることにより短繊維化する。
但し、Cタイプの場合には、一次延伸後、クリンプ付与前に、湿熱収縮・乾熱延伸工程を付与する。
具体的には、一次延伸後、引続き湿熱により繊維を収縮させる。温度は湿熱80℃〜130℃、好ましくは90℃〜115℃で行なう。低温での収縮では望む収縮率が得られない。高温での収縮では繊維間の膠着が激しく繊維物性,操業性に深刻な影響を及ぼす。収縮率は重合体(I)のハロゲン含有モノマーの量および繊維中の重合体(II)の含有率によって異なって来るが収縮性能,繊維性能および操業性,生産性等を考慮すると0.7〜0.95倍程度が好ましい。
この湿熱収縮後、繊維に後オイル付着を行い、乾熱延伸を行う。延伸時の温度は80〜140℃、好ましくは90〜110℃で行なう。延伸温度が低すぎると延伸倍率が充分でなく、低倍率で繊維に白化・単糸切れ等の不都合が生じる。逆に延伸温度が高すぎると単繊維間の膠着,熱による黄変等が見られる他、乾熱収縮性能に悪影響を及ぼす。
以上の方法によって、本発明において染色するための原糸として好適に用いられる、120〜150℃で20%〜50%の乾熱収縮性を発揮するアクリル系短繊維を製造することができる。
本発明で用いられるカチオン染料とは、陽性電荷を持つものであって、スルホン酸基やカルボン酸基等の陰性電荷を持つ繊維に吸着するものであり、特にアクリル系繊維に顕著にイオン吸着する。例えばメーカー名Nichilon染料等が挙げられる。
中でも、低温で染色しても繊維に吸着するスピードが速い染料が好ましく、例えばインデックス・ミクスチャー(I mix.)がC以上のものが好ましく、特にB以上のものが好ましい。
染料の濃度は、特に制限されるものではないが、例えば、繊維重量当たり、5重量%以下が好適に用いられる。
染色温度は、80℃以下であり、好ましくは75℃以下、特に好ましくは70℃以下である。80℃以下の低温で染色することによって、染色後の残留収縮性を高く維持することが可能となる。
染色時間は、一般にされているよりも、30〜50%長くするのが好ましく、例えば、30〜60分程度が好ましいが、これらに限られるものではない。
また、例えば黒などの濃色に染色する場合には、エーテル系シアン化合物等の促染剤を使用することが好ましい。
促染剤の濃度は、特に制限されるものではないが、例えば、繊維重量当たり、10重量%以下が好適に用いられる。また、5重量%以下で、残存収縮の減少を抑えられるため、特に好ましい。
染色の際の、アクリル系短繊維の詰め込み密度は、短繊維の収縮を物理的に抑制し得る程度であることが好ましく、例えば、0.20g/cm以上が好ましく、より好ましくは0.30g/cm以上、更に好ましくは0.35g/cm以上である。但し、物理的に収縮を制限できる効果を奏する点では、0.37g/cm以上,特に0.45g/cm以上であることが好ましい。
染色後のソーピングは、アクリル系短繊維の収縮をできるだけ抑制し得る程度であることが好ましく、例えば、70℃以下で、30分以下であることが好ましい。但し、ソーピング効果を最大限利用する観点からは、65℃以上、20分以上であることが好ましい。
ソーピング後の乾燥は、アクリル系短繊維の収縮防止の観点からは、90℃以下で行うことが好ましい。さらに好ましくは、80℃以下である。
上記の、詰め込み密度,ソーピング条件,乾燥条件を最適化することにより、染色から乾燥までのアクリル系短繊維の収縮率を、5%以下(中・濃色の場合、8%以下)に抑えることが可能となる。
尚、本願発明で用いられるアクリル系短繊維は、他の繊維と混紡した後に、染色することができ、また染色後に、他の繊維と混紡して製品化に用いることもできる。
本発明で得られたアクリル系短繊維は、低温でも高い乾熱収縮性を維持している。特に、乾熱残留収縮率が、120〜130℃で14%以上であるものは、ハイパイル製品に好適である。
実施例
以下に、実施例を示すが、それに先だって、実施例におけるアクリル系短繊維の評価方法を示す。
(洗濯堅牢度)
JIS L 0844 (A−2号)
(水堅牢度)
JIS L 0846 A法
(摩擦堅牢度)
JIS L 0849.1.2 学振型摩擦試験
(耐光堅牢度)
JIS L 0842     (紫外線カーボンアーク灯光試験)
(汗堅牢度)
JIS L 0848 A法
(昇華堅牢度)
JIS L 0879 (乾熱処理に対する堅牢度試験)
(ドライクリーニング堅牢度)
JIS L 0860 A法
(目標色相の達成度)
○;目標とする色相を達成。
×;目標とする色相を未達成。
実施例1
(濃色の染色)
下記の(I)及び(II)の重合体溶液を、公知のあらゆる方法で混合して紡糸原液とし、その紡糸原液で紡糸した糸条を、通常の方法にて紡糸延伸した後乾燥させ、湿熱一次延伸、収縮を経て、オイル付着後の繊維に対して乾熱延伸をかけ、常法にて、短繊維化することによって、150℃・5分間の乾熱条件下で、37%の乾熱収縮性を発揮するアクリル系短繊維を得た。
(I)アクリロニトリル55重量%と、ハロゲン含有モノマーである塩化ビニリデン42重量%及びスルホン酸含有モノマー3重量%とからなる重合体;70重量部
(II)アクリロニトリル50重量%とメチルアクリレート48重量%と、スルホン酸含有モノマー2重量%からなる重合体;30重量部
このアクリル系短繊維を、オーバーマイヤー染色機に0.37g/cmの密度で詰め込み、最高温度72℃にて60分間染色を行った。染料としては、I mix.Bの黒色染料(日成化成株式会社製 Nichilon Black)を、繊維重量当たり4.5重量%の濃度で用い、促染剤として芳香族エーテル系シアン化合物キャリアジンK(日成化成株式会社製)を、繊維重量当たり3.0重量%使用した。
ソーピングは、65℃で30分間行い、90℃で5分間、乾燥を行った。
尚、目標色相は、黒(RAL−K1 RAL9004)である。
実施例2
(中色の染色)
実施例1で用いた、150℃・5分間の乾熱条件下で37%の乾熱収縮性を発揮するアクリル系短繊維を、オーバーマイヤー染色機に0.37g/cmの密度で詰め込み、最高温度70℃にて30分間染色を行った。染料としては、I mix.A〜Bの黄色系染料(日成化成株式会社製 Nichilon OrangeGL,Nichilon RedGLおよびNichilon BlueGLのブレンド品)を、繊維重量当たり0.915重量%の濃度で用いた。
ソーピングは、65℃で20分間行い、90℃で5分間、乾燥を行った。
尚、目標色相は、メロンイエロウ(RAL−K1 RAL1028)である。
実施例3
(濃色の染色)
実施例1で用いた、150℃・5分間の乾熱条件下で37%の乾熱収縮性を発揮するアクリル系短繊維を、オーバーマイヤー染色機に0.37g/cmの密度で詰め込み、最高温度70℃にて60分間染色を行った。染料としては、I mix.A〜Bの青色系染料(日成化成株式会社製 Nichilon OrangeGL,Nichilon RedGLおよびNichilon BlueGLのブレンド品)を、繊維重量当たり2.78重量%の濃度で用いた。
ソーピングは、65℃で20分間行い、90℃で5分間、乾燥を行った。
尚、目標色相は、ナイトブルー(RAL−K1 RAL5022)である。
実施例1〜3のそれぞれにおける残留収縮率等を評価した結果を表1に示す。

Figure 2002053825
表1から分かる通り、実施例1〜3のアクリル系短繊維は、目標の色相が得られるとともに、乾熱残留収縮率には余裕があり、ハイパイル,ボア製品用の収縮綿として、好適であった。
また、実施例1〜3のアクリル系短繊維を用いて、製造したハイパイル,ボア製品は、当該アクリル系短繊維が充分に収縮するため、非常に好適な風合いを有していた。
実施例4〜12
(濃色の染色)
実施例1〜3で用いたものと同様の組成を用い、延伸条件を調整して、120・5分間、130℃・5分間、150℃・5分間の乾熱条件下で、26.0%、30.5%、37.1%の乾熱収縮性を発揮するアクリル系短繊維を得た。これを、オーバーマイヤー染色機に0.45g/cmの密度で詰め込み、最高温度65℃にて40分間染色を行った。染料の種類,染色濃度としては、表2記載のものを用いた。
Figure 2002053825
残留収縮率等を評価した結果を表3に示す。
Figure 2002053825
表3から分かるとおり、本発明の方法で染色したアクリル系短繊維は、染色後も、充分な乾熱収縮性を有しており、特に、ハイパイル製品にも好適な14%以上の乾熱残留収縮性を有するものも得られた。また、染色後の堅牢度を、ソーピングをしない場合とソーピングをした場合について、それぞれ評価した結果を、表4−1、表4−2に示す。
Figure 2002053825
Figure 2002053825
表4−1、表4−2から分かるとおり、本発明の方法で染色したアクリル系短繊維は、染色堅牢度も充分であった。
比較例1〜2
実施例4で得られたアクリル系短繊維を、85℃及び90℃の温浴で処理した結果を、表5に示す。
Figure 2002053825
表5から分かる通り、80℃を超える高温で処理した場合、処理によって、かなり収縮が進み、処理後の乾熱残留収縮率は、実施例のものにくらべて、劣ってた。
産業上の利用可能性
本発明のアクリル系短繊維は、濃色、淡色に拘わらず、目標の色相及び、堅牢度を有し、かつ残留収縮率の高いものである。その結果、乾熱条件下で収縮させる用途にも使用可能である。TECHNICAL FIELD The present invention relates to an acrylic short fiber and a method for dyeing an acrylic short fiber, which have a small decrease in dry heat shrinkage even by hot bath dyeing.
BACKGROUND ART As a method for dyeing acrylic fibers, a method of adsorbing a cationic dye in a boiling bath, or a method of wet spinning, wherein the dye is physically kneaded between fibers by immersing in a cationic dye aqueous solution immediately after being extruded from a spinneret. There is a so-called soaking process.
The method of adsorbing the cationic dye on the fiber in this boiling bath is more suitable for dyeing small lots of various kinds than the dyeing method, but the fiber shrinks completely when boiled at high temperature, and after dyeing, There is a disadvantage that the dry heat shrinkage of the raw acrylic fiber hardly remains. This means that it cannot be used for purposes of intentionally shrinking under dry heat conditions.
On the other hand, in the soaking process, while the fiber structure immediately after spinning the cationic dye is flexible, the dyeing speed is higher for each step of pushing the dye into the fiber, making it suitable for mass production. Although the fiber structure is distorted due to the heat drawing applied before cutting into short fibers, the cut short fibers have the advantage of remaining dry heat shrinkage, but the dye solution is drawn between spinning and hot drawing. However, it requires a special step of passing through a small lot, and thus has a disadvantage that it is not suitable for dyeing small lots of many varieties.
An object of the present invention is to obtain short fibers that maintain high dry heat shrinkability by a dyeing method suitable for dyeing small lots of many types.
DISCLOSURE OF THE INVENTION The object of the present invention is to provide an acrylic short fiber, which is an acrylic short fiber exhibiting dry heat shrinkage, in which acrylic short fiber exhibiting dry heat shrinkage is dyed with a cationic dye in a warm bath at 80 ° C. or lower. The acrylic short fiber, wherein the fiber satisfies a dry heat shrinkage of 20 to 50% at 120 to 150 ° C, and a dry heat residual shrinkage of 14% or more at 120 to 130 ° C. In the method for dyeing acrylic staple fibers, the acrylic staple fibers are subjected to warm bath dyeing using a cationic dye, and the acryl staple fibers have a dry heat shrinkage of 20% to 50% at 120 to 150 ° C. The method for dyeing acrylic short fibers, characterized by dyeing in a warm bath at 80 ° C. or lower using short fibers exhibiting the following properties, and the packing density of acrylic short fibers in the warm bath is 0.2 g / cm 3. Above This is achieved by the method for dyeing acrylic short fibers.
BEST MODE FOR CARRYING OUT THE INVENTION The acrylic short fiber used in the present invention is not particularly limited as long as it exhibits a dry heat shrinkage of 20% to 50% at 120 to 150 ° C.
Specifically, for example, acrylic short fibers having the following composition may be mentioned, but the present invention is not limited thereto.
(A type)
The polymer solutions of the following (I) and (II) are mixed by any known method to obtain a spinning dope, and subjected to predetermined stretching as necessary, such as spinning stretching, primary stretching, dry heat stretching, and the like. Can be obtained by shortening the fiber.
This fiber has a dry heat shrinkage of 20% or more.
(I) a polymer comprising 40% by weight or more of acrylonitrile, a halogen-containing monomer and 20 to 60% by weight; 60 to 95 parts by weight (II) a polymer comprising 30 to 75% by weight of acrylonitrile and 25 to 70% by weight of methyl acrylate 5 to 40 parts by weight A polymer (II) containing sulfonic acid-containing monomer in an amount of 0 to 10% by weight can also be used.
(B type)
Further, as another embodiment, one using 25 to 70% by weight of vinyl chloride instead of the above 25 to 70% by weight of methyl acrylate can also be used.
This fiber also has a dry heat shrinkage of 20% or more.
(C type)
In another embodiment, the content of the halogen-containing monomer in the polymer (I) is 20 to 54% by weight, the content of the sulfonic acid-containing monomer in the polymer (II) is 0.5 to 6% by weight, Acrylonitrile containing 20 to 60% by weight, 35 to 78% by weight of (meth) acrylic acid ester instead of methyl acrylate, and further containing 2 to 5% by weight of a sulfonic acid-containing monomer can also be used.
This fiber also has a dry heat shrinkage of 20% or more.
Specific examples of the method for producing acrylic short fibers exhibiting a dry heat shrinkage of 20% to 50% at 120 to 150 ° C. will be described in detail below with reference to an example of the A type. Can be manufactured in substantially the same manner.
The production of the polymer (I) is carried out by polymerizing acrylonitrile 40% by weight or more and 20 to 60% by weight of a halogen-containing monomer and 0.5 to 5% by weight of a sulfonic acid-containing monomer by a known method called aqueous emulsion polymerization or solution polymerization. After removing the residual monomer, a process of dissolving in a spinning solvent or using the spinning solution as it is is generally performed. However, the polymer polymerized in the following process has few voids during spinning and loses gloss after dyeing. It is preferable because it is not done.
The polymer (I) comprises 20 to 60% by weight of a halogen-containing monomer composed of vinyl chloride, vinylidene chloride or vinyl bromide or a mixture thereof, acrylonitrile and a small amount, for example, 0.5 to 5% by weight of sodium allyl sulfonate, styrene A dye-improving monomer such as sodium sulfonate or sodium 2-acrylamido-2-methylpropanesulfonate is dissolved in an organic solvent such as dimethylformamide, dimethylsulfoxide or dimethylacetamide in azobisisobutyronitrile, azobisdimethylvaleronitrile or the like. Is polymerized with a polymerization initiator.
Particularly preferably, a polymer having a composition of 5 to 40% by weight of sodium allyl sulfonate, 10 to 85% by weight of acrylonitrile, and 10 to 50% by weight of a halogen-containing monomer is polymerized in dimethylformamide by the above polymerization method. In a dimethylformamide solution containing the polymer, 20 to 60% by weight of the halogen-containing monomer and acrylonitrile and, if necessary, sodium allyl sulfonate are polymerized in the presence of other additives such as a coloring inhibitor.
The unreacted monomer in the obtained polymerization dope is removed at a temperature as low as possible using a rotary evaporator or a rotary thin film evaporator. Thereafter, the polymer concentration is adjusted to 20 to 30% by weight, and addition of additives and the like are performed. The spinning solution of the polymer (I) is obtained.
On the other hand, the polymer (II) was obtained by polymerizing a polymer of 30 to 75% by weight of acrylonitrile, 70 to 25% by weight of methyl acrylate, and 0 to 10% by weight of a sulfonic acid-containing monomer in dimethylformamide by the above polymerization method. The unreacted monomer in the obtained polymerization dope is removed, and then the concentration of the polymer (II) is adjusted to 20 to 30% by weight.
Next, the solutions of the polymers (I) and (II) are mixed at a ratio of 60 to 95 parts by weight: 5 to 40 parts by weight (a known mixing method can be employed) to obtain a stock solution for spinning. . The spinning solution is spun from a normal spinneret into a coagulation bath. The coagulation bath is preferably an aqueous solution of the same organic solvent as the organic solvent of the spinning dope to reduce the cost of solvent recovery and simplify the recovery process. The organic solvent concentration is 40 to 70% by weight, preferably 50 to 65% by weight. And the temperature is 15 to 35 ° C, preferably 18 to 28 ° C.
The spinning stock solution is spun into a coagulation bath, and the coagulated filaments are usually subjected to spinning through a spin bath having a numerical value in which the concentration of the solvent gradually decreases. The spinning draw ratio is usually 3 times or more, preferably 4 to 10 times, and more preferably 5 to 8 times. After spinning and drawing, it is washed with a water washing tank of 50 ° C. or more, and after the oil is applied before it is dried and crushed by a hot roller type or a dryer used in combination with a hot air dryer. In this drying step, it is preferable to perform a slight shrinkage of about 10% as compared with the constant-length tension drying in terms of drying, crushing effect, prevention of mechanical overload, and the like.
In the case of ordinary regular acrylic fiber, the method of performing primary stretching before drying is often used, but in the production of high shrinkage fiber, performing primary stretching after drying is more advantageous in terms of shrinkage performance, fiber gloss and dyeability. Is more effective.
The primary stretching is performed at a wet heat of 60 to 110 ° C., preferably 80 to 100 ° C., and the primary stretching ratio varies depending on the amount of the halogen-containing monomer in the polymer (I) and the content of the polymer (II) in the fiber. However, it is better to perform the stretching at a stretching ratio immediately before entering the overdrawing region in view of fiber performance such as shrinkage performance, strength, gloss, and dyeability, operability, productivity and the like.
Looking at the relationship between the primary draw ratio and the fiber performance (here, the shrinkage ratio), the shrinkage ratio increases with the increase in the draw ratio where the draw ratio is low. Saturation is reached, or conversely, the draw ratio decreases. The stretch ratio or more is called an overstretched region. In the over-stretched region, not only saturation and decrease in shrinkage rate, but also drawbacks such as a decrease in strength and elongation of the fiber, a decrease in dyeability, and breakage of a single yarn occur.
After the dry baking and before the primary stretching, a step of once performing a large continuous shrinkage, for example, 20 to 50%, and then performing the primary stretching may be employed.
The fiber after the primary drawing is subjected to post-oil adhesion and mechanical crimping, and dried at a temperature of 100 ° C., preferably 80 ° C. or less so as not to cause shrinkage.
Next, the fiber is cut into short fibers by cutting the fiber into an appropriate fiber length by a conventional method.
However, in the case of the C type, a wet heat shrinkage / dry heat drawing step is applied after primary stretching and before crimping.
Specifically, after the primary drawing, the fibers are subsequently contracted by moist heat. The temperature is from 80 ° C to 130 ° C, preferably from 90 ° C to 115 ° C. The desired shrinkage cannot be obtained by shrinking at a low temperature. Shrinkage at a high temperature causes severe agglomeration between fibers, which seriously affects fiber properties and operability. The shrinkage ratio varies depending on the amount of the halogen-containing monomer of the polymer (I) and the content of the polymer (II) in the fiber, but is 0.7 to 0.7 in consideration of shrinkage performance, fiber performance and operability, productivity, and the like. It is preferably about 0.95 times.
After this wet heat shrinkage, post-oil adhesion is performed on the fiber, and dry heat drawing is performed. The stretching is performed at a temperature of 80 to 140 ° C, preferably 90 to 110 ° C. If the drawing temperature is too low, the draw ratio is not sufficient, and at a low draw ratio, inconveniences such as whitening and breakage of single yarn occur in the fiber. Conversely, if the drawing temperature is too high, sticking between the single fibers, yellowing due to heat, etc. are observed, and also adversely affects the dry heat shrinkage performance.
By the above method, it is possible to produce an acrylic short fiber that exhibits a dry heat shrinkage of 20% to 50% at 120 to 150 ° C, which is suitably used as a yarn for dyeing in the present invention.
The cationic dye used in the present invention is a dye having a positive charge and is adsorbed on a fiber having a negative charge such as a sulfonic acid group or a carboxylic acid group, and is particularly remarkably ion-adsorbed on an acrylic fiber. . For example, the manufacturer name is Nichilon dye.
Above all, dyes having a high speed of adsorbing to fibers even when dyed at a low temperature are preferable. For example, those having an index mixture (I mix.) Of C or more are preferable, and those of B or more are particularly preferable.
Although the concentration of the dye is not particularly limited, for example, 5% by weight or less per fiber weight is suitably used.
The dyeing temperature is at most 80 ° C, preferably at most 75 ° C, particularly preferably at most 70 ° C. By dyeing at a low temperature of 80 ° C. or lower, it is possible to maintain high residual shrinkage after dyeing.
The dyeing time is preferably longer than that generally used by 30 to 50%, for example, preferably about 30 to 60 minutes, but is not limited thereto.
When dyeing a dark color such as black, for example, it is preferable to use a dyeing agent such as an ether cyanide compound.
The concentration of the propellant is not particularly limited, but is preferably, for example, 10% by weight or less per fiber weight. Further, when the content is 5% by weight or less, a decrease in residual shrinkage can be suppressed, so that it is particularly preferable.
The packing density of the acrylic short fibers at the time of dyeing is preferably such that shrinkage of the short fibers can be physically suppressed, and is, for example, preferably 0.20 g / cm 3 or more, more preferably 0.30 g. / Cm 3 or more, more preferably 0.35 g / cm 3 or more. However, in view of the effect which can limit the physical contraction, 0.37 g / cm 3 or more, and particularly preferably 0.45 g / cm 3 or more.
It is preferable that the soaping after the dyeing is performed to the extent that the shrinkage of the acrylic short fibers can be suppressed as much as possible. For example, the temperature is preferably 70 ° C. or less and 30 minutes or less. However, from the viewpoint of maximizing the use of the soaping effect, the heating time is preferably 65 ° C. or more and 20 minutes or more.
Drying after soaping is preferably performed at 90 ° C. or lower from the viewpoint of preventing shrinkage of the acrylic short fiber. More preferably, it is 80 ° C. or lower.
By optimizing the packing density, soaping conditions and drying conditions described above, the shrinkage of acrylic short fibers from dyeing to drying is suppressed to 5% or less (8% or less for medium and dark colors). Becomes possible.
The acrylic short fiber used in the present invention can be dyed after being blended with other fibers, or can be blended with other fibers after dyeing and used for commercialization.
The acrylic short fibers obtained in the present invention maintain high dry heat shrinkage even at low temperatures. In particular, those having a dry heat residual shrinkage of 14% or more at 120 to 130 ° C are suitable for high pile products.
EXAMPLES Examples will be described below, and prior to that, a method for evaluating acrylic short fibers in the examples will be described.
(Wash fastness)
JIS L 0844 (A-2)
(Water fastness)
JIS L 0846 A method (fastness to friction)
JIS L 0849.1.2 Gakushin type friction test (light fastness)
JIS L 0842 (ultraviolet carbon arc lamp light test)
(Sweat fastness)
JIS L 0848 A method (fastness of sublimation)
JIS L 0879 (Robustness test for dry heat treatment)
(Dry cleaning fastness)
JIS L 0860 A method (achievement of target hue)
;: Achieved target hue.
X: Target hue was not achieved.
Example 1
(Dark color dyeing)
The following polymer solutions (I) and (II) are mixed by any known method to give a stock solution for spinning, and the yarn spun with the stock solution for spinning is spun and stretched by an ordinary method, and then dried, After the primary drawing and shrinkage, the fiber after oil attachment is subjected to dry heat drawing, and is shortened by a conventional method. An acrylic short fiber exhibiting shrinkage was obtained.
(I) a polymer comprising 55% by weight of acrylonitrile, 42% by weight of a halogen-containing monomer vinylidene chloride and 3% by weight of a sulfonic acid-containing monomer; 70 parts by weight (II) 50% by weight of acrylonitrile and 48% by weight of methyl acrylate 30% by weight of this acrylic short fiber was packed into an Over-Meier dyeing machine at a density of 0.37 g / cm 3 and dyed at a maximum temperature of 72 ° C. for 60 minutes. Was. As the dye, I mix. A black dye of B (Nichilon Black manufactured by Nissei Chemical Co., Ltd.) is used at a concentration of 4.5% by weight per fiber weight, and an aromatic ether-based cyan compound carrier Gin K (manufactured by Nissei Chemical Co., Ltd.) is used as a dyeing agent. Was used in an amount of 3.0% by weight per fiber weight.
Soaping was performed at 65 ° C. for 30 minutes, and drying was performed at 90 ° C. for 5 minutes.
The target hue is black (RAL-K1 RAL9004).
Example 2
(Medium color dyeing)
The acrylic short fiber exhibiting a dry heat shrinkage of 37% under the dry heat condition of 150 ° C. for 5 minutes used in Example 1 was packed into an Overmeier dyeing machine at a density of 0.37 g / cm 3 , Staining was performed at a maximum temperature of 70 ° C. for 30 minutes. As the dye, I mix. A to B yellow dyes (a blend of Nisilon Orange GL, Nihilon Red GL and Nihilon Blue GL manufactured by Nissei Chemicals, Inc.) were used at a concentration of 0.915% by weight per fiber weight.
Soaping was performed at 65 ° C. for 20 minutes, and drying was performed at 90 ° C. for 5 minutes.
The target hue is Melon Yellow (RAL-K1 RAL1028).
Example 3
(Dark color dyeing)
The acrylic short fiber exhibiting a dry heat shrinkage of 37% under the dry heat condition of 150 ° C. for 5 minutes used in Example 1 was packed into an Overmeier dyeing machine at a density of 0.37 g / cm 3 , Dyeing was performed at a maximum temperature of 70 ° C. for 60 minutes. As the dye, I mix. A to B blue dyes (a blend of Nisilon OrangeGL, Nihilon RedGL and Nihilon BlueGL, manufactured by Nissei Chemicals, Inc.) were used at a concentration of 2.78% by weight per fiber weight.
Soaping was performed at 65 ° C. for 20 minutes, and drying was performed at 90 ° C. for 5 minutes.
Note that the target hue is night blue (RAL-K1 RAL5022).
Table 1 shows the results of evaluating the residual shrinkage and the like in each of Examples 1 to 3.
Figure 2002053825
As can be seen from Table 1, the acrylic short fibers of Examples 1 to 3 have the desired hue and have a sufficient dry heat residual shrinkage, and are suitable as shrinkable cotton for high pile and bore products. Was.
In addition, the high pile and bore products manufactured using the acrylic short fibers of Examples 1 to 3 had a very favorable texture because the acrylic short fibers sufficiently shrunk.
Examples 4 to 12
(Dark color dyeing)
Using the same composition as that used in Examples 1 to 3, the stretching conditions were adjusted, and 26.0% under dry heat conditions of 120.5 minutes, 130 ° C for 5 minutes, and 150 ° C for 5 minutes. Acrylic short fibers exhibiting dry heat shrinkage of 30.5% and 37.1% were obtained. This was packed in an Overmeyer dyeing machine at a density of 0.45 g / cm 3 and dyed at a maximum temperature of 65 ° C. for 40 minutes. The types and dye concentrations of the dyes shown in Table 2 were used.
Figure 2002053825
Table 3 shows the results of evaluating the residual shrinkage and the like.
Figure 2002053825
As can be seen from Table 3, the acrylic short fibers dyed by the method of the present invention have a sufficient dry heat shrinkage even after dyeing, and in particular, 14% or more of dry heat residue suitable for high pile products. One having shrinkage was also obtained. In addition, Table 4-1 and Table 4-2 show the results of the evaluation of the fastness after dyeing for the case without soaping and the case with soaping, respectively.
Figure 2002053825
Figure 2002053825
As can be seen from Tables 4-1 and 4-2, the acrylic short fibers dyed by the method of the present invention had sufficient color fastness.
Comparative Examples 1-2
Table 5 shows the results of treating the acrylic short fibers obtained in Example 4 with a warm bath at 85 ° C and 90 ° C.
Figure 2002053825
As can be seen from Table 5, when the treatment was carried out at a high temperature exceeding 80 ° C., the treatment caused considerable shrinkage, and the dry heat residual shrinkage after the treatment was inferior to those of the examples.
INDUSTRIAL APPLICABILITY The acrylic short fiber of the present invention has a target hue and fastness irrespective of a dark color or a light color, and has a high residual shrinkage. As a result, it can be used for shrinking under dry heat conditions.

Claims (5)

乾熱収縮性を発揮するアクリル系短繊維が、80℃以下の温浴にてカチオン染料で染色された、アクリル系短繊維。Acrylic short fibers in which acrylic short fibers exhibiting dry heat shrinkage are dyed with a cationic dye in a warm bath at 80 ° C. or lower. 乾熱収縮性を発揮するアクリル系短繊維が、120〜150℃で20〜50%の乾熱収縮性を満たすものであることを特徴とする請求項1記載のアクリル系短繊維。The acrylic short fiber according to claim 1, wherein the acrylic short fiber exhibiting dry heat shrinkage satisfies a dry heat shrinkage of 20 to 50% at 120 to 150 ° C. 乾熱残留収縮率が、120〜130℃で14%以上であることを特徴とする請求項1または2記載のアクリル系短繊維。The acrylic short fiber according to claim 1 or 2, wherein the dry heat residual shrinkage is 14% or more at 120 to 130 ° C. アクリル系短繊維を、カチオン染料を用いて温浴染色するアクリル系短繊維の染色方法において、アクリル系短繊維として、120〜150℃で20%〜50%の乾熱収縮性を発揮する短繊維を用い、80℃以下の温浴にて染色することを特徴とするアクリル系短繊維の染色方法。In the method of dyeing acrylic short fibers using a warm dye in a warm bath using a cationic dye, as the acrylic short fibers, short fibers exhibiting a dry heat shrinkage of 20% to 50% at 120 to 150 ° C are used. A method for dyeing acrylic short fibers, wherein the dyeing is performed in a warm bath at 80 ° C. or lower. 温浴へのアクリル系短繊維の詰め込み密度を、0.2g/cm3以上とすることを特徴とする請求項4記載のアクリル系短繊維の染色方法。The method for dyeing acrylic short fibers according to claim 4, wherein the packing density of the acrylic short fibers in the warm bath is 0.2 g / cm3 or more.
JP2002554314A 2000-12-28 2001-12-27 Acrylic short fiber and method for dyeing acrylic short fiber Pending JPWO2002053825A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000400803 2000-12-28
JP2000400803 2000-12-28
PCT/JP2001/011604 WO2002053825A1 (en) 2000-12-28 2001-12-27 Acrylic short fiber and method of dyeing acrylic short fiber

Publications (1)

Publication Number Publication Date
JPWO2002053825A1 true JPWO2002053825A1 (en) 2004-05-13

Family

ID=18865323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002554314A Pending JPWO2002053825A1 (en) 2000-12-28 2001-12-27 Acrylic short fiber and method for dyeing acrylic short fiber

Country Status (2)

Country Link
JP (1) JPWO2002053825A1 (en)
WO (1) WO2002053825A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612000B2 (en) 2004-07-16 2009-11-03 Kaneka Corporation Modacrylic shrinkable fiber and method for manufacturing the same
JP2006299473A (en) * 2005-04-22 2006-11-02 Japan Exlan Co Ltd Shrinkable acrylic fiber dyeable at low temperature
JP2007239149A (en) * 2006-03-09 2007-09-20 Kaneka Corp Method for dyeing low-temperature dyeable type acrylic fiber and low-temperature dyeable type acrylic fiber dyed by the same method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4428273B1 (en) * 1967-08-31 1969-11-21
JPS5532832B2 (en) * 1972-05-17 1980-08-27
JPS49110981A (en) * 1973-03-02 1974-10-22

Also Published As

Publication number Publication date
WO2002053825A1 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
US2527863A (en) Modification and dyeing of acrylonitrile polymers
US7612000B2 (en) Modacrylic shrinkable fiber and method for manufacturing the same
JP4603486B2 (en) Acrylic shrinkable fiber and method for producing the same
US3941860A (en) Polyvinylidene fluoride containing threads, fibers and films of good dye affinity, and process for obtaining them
JP4979175B2 (en) Method for producing artificial hair fiber
JPWO2002053825A1 (en) Acrylic short fiber and method for dyeing acrylic short fiber
US3242243A (en) Coloring of acrylonitrile polymer filaments
US2548853A (en) Treating acrylonitrile copolymers with sulfuric acid followed by dyeing with acetate dyes
CN100415961C (en) Acrylic shrinkable fiber
JPH06158422A (en) Flame-retardant acrylic fiber having high shrinkage
JP3756886B2 (en) High shrinkable acrylic fiber
JPS6361409B2 (en)
US3296341A (en) Method for impregnating acrylonitrile polymer fibers to improve dyeability
US4017561A (en) Wet spun modacrylic filaments with improved coloristic properties
US3402014A (en) Preparation of dyeable acrylic fibers and filaments
US4014958A (en) Dry-spun modacrylic filaments with improved coloristic properties
US3931120A (en) Flameproof modacrylic fibers
US3533729A (en) Process for dyeing polyvinyl chloride fibers
JP3958961B2 (en) Monofilament dyeing method and apparatus, and colored monofilament and colored fishing line
US3380798A (en) Preparation of dyeable acrylonitrile polymer fibers using 4, 4'-diaminostilbene-2, 2'-disulfonic acid
JPH0874119A (en) Highly shrinkable acrylic fiber and production of the same
JPH11200141A (en) Production of pilling-resistant acrylic fiber
JPH02277810A (en) Flame-retardant high-shrinkage modacrylic fiber
JP5740058B2 (en) Pile fabric and manufacturing method thereof
JP3452691B2 (en) Flame-retardant acrylic synthetic fiber with excellent weather resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070419