JPWO2002042430A1 - Nucleic acid extraction device - Google Patents

Nucleic acid extraction device Download PDF

Info

Publication number
JPWO2002042430A1
JPWO2002042430A1 JP2002545136A JP2002545136A JPWO2002042430A1 JP WO2002042430 A1 JPWO2002042430 A1 JP WO2002042430A1 JP 2002545136 A JP2002545136 A JP 2002545136A JP 2002545136 A JP2002545136 A JP 2002545136A JP WO2002042430 A1 JPWO2002042430 A1 JP WO2002042430A1
Authority
JP
Japan
Prior art keywords
nucleic acid
tank
disk
opening
closing mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002545136A
Other languages
Japanese (ja)
Inventor
渡部 成夫
長岡 嘉浩
池田 由紀子
明石 照久
宮原 裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2002042430A1 publication Critical patent/JPWO2002042430A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges
    • G01N2035/00504Centrifuges combined with carousels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0446Combinations of the above
    • G01N2035/0449Combinations of the above using centrifugal transport of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、核酸を含む溶液を、回転円盤上に複数の槽を設け、各槽間を、開閉機構を備えた流路で連結し、溶液を各槽で順次所定の成分を分離抽出しに順次開閉機構を動作させて移動させて核酸を抽出する構成とした核酸抽出装置を提供するものである。このように、開閉機構を備えた流路で連結された複数の槽を用いて自動的に処理することにより、多量の核酸を含む水溶液を異物が混入することなく処理することができ、高感度で高精度に核酸を抽出することができた。さらに、核酸を抽出するコストを下げることができ、抽出時間を短縮することができる。The present invention provides a solution containing a nucleic acid, a plurality of tanks are provided on a rotating disk, and the tanks are connected to each other by a flow path having an opening / closing mechanism. An object of the present invention is to provide a nucleic acid extracting apparatus configured to sequentially operate and move an opening / closing mechanism to move the opening / closing mechanism to extract a nucleic acid. As described above, by automatically processing using a plurality of tanks connected by a flow path having an opening / closing mechanism, it is possible to process an aqueous solution containing a large amount of nucleic acid without contaminating foreign substances, thereby achieving high sensitivity. Was able to extract nucleic acids with high accuracy. Further, the cost for extracting the nucleic acid can be reduced, and the extraction time can be reduced.

Description

技術分野
本発明は、水溶液中にある細胞や微生物、ウィルス等からその核酸を抽出する核酸抽出装置に関する。
背景技術
核酸を用いて、これのパターンから被検者の診断を行う遺伝子診断がある。この遺伝子診断では、被検者から採取した体液や組織等から核酸を抽出し、これのパターン解析によって診断を行う。このため、核酸の抽出が正確に行われなければならない。核酸の抽出に関する従来技術としては、例えば、「バイオ実験イラストレイテッド▲1▼分子生物学実験の基礎(1995,秀潤社)P113〜P122」(以下、従来技術1という)には、核酸を含む水溶液をチューブと呼ばれる小型の容器に保持し、これを手操作にて各種処理液を注入・撹拌し、遠心分離を繰り返す方法が開示されている。そして、この操作を自動化した装置として、東洋紡績株式会社(核酸自動分離装置,NS−1000型)として発売されている。
また、従来技術2として「Micro Total Analysis System ’2000Proceedings(2000)、P239〜P242」は、樹脂製円形基板上に溶液保持用槽と反応用微細流路、発熱素子を設けて、円形基板を回転させたときに生ずる遠心力によって送液と反応を行い、全血から核酸の抽出と核酸のパターン解析を行う方法が開示されている。
上記従来技術では、次のような問題が発生し易く、これを避けることは技術的な困難が伴う。すなわち、従来技術1の核酸を含む水溶液や各種溶液をチューブと呼ばれる小型の容器に保持し処理する方法は、試料容量を多くでき簡易な処理が可能であるが、操作途中に異物の混入が生じやすいという問題があり、正確な抽出が困難である。そして、これらの操作を自動化するためにロボットシステム等複雑な機構を採用しているが、装置コストが上昇すると共に、処理のスループットを向上させることが困難である。従来技術2の樹脂製円形基板上で処理する方法は、核酸を含む水溶液や各種溶液すべてが一つの基板上に保持されており、異物の混入がなく高精度な抽出が可能であるが、溶液保持用槽と反応用微細流路が微細なものであるため試料容量を多くできないという問題があり、試料中に含まれる核酸が微量になるとこれを抽出することは困難である。そして、試料または溶液等の混合において、静止状態で油層と水相に分かれるような2液を混合することが難しいため、これらの状態のうち油層となるフェノールを用いる方法では、核酸の抽出を十分に行うことができなかった。
本発明の目的は、核酸を含む水溶液から核酸を抽出する装置において、異物が混入することなく、正確でかつ高感度の核酸抽出装置を実現し、低コストで提供することにある。
発明の開示
本発明は、回転円盤上に血液などの核酸を含む水溶液を、流路または隔壁で区分された複数の槽を備え、流路または隔壁に設けた開閉機構を動作することで各槽間を連結し、円盤の回転と開閉機構の動作により、その成分毎に順次移動させながら核酸を抽出する構成とした。
なお、流路または隔壁、開閉機構、槽の全部または一部が、タンパク質の変性作用をもつ薬品に対してその成分の一部が溶出しないプラスチック材料で構成する。さらに、複数の槽の内いずれかに蛋白質を分離するため、蛋白質に対して変性作用を持つ薬品や、核酸よりも水分子と結合が容易な薬品を予め所定量封入しておく。
ここで、タンパク質の変性作用をもつ薬品とは、グアニジンチオシアネート、フェノール、フェノールとクロロホルムとイソアミルアルコールをそれぞれ25:24:1に混合した溶液。または、クロロホルムとイソアミルアルコールを24:1に混合した溶液等、核酸を内包するタンパク質でできた膜を破壊し核酸を取り出す作用のある薬品を指す。
また、核酸よりも水分子と結合が容易な薬品とは、エタノール,イソプロピルアルコール等、核酸を含む水溶液に混合することで、水に溶けていた核酸を凝集させる作用のある薬品を指す。
上記構成とすることにより、核酸を含む水溶液がその成分毎に槽に保持されるため、これらを連結した流路の単位長さあたりの容積に制限されることなく多量の核酸を含む水溶液を処理することができる。また、すべての処理を自動化できるため、異物が混入することなく正確な抽出ができる。また、水溶液を保持する槽を隔壁で分離し、この槽をプラスチックの射出整形で製作することにより、コストの低減をはかることができる。そして、一回の抽出でこれを使い切ることができるため、被測定対象の違いによる測定誤差が生じない特徴がある。また、水溶液を保持する槽を隔壁で分離しこの槽を脱着可能にすることにより、各槽での処理において最適な条件を設定することができ、効率のよい抽出が可能になる。また、核酸を含む水溶液を移動させるため、輸送能力が向上し抽出のスループットを向上させることができる。さらに、この遠心力を用いて核酸を含む水溶液として血液を処理すれば、遠心分離の効果で血清を得ることができるため、抽出のスループットを向上させることができる。
発明を実施するための最良の形態
以下、本発明の一実施例を図面に従い詳細に説明する。
第1図(a)は、核酸を含む水溶液から核酸を抽出するため、回転円盤上に形成された、開閉機構を備えた流路で連結された複数の槽を示したものである。本実施例では、特に、核酸を含む水溶液としてヒトの全血を例に述べるが、生物の体液であって核酸を含むもの、または、核酸を含む組織を水に懸濁した水溶液についても同様に抽出できる。
第1図(b)は、第1図(a)の槽と流路の部分の拡大図である。円盤100には複数の槽が形成されている。又、円盤100は、駆動機構に取付けて回転させるための装着用の穴102が設けてある。円盤100には、次に述べる各層が設けてある。分析用のサンプルである全血を保持するためのサンプル保持槽104と、全血から血清を分離するための分離槽106と、核酸を内包する核壁から核酸を取り出すための抽出槽108と、水溶液中に拡散した核酸を収集するための回収槽110と、抽出した核酸を保持する核酸保持槽112である。サンプル保持槽104と分離槽106は流路114で連結してある。分離槽106と抽出槽108とは流路116で連結してある。この流路116には途中に溶液の移動を制御するための開閉機構122を備えている。流路118は、抽出槽108と回収槽110とを連結し、その途中に溶液の移動を制御する開閉機構124を備えている。流路120は、回収槽110と核酸保持槽112とを連結し、その途中に溶液の移動を制御する開閉機構126を備えている。配線128、と配線130と、配線132とは各開閉機構122、124、126を制御するため、穴102を介して円盤100の外部にある(図示しない)制御装置に接続されている。本実施例の開閉機構は電磁力で開閉する電磁弁で構成してあるが、本方式に限らず1つの駆動系で歯車等を切り替えて開閉する方式等でもよい。
サンプル保持槽104には、全血を注入する穴103が設けられている。この穴以外の各槽と各流路とは外気を遮断するため密閉されており、異物の進入を防いでいる。
第2図は、槽を含む円盤100について、これを回転させて遠心力を発生させる機構と、円盤100中の槽に含まれる溶液を撹拌するための機構を示したものである。円盤100と回転軸200およびモーター202は、円盤204に搭載される。この円盤204は、モーター208の回転軸206によって回転駆動される。本実施例では、円盤100の回転軸200中心と、円盤204の回転軸206中心とは所定の距離を開けて取付けられている。このように、間隔を開けて回転軸を設けることで、後述するように各槽に加わる遠心力を大きくすることができる。すなわち、円盤100を保持する回転軸で回転しながら、これら全体を円盤204の回転軸206と回転軸中心をずらして駆動する所謂遊星運動をさせている。
円盤204には、配線212、214、216が設けられおり、この配線は回転円盤100に設けた配線128、130、132に接続されている。また、円盤204上には、モーター202を駆動制御するための配線218、220も設けてある。円盤100上にある各開閉機構とモーター及び円盤204を回転するためのモータ208の動作は、制御線232を介して制御装置230で集中的に制御される。
第3図(a)から第3図(f)は、全血から核酸を抽出する動作を説明するため図である。なお、第3図(a)から第3図(f)では、第1図又は第2図には図示していない、核酸を内包する核壁から核酸を取り出すためにタンパク質の変性作用がある薬品300を抽出槽108の中に、核酸よりも水分子と結合が容易な薬品302を回収槽110の中に、予め決められた量だけ保持している。また、矢印1000は、円盤100が回転することによって発生する遠心力の方向を示している。
第3図(a)は円盤100が静止状態にあるときを示したものである。このとき採血した全血310を、注入穴103からサンプル保持槽104に注入する。
次に、第3図(b)は円盤100を分離槽106付近において遠心力が1500G以上になるよう回転させたときを示したものである。全血310はサンプル保持槽104から分離槽106に移動する。そして、この回転を5分程度続けると、分離槽106では遠心力によって、血清以外の物質314が円盤100の外周側に、血清312が回転中心側に分布する。このとき、円盤100の回転数が高いほど、分離槽106で血清と血清以外の成分とが分離する時間を短くできる。前述のような分離状態となるため、分離された純度の高い血清を次の抽出層108に送るためには、分離槽における流路114の出口を円盤100の外周側に、流路116の入り口を円盤100の回転中心側に設置することが望ましい。分離された血清312は、流路116を通って予め開いていた開閉機構122を通り抜けて抽出槽108に移動する。
第3図(c)は、抽出槽108内において、血清312から核酸を抽出する状態を示したものである。抽出槽108内には、予めタンパク質の変性作用をもつ薬品300が所定量保持されており、この薬品300と血清112とが反応する。なお、タンパク質の変性作用をもつ薬品300として、例えば、フェノールを用いた場合には、血清が送られてきたとき、抽出槽108内で当初フェノール300は油層として、血清312は水層として分離状態にある。また、フェノール300の量は、反応させる血清112と同量かそれよりも多いことが望ましい。
前述のように、血清312と薬品300が分離状態にあるため、円盤100をモータ202で回転している状態に加えて、円盤204もモータ208で回転させて撹拌することにした。この時、流路116と流路118の途中にあるそれぞれの開閉機構122、124は閉じている。なお、円盤100上の抽出槽108において両円盤の回転によって生じる遠心力が合成される。このため、円盤100と円盤204の回転数は、遠心力の方向が円盤100の回転角度に依存しないような値にする必要がある。例えば、抽出槽108は回転軸200の中心から45mmの離れた位置に設け(抽出槽108の直径は6mmとする)、回転軸200は、回転軸206から51mmの距離に配置してある。そして、円盤100の回転数を500rpmとした場合は、円盤204の回転数を2000rpmよりも高くすればよい。なお、抽出槽108の形は、図1から第3図に示したような円形の他、四角形等、多角形にすれば核酸を抽出する効果が高くなる。
次に、第3図(d)は、第3図(c)に示した血清312から核酸を抽出する操作の後、第2図に示した円盤204の回転を停止し、円盤100を抽出槽108付近において、遠心力が1500G以上になるよう回転させたときの状態を示したものである。このとき、タンパク質の変性作用をもつ薬品300として、例えばフェノールを用いた場合には、フェノール300を遠心力が大きくなる部分に、核酸を含む水溶液316は遠心力が小さくなる部分に、その間にはフェノール300によって変性された血清中の蛋白である(図示しない)アルブミンやグロブリンが層状に分布する。次に、流路118中にある開閉機構124を開くと、核酸を含む水溶液316が抽出槽108から回収槽110に移動する。
次に、第3図(e)には、核酸を含む水溶液316から核酸濃度を高くした微量の溶液を取り出す、いわゆる遠心分離操作を示したものである。回収槽110には、予め、核酸よりも水分子と結合が容易な薬品302が保持されている。そして、薬品300と核酸を含む水溶液316を反応させる。核酸よりも水分子と結合が容易な薬品302として、例えば、エタノールアルコールを用いると、水溶液316中の水分子とエタノールアルコール302の分子が結合し、核酸を溶かしていた水の容量が少なくなる。このため、核酸は析出する。さらに、核酸の密度が周りの水やエタノールアルコール302よりも大きいため、遠心力1000の方向に沈殿する。このときの遠心力1000は、大きいほど早く核酸が沈殿し、10000G以上であることが望ましい。また、エタノールアルコール302の量は、これと反応させる水溶液316の2.5倍量がそれよりも多いことが望ましい。このため、回収槽110は、抽出槽108や分離槽106と比べて、その容積が大きくなるように、その寸法においてより深い槽となっている。ここで、核酸よりも水分子と結合が容易な薬品302として、例えば、イソプロピルアルコールを用れば、この量は、これと反応させる水溶液316の量と等量でよい。
第1図から第3図に示す構成によれば、遠心力1000が最大になる所としては、流路120の途中にある開閉機構126付近になる。
次に、第3図(f)には流路120の途中にある開閉機構126付近に沈殿した核酸を、付近の水溶液と共に核酸保持槽112に移動させる操作を示したものである。このときも、回収槽110には遠心力が10000G以上かかっていることが望ましい。この重力下で、流路120の途中にある開閉機構126をきわめて短い時間開閉することにより、核酸濃度が高い溶液を核酸保持槽112に移動できる。例えば、遠心力10000G、流路120の断面積が1平方mm、開閉時間1m秒のとき、核酸保持槽112中には、50マイクロリットルの溶液が保持できる。また、核酸保持槽112の容積が予め目的の容量に設定されているときには、開閉機構126を短時間に開閉する必要はなく、核酸保持槽112の中に溶液が満たされるまで開閉機構126を開けておけばよい。
第4図(a)には、各モータと、開閉機構の制御シーケンスを示したものである。すなわち、制御装置230が円盤100を回転させるモーター202と、円盤204を回転させるモーター208と、円盤100上の開閉機構122、124、126について、処理状態における動作状況を示したものである。ただし、各槽の円盤100上での位置関係は第4図(b)に示した通りである。また、回転軸200の中心と回転軸206の中心との距離は51mmとしている。また、グラフの横軸は実時間ではなく、グラフ下部に記した処理内容としている。
以上述べたように、本実施例によれば、核酸保持槽112中の溶液に含まれる核酸の量は、サンプル保持槽104に注入される全血量に比例して増加する。核酸保持槽112中の溶液量は、流路120の途中にある開閉機構126付近に局在する溶液量に限定される。そのため、採血した全血310に含まれる核酸量が少ない場合には、全血量を増やすことで最終的に得られる溶液320中に含まれる核酸量を増やすことができ、高感度な核酸抽出を行うことができる。
逆に、全血310に含まれる核酸量が多い場合には、全血量を少なくすることで、最終的に得られる溶液320中に含まれる核酸量を調整することができ、幅広い核酸濃度をもつ全血に対応することができる。また、全血310から核酸を多く含む溶液320まで、複数の槽とこれを結ぶ流路の中で処理が行われるため、異物の進入の恐れがなく正確な抽出ができる。
以上述べた実施例では、円盤100上に設置した各槽と、各流路と、注入口103は、円盤100を形成する材料を直接くり抜いて一体形成することができる。一体形成すれば、円盤100を小型化でき処理コストの低減を図ることができる。これは、円盤100をディスポーザブル化が容易なことを意味し、検体間のコンタミネーションをなくすことができるという効果も得られる。円盤100を形成する材料としては、ポリプロピレンやフッ素樹脂が適している。この他にも、全血にその成分が解け出さず、タンパク質の変性作用をもつ薬品300に犯されない材料であれば適用可能である。さらに、槽や流路を形成する材料として、整形性の良いポリカーボネート樹脂を用いるときには、この表面をフッ素樹脂で被覆すれば、円盤100の強度と処理における異物の混入を避けることができ、しかも、低コストで円盤100を構成することができるという効果がある。また、槽や流路を形成する材料として、アルミニウム等3価のイオンを溶出する材料も利用することができる。前記材料を用いることで、槽等の立体的な形状をプレス加工することができ、製造コストを押さえることができる。
また、円盤100上に設けた各槽と各流路とを、それぞれ別々にポリプロピレンの射出整形で形成し、これらを円盤100上に配置するとともに、接着にて連結して製作してもよい。このようにして製作すると、各槽の容積を検体に応じて調整または選択でき、各槽での処理条件を最適化することができ、効率のよい核酸抽出を行うことができるという効果が得られる。
第5図に他の実施例を示す。本実施例は、先の実施例の抽出槽108(本実施例では第1の抽出槽称す)と回収槽110の間に、新たに流路1160と開閉機構1220と第2の抽出槽1080を設置したものである。第2の抽出槽1080内には、予め、タンパク質の変性作用をもつ薬品3000としてフェノールを保持している。この第2の抽出槽1080では、第1の抽出槽108で抽出した核酸を含む水溶液を、さらに薬品3000で再抽出を行う構成にしたものである。本構成にすることで、回収槽110に移動する溶液に含まれるタンパク質を、先の構成の場合に比べさらに少なくすることができ、核酸の抽出精度を向上させる効果が得られる。
第6図さらに他の実施例の構成を示す。本構成では、回収槽110(本実施例では第1の回収槽と称する)と核酸保持槽112の間に、新たに流路1200と開閉機構1240と第2の槽1100を設置した構成としたものである。第2の回収槽1100内には、予め、第1の回収槽110と同様にエタノールアルコール302を保持しておき、第1の回収槽110で核酸を含む水層から核酸濃度を高くした微量の液を取り出す。その後、さらに、第2の回収槽1100で、この微量の液とエタノールアルコール302を混合して遠心分離操作を行い、再度核酸濃度を高くした微量の溶液を取り出す構成とした。従って、核酸保持槽112に移動する溶液に含まれる糖分をさらに少なくすることができ、核酸の抽出精度を向上させる効果が得られる。
なお、上記実施例では円盤100上にはサンプルである全血を注入する注入穴103とサンプル保持槽104から核酸保持槽112までの処理設備を1つ設けた例で説明したが、複数設置しても同様の効果を得ることができる。複数の処理設備を1つの円盤上に設けることで、複数の核酸を含む水溶液からそれぞれ核酸を抽出する処理において、単位時間辺りの処理数を増やす効果が得られる。
以下、本発明の他の実施例を、第7図を用いて詳細に説明する。
第7図は、核酸を含む水溶液から核酸を抽出するため、円盤上に円周方向に複数の部屋を設け、部屋の間の隔壁には開閉機構を備えた構成としたものである。本実施例では円盤は時計周りに回転するものとして説明する。
円盤700には、回転方向および円周方向に隔壁で仕切られた複数の槽(部屋)が設けてある。円盤700には、円盤700を回転させるための機構(回転軸)に装着するための穴702が設けてある。また、円盤内には全血を保持するためのサンプル保持槽706と、全血から血清を分離するための分離槽712と、核酸を内包する核壁から核酸を取り出すための抽出槽718と、水溶液中に拡散した核酸を収集するための回収槽724と、核酸よりも水分子と結合が容易な薬品を保持する薬品槽730と、抽出した核酸を保持する核酸保持槽736とが設けてある。
図のように、サンプル保持槽706の外周側に設けられた分離槽712は、隔壁707で分画され、両者は開閉機構としての遠心力とバネ710で制御される封止子708で連結されている。分離槽712と抽出槽718は隔壁717で分画され、両者は開閉機構としての遠心力とバネ716で制御される封止子714で連結されている。抽出槽718と回収槽724は、隔壁723で分画され、開閉機構としての遠心力とバネ722で制御される封止子720と封止子721で連結されている。なお、隔壁723は、サンプル保持槽706と回収槽の隔壁としても用いられている。回収槽724と薬品槽730は隔壁729で分画され、両者は開閉機構としての遠心力とバネ728で制御される封止子726で連結されている。回収槽724と核酸保持槽736は、開閉機構としての遠心力とバネ734で制御される封止子732で連結されている。また、サンプル保持槽706の上面には全血を注入する注入穴704が設置されている。
次に、第8図(a)から第8図(f)を用いて、円盤700を用いた核酸抽出の動作を説明する。
第8図(a)において、円盤700静止させた状態で、注入穴704から全血750を注入する。このとき、封止子708は閉じており、全血750がサンプル保持槽706に閉じ込められる。また、抽出槽718には、予めタンパク質の変性作用をもつ薬品752が、薬品槽730には核酸よりも水分子と結合が容易な薬品754が保持されている。
次に、円盤700を回転(時計回りに回転)する。すると、第8図(b)に示すように、円盤700の最外周における遠心力が1500G以上になる回転数に達すると、封止子708と封止子714が開き、サンプル保持槽706に保持されていた全血750は、分離槽712に移動する。なお封止子714は抽出槽718に全血が流れ込まない程度に外周側に向けて移動して開放状態となっている。分離槽712では、円盤700の外側の遠心力が大きいところに赤血球以外の成分756が分布し、血清758はこれよりも内側に分布する。そして、全血750がサンプル保持槽706から分離槽712に移動するにつれて、血清758は封止子714の先端の開放部分から抽出槽718にあふれ出していく。このとき、赤血球以外の成分756は封止子714を越えることができないように封止子714の開放間隔を設定すると、抽出槽718へは血清のみが移動することになる。
次に、第8図(c)に、血清758が抽出槽718に移動し終わり、円盤700の回転数を下げて封止子708と封止子714が閉じた状態を示している。この抽出槽718内には予めタンパク質の変性作用をもつ薬品752が所定量保持されている。タンパク質の変性作用をもつ薬品752として、例えば、フェノールを用いるときには、抽出槽718内でフェノール752は油層として、血清758は水層として分離状態にある。ここで、フェノール752の量は、これと反応させる血清758と同量かそれよりも多いことが望ましい。
次に、血清758中の核酸を抽出するために、フェノール752と血清758を撹拌するする。そこで、第2図における円盤100を円盤700に代替して、円盤700が回転軸200を中心にモーター202で回転している状態に加えて、これらが搭載された円盤204を、回転軸206を中心にモーター208で回転させて遊星運動を利用して撹拌することにした。このとき、円盤700と円盤204の回転数としては、抽出槽718の円盤700最外周部分において円盤700と円盤204が回転することによって生じる遠心力が合成され、その合成遠心力の方向が円盤700の回転角度に依存しないような値を用いる。例えば、円盤700の半径が50mmで、回転軸200と回転軸206との距離が53mmとし、さらに円盤700の回転数が500rpmの場合は、円盤204の回転数は2000rpmよりも高くすればよい。ただし、封止子708と封止子714が閉じた状態になる回転数にする。
この撹拌を行った後、第2図に示した円盤204の回転を停止しすると共に、円盤700の回転数を高くする。これにより、抽出槽718内で遠心力が大きいところにフェノール752が分布し、核酸を含む水溶液760はこれよりも内側に分布し、その間にはフェノール752によって変性された血清中の蛋白である(図示しない)アルブミンやグロブリンが層状に分布する。
次に、第8図(d)は、抽出槽718中に分布した核酸を多く含む水溶液760を、回収槽724に移す操作を示したものである。このとき、円盤700は、抽出槽718におけるタンパク質の属性作用を持つ薬品であるフェノール752と、核酸を含む水溶液760を分離する回転数よりも、さらに、分離槽712において血清758と赤血球以外の成分756に分離する回転数よりも高く、およそ回収槽に3000Gの遠心力が生じるようにする。このとき、抽出槽718と回収槽724を連結している封止子720と封止子721のうち、封止子721が遠心力に応じて移動し、封止子720との間に隙間を発生し、この隙間から水溶液760が回収槽724に移る。しかし、封止子708と封止子714も同時に隙間が生じるが、赤血球以外の成分756やタンパク質の変性作用をもつ薬品752はそれぞれ槽712と槽718から移動することはない。
次に、第8図(e)は回収槽724に保持した核酸を含む水溶液760から、核酸濃度を高くした微量の溶液を取り出す操作を示したものである。その時の、円盤700の回転数は、第8図(d)における円盤700の回転数よりも高くして、およそ4000Gの遠心力が生じるようにする。このとき、抽出槽718と回収槽724を連結している封止子720と封止子721のうち、封止子721が遠心力に応じ下がり切る。それと同時に、封止子720が封止子721との隙間を閉じるよう下がり、回収槽724は水溶液760を保持したまま密閉化される。さらに、円盤700の回転数を上げて、およそ5000Gの遠心力が生じるようにする。このとき、回収槽724と薬品槽730を連結している封止子726が下がり、薬品槽730に保持されている核酸よりも水分子と結合が容易な薬品754が回収槽724に移る。それにより、水溶液760と反応した水溶液762となる。ここでは、核酸よりも水分子と結合が容易な薬品754として、例えば、エタノールアルコールを用いた。これにより、水溶液762中では、水分子とエタノールアルコールの分子が結合し核酸を溶かしていた水の容量が少なくなる。このため、核酸は析出し、さらに、核酸の密度が周りの水やエタノールアルコールよりも大きくなり、遠心力より大きな方向に沈殿する。この沈殿は、遠心力が大きいほど短い時間で行える。また、核酸濃度が低い水溶液760の沈殿に適用することができ、遠心力は10000G以上であることが望ましい。また、エタノールアルコール754の量は、これと反応させる水溶液760の2.5倍量かそれよりも多いことが望ましい。このため、回収槽724は、抽出槽718や分離槽712に比べて、容積が大きくなるよう、その寸法においてより深い槽となっている。
次に、第8図(f)は、回収槽724に保持された水溶液762中の遠心力で沈殿した核酸と、その周辺のわずかな水溶液を、核酸保持槽736に移動させる操作を示したものである。10000G以上の遠心力で封止子732は下がり、核酸が沈殿してその濃度が高くなった溶液が核酸保持槽736に移動する。遠心力を10000G以上であれば,封止子732は下がったままになるので、この遠心力で遠心を続ける間、核酸は核酸保持槽736に溜り続ける。そして、円盤700の回転を下げ停止するときには、10000Gを切った時点で封止子736は閉じるので、核酸保持槽736から核酸が再び拡散していくことはない。
第9図(a)は、制御装置230が円盤700を回転させるモーター202と、円盤204を回転させるモーター208と、円盤700上の封止子708と714と720と721と726と736の動作を示したものである。ただし、封止子708と714と720と721と726と736の円盤700上での位置関係は第9図(b)に示した通りである。ここでは、回転軸200と回転軸206の距離は53mm、円盤700の直径は100mmとしている。また、グラフの横軸は実時間ではなく、グラフ下部に記した処理内容としている。
以上述べたように、本実施例によれば、円盤700上に形成する槽が隔壁で分画されているため、処理する全血量をさらに多くすることができ、高感度な核酸抽出を行うことができる。また、各槽を含む円盤700全体を、ポリプロピレン等を射出整形して製作すれば、円盤700の製造コストを下げることができるという特徴がある。また、各槽を含む円盤700全体をポリカーボネート樹脂で押し出し整形し、この表面をフッ素樹脂で被覆すれば、円盤700の強度と処理における異物の混入を避けることができる。さらに、低コストで円盤700を構成することができる。これは、処理する全血量が少ないときにも有効で、ポリカーボネート樹脂表面を型押しで各槽を形成して表面をフッ素樹脂で被覆すれば、より低コストで円盤700を構成することができる。
なお、第2図に示した円盤700をモーター202で回しながら、これ全体を乗せた円盤204をモーター208で回す撹拌工程において、抽出槽718内にフッ素樹脂の小片等の撹拌子を予め入れておくと、撹拌の効果が高まり、撹拌時間を短くすることができる。また、モーター208で円盤204を回すことなく、円盤700を回すモーター202を間欠的に回転と停止を繰り返して撹拌すれば、装置構成を簡易にすることができ装置コストを低減することができる。
なお、円盤700上には穴704とサンプル保持槽706から核酸保持槽736までの処理設備を複数設置しても同様の効果を得ることができる。複数の処理設備を設けることで、複数の核酸を含む水溶液からそれぞれ核酸を抽出する処理において、単位時間辺りの処理数を増やす効果が得られる。
【図面の簡単な説明】
第1図は、本発明の第1の実施例による核酸を含む水溶液から核酸を抽出するデバイスの外観図、第2図は、第1の実施例による核酸を含む水溶液から核酸を抽出するデバイスを遠心または攪拌するための機構を説明するための外観図、第3図は、第1の実施例による核酸を含む水溶液から核酸を抽出するデバイスを用いて核酸を抽出する手順を示す図、第4図は、第1の実施例による核酸を含む水溶液から核酸を抽出するデバイスにおける、これを遠心または攪拌するための機構と開閉機構の動作の関連を示す図、第5図は、第1の実施例による核酸を含む水溶液から核酸を抽出するデバイスの機能を説明する図、第6図は、第1の実施例による核酸を含む水溶液から核酸を抽出するデバイスの機能を説明する図、第7図は、本発明の第2の実施例による核酸を含む水溶液から核酸を抽出するデバイスの外観図、第8図は、第2の実施例による核酸を含む水溶液から核酸を抽出するデバイスを用いて核酸を抽出する手順を示す図、第9図は、第2の実施例による核酸を含む水溶液から核酸を抽出するデバイスにおける、これを遠心または攪拌するための機構と開閉機構の動作の関連を示す図である。
Technical field
The present invention relates to a nucleic acid extraction device for extracting nucleic acids from cells, microorganisms, viruses, and the like in an aqueous solution.
Background art
There is a genetic diagnosis that uses a nucleic acid to diagnose a subject from the pattern. In this genetic diagnosis, nucleic acids are extracted from body fluids, tissues, or the like collected from a subject, and diagnosis is performed by pattern analysis of the nucleic acids. For this reason, the nucleic acid must be accurately extracted. As a conventional technique relating to nucleic acid extraction, for example, “Bio-Experiment Illustrated (1) Basics of Molecular Biology Experiment (1995, Shujunsha) P113 to P122” (hereinafter referred to as Conventional Technique 1) A method is disclosed in which an aqueous solution containing the solution is held in a small container called a tube, and various processing solutions are manually injected and stirred with the solution, and centrifugation is repeated. As a device that automates this operation, it is marketed as Toyobo Co., Ltd. (nucleic acid automatic separation device, NS-1000 type).
Further, as a prior art 2, “Micro Total Analysis System '2000 Proceedings (2000), P239 to P242”, a solution holding tank, a reaction fine flow path, and a heating element are provided on a resin circular substrate, and the circular substrate is rotated. A method is disclosed in which a centrifugal force generated at the time of the reaction causes a reaction with a liquid to be sent to extract nucleic acid from whole blood and analyze the pattern of the nucleic acid.
In the above prior art, the following problems are likely to occur, and avoiding them involves technical difficulties. That is, the method of holding and treating the aqueous solution containing nucleic acid and various solutions of the prior art 1 in a small container called a tube can increase the sample volume and perform simple processing, but foreign matter may be mixed during the operation. There is a problem that it is easy to extract, and accurate extraction is difficult. Although a complicated mechanism such as a robot system is adopted to automate these operations, it is difficult to increase the apparatus cost and to improve the processing throughput. In the method of processing on a resin circular substrate of the prior art 2, the aqueous solution containing nucleic acids and various solutions are all held on a single substrate, and high-precision extraction is possible without contamination of foreign substances. There is a problem that the sample volume cannot be increased because the holding tank and the fine reaction channel are fine, and it is difficult to extract a small amount of nucleic acid contained in the sample. In mixing a sample or a solution, it is difficult to mix two liquids that separate into an oil phase and an aqueous phase in a stationary state. Could not be done.
An object of the present invention is to realize an accurate and high-sensitivity nucleic acid extraction device that does not contaminate foreign substances in a device for extracting nucleic acid from an aqueous solution containing nucleic acid, and to provide the device at low cost.
Disclosure of the invention
The present invention includes a plurality of tanks separated by a flow path or a partition for an aqueous solution containing nucleic acid such as blood on a rotating disk, and connects the respective tanks by operating an opening / closing mechanism provided in the flow path or the partition. Then, by rotating the disk and operating the opening / closing mechanism, the nucleic acid is extracted while being sequentially moved for each component.
In addition, all or a part of the flow path or the partition, the opening / closing mechanism, and the tank are made of a plastic material from which a part of the component is not eluted with a chemical having a protein denaturing action. Further, in order to separate the protein into any of the plurality of tanks, a predetermined amount of a drug having a denaturing effect on the protein or a drug which is easier to bind to a water molecule than a nucleic acid is enclosed in advance.
Here, the chemical having a protein denaturing action is a solution in which guanidine thiocyanate, phenol, phenol, chloroform and isoamyl alcohol are mixed at a ratio of 25: 24: 1, respectively. Alternatively, it refers to a chemical having a function of breaking a membrane made of a protein containing a nucleic acid and extracting the nucleic acid, such as a solution in which chloroform and isoamyl alcohol are mixed at a ratio of 24: 1.
In addition, a drug that is easier to bind to a water molecule than a nucleic acid refers to a drug such as ethanol or isopropyl alcohol that has an action of coagulating a nucleic acid dissolved in water when mixed with an aqueous solution containing a nucleic acid.
With the above configuration, an aqueous solution containing a nucleic acid is held in a tank for each component thereof, so that an aqueous solution containing a large amount of a nucleic acid is treated without being limited to a volume per unit length of a flow path connecting these components. can do. In addition, since all processes can be automated, accurate extraction can be performed without foreign matter entering. In addition, the tank holding the aqueous solution is separated by a partition wall, and the tank is manufactured by injection molding of plastic, whereby the cost can be reduced. Then, since this can be used up in one extraction, there is a feature that a measurement error does not occur due to a difference in the object to be measured. In addition, by separating the tank holding the aqueous solution with a partition wall and making this tank detachable, optimal conditions can be set in the processing in each tank, and efficient extraction becomes possible. Further, since the aqueous solution containing the nucleic acid is moved, the transport capacity is improved, and the throughput of extraction can be improved. Furthermore, if blood is treated as an aqueous solution containing nucleic acids using this centrifugal force, serum can be obtained by the effect of centrifugation, so that the throughput of extraction can be improved.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 (a) shows a plurality of tanks formed on a rotating disk and connected by a flow path having an opening / closing mechanism for extracting nucleic acids from an aqueous solution containing nucleic acids. In this example, particularly, human whole blood is described as an example of an aqueous solution containing nucleic acids, but the same applies to an aqueous body fluid of a living body containing nucleic acids, or an aqueous solution in which a tissue containing nucleic acids is suspended in water. Can be extracted.
FIG. 1 (b) is an enlarged view of a portion of the tank and the flow channel of FIG. 1 (a). A plurality of tanks are formed on the disk 100. The disk 100 also has a mounting hole 102 for mounting and rotating the disk 100 on a drive mechanism. The disk 100 is provided with the following layers. A sample holding tank 104 for holding whole blood as a sample for analysis, a separation tank 106 for separating serum from whole blood, and an extraction tank 108 for removing nucleic acid from a nuclear wall containing nucleic acid; A collection tank 110 for collecting nucleic acids diffused in the aqueous solution, and a nucleic acid holding tank 112 for holding extracted nucleic acids. The sample holding tank 104 and the separation tank 106 are connected by a channel 114. The separation tank 106 and the extraction tank 108 are connected by a flow path 116. The flow path 116 is provided with an opening / closing mechanism 122 for controlling the movement of the solution on the way. The flow path 118 connects the extraction tank 108 and the recovery tank 110, and includes an opening / closing mechanism 124 for controlling the movement of the solution in the middle thereof. The flow path 120 connects the collection tank 110 and the nucleic acid holding tank 112, and includes an opening / closing mechanism 126 in the middle thereof for controlling the movement of the solution. The wiring 128, the wiring 130, and the wiring 132 are connected to a control device (not shown) outside the disk 100 through the hole 102 in order to control the respective opening / closing mechanisms 122, 124, and 126. Although the opening / closing mechanism of this embodiment is configured by an electromagnetic valve that opens and closes with an electromagnetic force, the present invention is not limited to this method, and a system that switches gears and the like with a single drive system to open and close may be used.
The sample holding tank 104 is provided with a hole 103 for injecting whole blood. The tanks and the flow passages other than the holes are sealed to shut off outside air, thereby preventing foreign matter from entering.
FIG. 2 shows a mechanism for generating a centrifugal force by rotating the disk 100 including the tank and a mechanism for stirring the solution contained in the tank in the disk 100. The disk 100, the rotating shaft 200 and the motor 202 are mounted on the disk 204. The disk 204 is driven to rotate by a rotation shaft 206 of a motor 208. In this embodiment, the center of the rotation axis 200 of the disk 100 and the center of the rotation axis 206 of the disk 204 are attached with a predetermined distance therebetween. By providing the rotating shafts at intervals, the centrifugal force applied to each tank can be increased as described later. That is, while rotating around the rotating shaft holding the disk 100, the whole of them is in a so-called planetary motion in which the center of the rotating shaft is shifted from the rotating shaft 206 of the disk 204.
The disk 204 is provided with wirings 212, 214, 216, which are connected to wirings 128, 130, 132 provided on the rotating disk 100. In addition, wirings 218 and 220 for driving and controlling the motor 202 are provided on the disk 204. The operation of each opening / closing mechanism and the motor on the disk 100 and the operation of the motor 208 for rotating the disk 204 are intensively controlled by a controller 230 via a control line 232.
FIGS. 3 (a) to 3 (f) are diagrams for explaining the operation of extracting nucleic acids from whole blood. 3 (a) to 3 (f), a chemical not shown in FIG. 1 or FIG. 2, which has a protein denaturing action for removing nucleic acids from a nuclear wall containing nucleic acids. 300 is stored in the extraction tank 108, and a chemical 302, which is easier to bind to water molecules than nucleic acids, is stored in the recovery tank 110 by a predetermined amount. Arrow 1000 indicates the direction of centrifugal force generated by rotation of disk 100.
FIG. 3A shows a state where the disk 100 is in a stationary state. At this time, the collected blood 310 is injected into the sample holding tank 104 from the injection hole 103.
Next, FIG. 3B shows a state where the disk 100 is rotated near the separation tank 106 so that the centrifugal force becomes 1500 G or more. Whole blood 310 moves from sample holding tank 104 to separation tank 106. When this rotation is continued for about 5 minutes, substances 314 other than serum are distributed on the outer peripheral side of the disk 100 and serum 312 is distributed on the rotation center side in the separation tank 106 due to centrifugal force. At this time, as the rotation speed of the disk 100 increases, the time for separating serum and components other than serum in the separation tank 106 can be shortened. In order to send the separated high-purity serum to the next extraction layer 108 because of the above-described separation state, the outlet of the flow channel 114 in the separation tank should be located on the outer peripheral side of the Is desirably installed on the rotation center side of the disk 100. The separated serum 312 passes through the opening / closing mechanism 122 that has been opened in advance through the flow path 116 and moves to the extraction tank 108.
FIG. 3 (c) shows a state where nucleic acids are extracted from the serum 312 in the extraction tank. A predetermined amount of a drug 300 having a protein denaturing action is held in the extraction tank 108 in advance, and the drug 300 reacts with the serum 112. In the case where, for example, phenol is used as the chemical 300 having a protein denaturing effect, when serum is sent, the phenol 300 is initially separated as an oil layer and the serum 312 is separated as an aqueous layer in the extraction tank 108. It is in. The amount of phenol 300 is preferably equal to or greater than the amount of serum 112 to be reacted.
As described above, since the serum 312 and the medicine 300 are in a separated state, in addition to the state where the disk 100 is rotated by the motor 202, the disk 204 is also rotated by the motor 208 and agitated. At this time, the opening and closing mechanisms 122 and 124 in the middle of the flow path 116 and the flow path 118 are closed. The centrifugal force generated by the rotation of both disks is synthesized in the extraction tank 108 on the disk 100. For this reason, it is necessary to set the rotation speed of the disk 100 and the disk 204 to a value such that the direction of the centrifugal force does not depend on the rotation angle of the disk 100. For example, the extraction tank 108 is provided at a position 45 mm away from the center of the rotating shaft 200 (the diameter of the extracting tank 108 is 6 mm), and the rotating shaft 200 is arranged at a distance of 51 mm from the rotating shaft 206. When the rotation speed of the disk 100 is 500 rpm, the rotation speed of the disk 204 may be higher than 2000 rpm. In addition, if the shape of the extraction tank 108 is a polygon such as a square or the like as well as a circle as shown in FIG. 1 to FIG. 3, the effect of extracting nucleic acids is enhanced.
Next, FIG. 3 (d) shows that after the operation of extracting nucleic acids from the serum 312 shown in FIG. 3 (c), the rotation of the disk 204 shown in FIG. In the vicinity of 108, a state where the centrifugal force is rotated to be 1500 G or more is shown. At this time, for example, when phenol is used as the chemical 300 having a protein denaturing effect, the phenol 300 is placed in a portion where the centrifugal force is increased, the aqueous solution 316 containing nucleic acid is placed in a portion where the centrifugal force is reduced, Albumin and globulin, which are proteins (not shown) in serum modified by phenol 300, are distributed in layers. Next, when the opening / closing mechanism 124 in the flow path 118 is opened, the aqueous solution 316 containing nucleic acid moves from the extraction tank 108 to the collection tank 110.
Next, FIG. 3 (e) shows a so-called centrifugal separation operation of taking out a very small amount of the solution having a high nucleic acid concentration from the aqueous solution 316 containing the nucleic acid. The recovery tank 110 previously holds a chemical 302 that is easier to bind to water molecules than nucleic acids. Then, the chemical 300 is reacted with the aqueous solution 316 containing the nucleic acid. If, for example, ethanol alcohol is used as the chemical 302 that binds to water molecules more easily than nucleic acids, the water molecules in the aqueous solution 316 and the molecules of ethanol alcohol 302 bind, and the volume of water in which the nucleic acids are dissolved is reduced. For this reason, the nucleic acid precipitates. Further, since the density of the nucleic acid is higher than that of surrounding water or ethanol alcohol 302, the nucleic acid precipitates in the direction of centrifugal force 1000. The larger the centrifugal force 1000 at this time, the faster the nucleic acid precipitates, and it is preferable that the centrifugal force is 10,000 G or more. Further, the amount of ethanol alcohol 302 is desirably 2.5 times the amount of aqueous solution 316 to be reacted therewith. For this reason, the recovery tank 110 is a deeper tank in its dimensions so that its volume is larger than the extraction tank 108 and the separation tank 106. Here, if isopropyl alcohol is used as the chemical 302 that is easier to bind to a water molecule than a nucleic acid, for example, the amount may be equal to the amount of the aqueous solution 316 to be reacted therewith.
According to the configuration shown in FIG. 1 to FIG. 3, the location where the centrifugal force 1000 becomes maximum is near the opening / closing mechanism 126 in the middle of the flow path 120.
Next, FIG. 3 (f) shows an operation of moving the nucleic acid precipitated near the opening / closing mechanism 126 in the middle of the channel 120 to the nucleic acid holding tank 112 together with the nearby aqueous solution. At this time, it is desirable that the centrifugal force is applied to the collection tank 110 at 10,000 G or more. By opening and closing the opening / closing mechanism 126 in the middle of the flow path 120 for a very short time under the gravity, the solution having a high nucleic acid concentration can be moved to the nucleic acid holding tank 112. For example, when the centrifugal force is 10000 G, the cross-sectional area of the flow channel 120 is 1 square mm, and the opening and closing time is 1 ms, the nucleic acid holding tank 112 can hold 50 microliter of the solution. When the volume of the nucleic acid holding tank 112 is set to a target volume in advance, it is not necessary to open and close the opening / closing mechanism 126 in a short time, and open the opening / closing mechanism 126 until the solution is filled in the nucleic acid holding tank 112. You should leave it.
FIG. 4A shows a control sequence of each motor and the opening / closing mechanism. That is, the operation state of the motor 202 for rotating the disk 100, the motor 208 for rotating the disk 204, and the opening / closing mechanisms 122, 124, 126 on the disk 100 by the control device 230 in the processing state are shown. However, the positional relationship of each tank on the disk 100 is as shown in FIG. 4 (b). The distance between the center of the rotating shaft 200 and the center of the rotating shaft 206 is 51 mm. The horizontal axis of the graph is not the real time but the processing content shown at the bottom of the graph.
As described above, according to the present embodiment, the amount of nucleic acid contained in the solution in the nucleic acid holding tank 112 increases in proportion to the amount of whole blood injected into the sample holding tank 104. The amount of the solution in the nucleic acid holding tank 112 is limited to the amount of the solution localized near the opening / closing mechanism 126 in the middle of the channel 120. Therefore, when the amount of nucleic acid contained in the collected whole blood 310 is small, the amount of nucleic acid contained in the finally obtained solution 320 can be increased by increasing the amount of whole blood, and highly sensitive nucleic acid extraction can be performed. It can be carried out.
Conversely, when the amount of nucleic acid contained in whole blood 310 is large, the amount of nucleic acid contained in finally obtained solution 320 can be adjusted by reducing the amount of whole blood, and a wide range of nucleic acid concentration can be obtained. It can handle whole blood. In addition, since the processing from the whole blood 310 to the solution 320 containing a large amount of nucleic acid is performed in a plurality of tanks and a flow path connecting the tanks, accurate extraction can be performed without fear of foreign matter entering.
In the embodiment described above, each tank, each flow path, and the inlet 103 installed on the disk 100 can be integrally formed by directly hollowing out the material forming the disk 100. If formed integrally, the disk 100 can be reduced in size and the processing cost can be reduced. This means that the disc 100 can be easily made disposable, and the effect of eliminating contamination between samples can be obtained. As a material for forming the disk 100, polypropylene or a fluororesin is suitable. In addition, any material can be applied as long as its components are not dissolved in whole blood and are not violated by the drug 300 having a protein denaturing action. Furthermore, when a polycarbonate resin having good shapeability is used as a material for forming the tank and the flow path, if this surface is coated with a fluororesin, the strength of the disk 100 and the intrusion of foreign matter in the processing can be avoided, and There is an effect that the disk 100 can be formed at low cost. In addition, as a material for forming the tank or the flow path, a material that elutes trivalent ions such as aluminum can be used. By using the material, a three-dimensional shape such as a tank can be pressed, and the manufacturing cost can be reduced.
Alternatively, the tanks and the channels provided on the disk 100 may be separately formed by injection molding of polypropylene, and these may be disposed on the disk 100 and connected by bonding. When manufactured in this manner, the capacity of each tank can be adjusted or selected according to the sample, the processing conditions in each tank can be optimized, and the effect of efficient nucleic acid extraction can be obtained. .
FIG. 5 shows another embodiment. In this embodiment, a new flow path 1160, an opening / closing mechanism 1220, and a second extraction tank 1080 are newly provided between the extraction tank 108 of the previous embodiment (referred to as a first extraction tank in this embodiment) and the collection tank 110. It was installed. Phenol is previously held in the second extraction tank 1080 as a chemical 3000 having a protein denaturing action. In the second extraction tank 1080, the aqueous solution containing the nucleic acid extracted in the first extraction tank 108 is re-extracted with the chemical 3000. With this configuration, the amount of protein contained in the solution that moves to the collection tank 110 can be further reduced as compared with the case of the previous configuration, and the effect of improving nucleic acid extraction accuracy can be obtained.
FIG. 6 shows the configuration of still another embodiment. In this configuration, a flow path 1200, an opening / closing mechanism 1240, and a second tank 1100 are newly provided between the collection tank 110 (referred to as a first collection tank in this embodiment) and the nucleic acid holding tank 112. Things. In the second collection tank 1100, an ethanol alcohol 302 is held in advance similarly to the first collection tank 110, and a small amount of nucleic acid having a higher nucleic acid concentration from the aqueous layer containing nucleic acids in the first collection tank 110 is stored. Remove the liquid. After that, in the second recovery tank 1100, this small amount of the liquid and the ethanol alcohol 302 were mixed and centrifuged, and a small amount of the solution with a higher nucleic acid concentration was taken out again. Therefore, the amount of sugar contained in the solution moving to the nucleic acid holding tank 112 can be further reduced, and the effect of improving the accuracy of nucleic acid extraction can be obtained.
In the above embodiment, the disk 100 is provided with one injection hole 103 for injecting whole blood as a sample and one processing equipment from the sample holding tank 104 to the nucleic acid holding tank 112. However, the same effect can be obtained. Providing a plurality of processing facilities on a single disk has the effect of increasing the number of processes per unit time in the process of extracting nucleic acids from an aqueous solution containing a plurality of nucleic acids.
Hereinafter, another embodiment of the present invention will be described in detail with reference to FIG.
FIG. 7 shows a configuration in which a plurality of rooms are provided on a disk in a circumferential direction in order to extract nucleic acids from an aqueous solution containing nucleic acids, and a partition between the rooms is provided with an opening / closing mechanism. In this embodiment, the disk is described as rotating clockwise.
The disk 700 is provided with a plurality of tanks (rooms) partitioned by partitions in the rotation direction and the circumferential direction. The disk 700 is provided with a hole 702 for mounting on a mechanism (rotating shaft) for rotating the disk 700. The disc also includes a sample holding tank 706 for holding whole blood, a separation tank 712 for separating serum from whole blood, and an extraction tank 718 for extracting nucleic acids from a nuclear wall containing nucleic acids. A collection tank 724 for collecting nucleic acids diffused in the aqueous solution, a chemical tank 730 for holding a drug that is easier to bind to water molecules than nucleic acids, and a nucleic acid holding tank 736 for holding extracted nucleic acids are provided. .
As shown in the figure, a separation tank 712 provided on the outer peripheral side of the sample holding tank 706 is partitioned by a partition 707, and both are connected by a centrifugal force as an opening and closing mechanism and a seal 708 controlled by a spring 710. ing. The separation tank 712 and the extraction tank 718 are separated by a partition 717, and both are connected by a seal 714 controlled by a centrifugal force as an opening / closing mechanism and a spring 716. The extraction tank 718 and the recovery tank 724 are separated by a partition wall 723, and are connected by a seal 720 and a seal 721 controlled by a centrifugal force as an opening and closing mechanism and a spring 722. The partition 723 is also used as a partition for the sample holding tank 706 and the collection tank. The recovery tank 724 and the chemical tank 730 are partitioned by a partition wall 729, and both are connected by a seal 726 controlled by a centrifugal force as an opening / closing mechanism and a spring 728. The collection tank 724 and the nucleic acid holding tank 736 are connected by a seal 732 controlled by a centrifugal force as an opening and closing mechanism and a spring 734. An injection hole 704 for injecting whole blood is provided on the upper surface of the sample holding tank 706.
Next, the operation of nucleic acid extraction using the disk 700 will be described with reference to FIGS. 8 (a) to 8 (f).
In FIG. 8 (a), whole blood 750 is injected from injection hole 704 with disk 700 still. At this time, the seal 708 is closed, and the whole blood 750 is confined in the sample holding tank 706. The extraction tank 718 holds in advance a drug 752 having a protein denaturing action, and the drug tank 730 holds a drug 754 which is easier to bind to water molecules than nucleic acid.
Next, the disk 700 is rotated (rotated clockwise). Then, as shown in FIG. 8 (b), when the centrifugal force at the outermost periphery of the disk 700 reaches a rotation speed at which the rotation speed becomes 1500 G or more, the seals 708 and 714 are opened and held in the sample holding tank 706. The removed whole blood 750 moves to the separation tank 712. The sealer 714 is moved toward the outer peripheral side to the extent that whole blood does not flow into the extraction tank 718 and is in an open state. In the separation tank 712, components 756 other than red blood cells are distributed at a place where the centrifugal force is large outside the disk 700, and the serum 758 is distributed inside this. Then, as the whole blood 750 moves from the sample holding tank 706 to the separation tank 712, the serum 758 overflows from the open end of the tip of the seal 714 to the extraction tank 718. At this time, if the opening interval of the seal 714 is set so that the components 756 other than red blood cells cannot pass through the seal 714, only the serum moves to the extraction tank 718.
Next, FIG. 8 (c) shows a state in which the serum 758 has finished moving to the extraction tank 718, the rotational speed of the disk 700 has been reduced, and the seals 708 and 714 have been closed. A predetermined amount of a chemical 752 having a protein denaturing action is held in the extraction tank 718 in advance. For example, when phenol is used as the chemical 752 having a protein denaturing action, the phenol 752 is separated as an oil layer and the serum 758 is separated as an aqueous layer in the extraction tank 718. Here, the amount of phenol 752 is desirably equal to or greater than the amount of serum 758 to be reacted therewith.
Next, the phenol 752 and the serum 758 are stirred to extract nucleic acids in the serum 758. Therefore, the disk 100 in FIG. 2 is replaced with a disk 700, and in addition to the state in which the disk 700 is rotated by the motor 202 around the rotation axis 200, the disk 204 on which these are mounted is replaced with the rotation axis 206. It was rotated by a motor 208 at the center and agitated using planetary motion. At this time, centrifugal force generated by rotation of the disk 700 and the disk 204 at the outermost peripheral portion of the disk 700 of the extraction tank 718 is combined as the rotation speed of the disk 700 and the disk 204, and the direction of the combined centrifugal force is determined by the direction of the disk 700. Use a value that does not depend on the rotation angle of. For example, when the radius of the disk 700 is 50 mm, the distance between the rotation shaft 200 and the rotation shaft 206 is 53 mm, and the rotation speed of the disk 700 is 500 rpm, the rotation speed of the disk 204 may be higher than 2000 rpm. However, the number of rotations is such that the seal 708 and the seal 714 are closed.
After the stirring, the rotation of the disk 204 shown in FIG. 2 is stopped, and the rotation speed of the disk 700 is increased. As a result, the phenol 752 is distributed at a place where the centrifugal force is large in the extraction tank 718, and the aqueous solution 760 containing the nucleic acid is distributed inside the phenol 752, between which the protein in the serum denatured by the phenol 752 ( Albumin and globulin (not shown) are distributed in layers.
Next, FIG. 8 (d) shows an operation of transferring an aqueous solution 760 containing a large amount of nucleic acid distributed in the extraction tank 718 to the collection tank 724. At this time, the number of rotations at which the disk 700 separates the phenol 752, which is a chemical having a protein attribute action, and the nucleic acid-containing aqueous solution 760 in the extraction tank 718, and the components other than serum 758 and red blood cells in the separation tank 712 It is higher than the number of revolutions to be separated into 756, and approximately 3000 G of centrifugal force is generated in the collection tank. At this time, of the seals 720 and 721 connecting the extraction tank 718 and the collection tank 724, the seal 721 moves according to the centrifugal force, and a gap is formed between the seal 720 and the seal 720. Then, the aqueous solution 760 moves to the collection tank 724 from this gap. However, although a gap is also formed between the seal 708 and the seal 714 at the same time, components 756 other than red blood cells and a chemical 752 having a protein denaturing action do not move from the tanks 712 and 718, respectively.
Next, FIG. 8 (e) shows an operation of taking out a small amount of a solution having a higher nucleic acid concentration from the aqueous solution 760 containing nucleic acids held in the recovery tank 724. At this time, the rotation speed of the disk 700 is set higher than the rotation speed of the disk 700 in FIG. 8D so that a centrifugal force of about 4000 G is generated. At this time, among the seals 720 and 721 connecting the extraction tank 718 and the collection tank 724, the seal 721 is completely lowered according to the centrifugal force. At the same time, the seal 720 is lowered so as to close the gap with the seal 721, and the recovery tank 724 is sealed while holding the aqueous solution 760. Further, the rotational speed of the disk 700 is increased so that a centrifugal force of about 5000 G is generated. At this time, the seal 726 connecting the collection tank 724 and the chemical tank 730 is lowered, and the chemical 754 which is more easily bound to water molecules than the nucleic acid held in the chemical tank 730 is moved to the collection tank 724. Thus, an aqueous solution 762 reacted with the aqueous solution 760 is obtained. Here, for example, ethanol alcohol was used as the chemical 754 that is easier to bind to water molecules than nucleic acids. As a result, in the aqueous solution 762, the volume of water in which the nucleic acid is dissolved due to the combination of the water molecule and the ethanol alcohol molecule is reduced. For this reason, the nucleic acid precipitates, and the density of the nucleic acid becomes higher than that of surrounding water or ethanol alcohol, and the nucleic acid precipitates in a direction larger than the centrifugal force. This precipitation can be performed in a shorter time as the centrifugal force is larger. Further, it can be applied to precipitation of an aqueous solution 760 having a low nucleic acid concentration, and the centrifugal force is desirably 10,000 G or more. Also, the amount of ethanol alcohol 754 is desirably 2.5 times or more of the aqueous solution 760 to be reacted therewith. For this reason, the recovery tank 724 is a deeper tank in its dimensions so as to have a larger volume than the extraction tank 718 and the separation tank 712.
Next, FIG. 8 (f) shows an operation of moving the nucleic acid precipitated by the centrifugal force in the aqueous solution 762 held in the recovery tank 724 and a slight aqueous solution around the nucleic acid to the nucleic acid holding tank 736. It is. The centrifugal force of 10,000 G or more lowers the sealer 732, and the solution in which the nucleic acid precipitates and the concentration of the nucleic acid is increased moves to the nucleic acid holding tank 736. If the centrifugal force is 10,000 G or more, the sealer 732 remains down, and the nucleic acid continues to accumulate in the nucleic acid holding tank 736 while centrifuging is continued with this centrifugal force. Then, when the rotation of the disk 700 is lowered and stopped, the sealer 736 is closed at the time when the rotation of the disk 700 is cut below 10,000 G, so that the nucleic acid does not diffuse again from the nucleic acid holding tank 736.
FIG. 9 (a) shows the operation of the motor 202 for rotating the disk 700 by the control device 230, the motor 208 for rotating the disk 204, and the operation of the seals 708, 714, 720, 721, 726, and 736 on the disk 700. It is shown. However, the positional relationship of the seals 708, 714, 720, 721, 726, and 736 on the disk 700 is as shown in FIG. 9B. Here, the distance between the rotating shaft 200 and the rotating shaft 206 is 53 mm, and the diameter of the disk 700 is 100 mm. The horizontal axis of the graph is not the real time but the processing content shown at the bottom of the graph.
As described above, according to the present embodiment, since the tank formed on the disk 700 is partitioned by the partition walls, the amount of whole blood to be processed can be further increased, and highly sensitive nucleic acid extraction is performed. be able to. In addition, if the entire disk 700 including each tank is manufactured by injection molding of polypropylene or the like, the manufacturing cost of the disk 700 can be reduced. In addition, if the entire disk 700 including each tank is extruded and shaped with a polycarbonate resin and this surface is coated with a fluororesin, the strength of the disk 700 and the intrusion of foreign matter during processing can be avoided. Further, the disk 700 can be configured at low cost. This is effective even when the amount of whole blood to be treated is small. If the polycarbonate resin surface is embossed to form each tank and the surface is coated with a fluororesin, the disk 700 can be constructed at lower cost. .
In a stirring step in which the disk 204 shown in FIG. 2 is rotated by the motor 202 while rotating the disk 700 by the motor 202, a stirrer such as a small piece of fluororesin is put in the extraction tank 718 in advance. By doing so, the effect of stirring is enhanced, and the stirring time can be shortened. Further, if the motor 202 for rotating the disk 700 is intermittently rotated and stopped and stirred without rotating the disk 204 with the motor 208, the apparatus configuration can be simplified and the apparatus cost can be reduced.
Note that the same effect can be obtained even if a plurality of processing equipment from the hole 704 and the sample holding tank 706 to the nucleic acid holding tank 736 are provided on the disk 700. Providing a plurality of processing facilities has an effect of increasing the number of processes per unit time in the process of extracting nucleic acids from the aqueous solution containing a plurality of nucleic acids.
[Brief description of the drawings]
FIG. 1 is an external view of a device for extracting nucleic acids from an aqueous solution containing nucleic acids according to the first embodiment of the present invention, and FIG. 2 is a device for extracting nucleic acids from an aqueous solution containing nucleic acids according to the first embodiment. FIG. 3 is an external view for explaining a mechanism for centrifuging or stirring, FIG. 3 is a view showing a procedure for extracting nucleic acids using a device for extracting nucleic acids from an aqueous solution containing nucleic acids according to the first embodiment, FIG. The figure shows the relationship between the mechanism for centrifuging or agitating the device and the operation of the opening and closing mechanism in the device for extracting nucleic acid from the aqueous solution containing nucleic acid according to the first embodiment. FIG. 6 illustrates the function of a device for extracting nucleic acid from an aqueous solution containing nucleic acid according to an example, FIG. 6 is a diagram illustrating the function of a device for extracting nucleic acid from an aqueous solution containing nucleic acid according to the first embodiment, FIG. Is the second aspect of the present invention. FIG. 8 is an external view of a device for extracting a nucleic acid from an aqueous solution containing a nucleic acid according to the embodiment, and FIG. 8 is a diagram showing a procedure for extracting a nucleic acid using the device for extracting a nucleic acid from an aqueous solution containing a nucleic acid according to the second embodiment; FIG. 9 is a diagram showing the relationship between the mechanism for centrifuging or stirring the device and the operation of the opening / closing mechanism in the device for extracting nucleic acid from the aqueous solution containing nucleic acid according to the second embodiment.

Claims (10)

円盤上に槽を設け、前記円盤を回転して、回転による遠心力を用いて溶液から核酸を抽出する装置において、
前記槽を複数設け、前記槽と槽の間に開閉機構を備えた流路を設け、溶液中の成分毎に順次槽を移動させて核酸を抽出することを特徴とする核酸抽出装置。
In a device for providing a tank on a disk, rotating the disk, and extracting nucleic acid from a solution using centrifugal force due to rotation,
A nucleic acid extraction apparatus, comprising: a plurality of the tanks; a flow path having an opening / closing mechanism between the tanks; and a nucleic acid extraction by sequentially moving the tank for each component in the solution.
核酸を含有する溶液から核酸を抽出する核酸抽出装置において、
円盤上に核酸を含有する溶液を注入し所定量の貯えるサンプル保持層と、前記核酸を含有する溶液から血清を分離する分離槽と、前記分離された血清から核酸を抽出する抽出槽と、抽出された核酸を集収する回収槽と、収集された核酸を保持する核酸保持槽を設け、各槽間を流路または隔壁で仕切り、前記流路または隔壁に開閉機構を設け、前記円盤を回転駆動して遠心力の作用を用いて核酸を抽出することを特徴とする核酸抽出装置。
In a nucleic acid extraction device for extracting nucleic acid from a solution containing nucleic acid,
A sample holding layer in which a solution containing nucleic acid is injected onto a disk and a predetermined amount is stored, a separation tank for separating serum from the solution containing nucleic acid, an extraction tank for extracting nucleic acid from the separated serum, and extraction. A collecting tank for collecting the collected nucleic acids and a nucleic acid holding tank for holding the collected nucleic acids, partitioning between the tanks with a channel or partition, providing an opening and closing mechanism in the channel or partition, and rotating the disk A nucleic acid extraction device, wherein the nucleic acid is extracted using the action of centrifugal force.
前記流路または隔壁、開閉機構、および各槽の全部または一部が、タンパク質の変性作用をもつ薬品に対してその成分の一部が溶出しないプラスチック材料で構成したことを特徴とする請求の範囲第2項記載の核酸抽出装置。The flow channel or the partition, the opening / closing mechanism, and all or a part of each tank are made of a plastic material that does not elute a part of its components with respect to a drug having a protein denaturing action. 3. The nucleic acid extraction device according to claim 2. 前記開閉機構が、遠心力の大きさに依存して開閉することを特徴とする請求の範囲第2項記載の核酸抽出装置。3. The nucleic acid extraction device according to claim 2, wherein the opening and closing mechanism opens and closes depending on the magnitude of centrifugal force. 前記開閉機構が、電磁力により開閉することを特徴とする請求項第2項記載の核酸抽出装置。The nucleic acid extraction device according to claim 2, wherein the opening and closing mechanism opens and closes by an electromagnetic force. 前記各槽間を溶液が移動する力は遠心力により発生すること特徴とする請求の範囲第1項または第2項記載の核酸抽出装置。3. The nucleic acid extraction device according to claim 1, wherein the force for moving the solution between the tanks is generated by centrifugal force. 前記抽出槽には、核酸を内包する核壁から核酸を取り出すためにタンパク質の変性作用をもつ薬品を、予め所定量保持させておくことを特徴とする請求の範囲第2項記載の核酸抽出装置。3. The nucleic acid extraction apparatus according to claim 2, wherein a predetermined amount of a drug having a protein denaturing action for removing the nucleic acid from the nuclear wall containing the nucleic acid is held in the extraction tank in advance. . 前記回収槽には、核酸よりも水分子と結合が容易な薬品を保持する構成としていることを特徴とする請求の範囲第2項記載の核酸抽出装置。3. The nucleic acid extraction device according to claim 2, wherein the recovery tank holds a chemical that is more easily bound to water molecules than nucleic acids. 前記複数の槽を設けた円盤と前記円盤を回転駆動する駆動装置を、別に駆動装置を備えた円盤上に取付けて遠心力の増加を図る構成としたこと特徴とする請求の範囲第1項〜第8項のいづれか1項に記載の核酸抽出装置。The disk according to claim 1, wherein the disk provided with the plurality of tanks and a driving device for rotationally driving the disk are mounted on a disk separately provided with a driving device to increase centrifugal force. Item 10. The nucleic acid extraction device according to any one of Items 8 to 8. 前記サンプル保持槽と、分離槽と、抽出槽と、回収槽と、核酸保持槽とが回転円盤の回転中心側から順次外周側に配置され各槽間に開閉機構を備えた流路で結合されていることを特徴とする請求の範囲第2項記載の核酸抽出装置。The sample holding tank, the separation tank, the extraction tank, the recovery tank, and the nucleic acid holding tank are sequentially arranged on the outer peripheral side from the rotation center side of the rotating disk and are connected by a flow path having an opening / closing mechanism between the tanks. 3. The nucleic acid extraction device according to claim 2, wherein:
JP2002545136A 2000-11-27 2000-11-27 Nucleic acid extraction device Pending JPWO2002042430A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/008338 WO2002042430A1 (en) 2000-11-27 2000-11-27 Nucleic acid extraction device

Publications (1)

Publication Number Publication Date
JPWO2002042430A1 true JPWO2002042430A1 (en) 2004-03-25

Family

ID=11736716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002545136A Pending JPWO2002042430A1 (en) 2000-11-27 2000-11-27 Nucleic acid extraction device

Country Status (2)

Country Link
JP (1) JPWO2002042430A1 (en)
WO (1) WO2002042430A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095886B2 (en) * 2002-05-08 2008-06-04 株式会社日立ハイテクノロジーズ Chemical analysis device and genetic diagnosis device
US8906624B2 (en) * 2010-03-30 2014-12-09 Korea Advanced Institute Of Science And Technology (Kaist) Rotational PCR equipment and PCR method using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2519763A1 (en) * 1982-01-14 1983-07-18 Guigan Jean PACKAGING DEVICE FOR MULTIPLE ANALYSIS
EP0106536A3 (en) * 1982-09-15 1986-02-05 Ortho Diagnostic Systems Inc. Carousel microparticle separating, washing and reading device and method of use
GB8500294D0 (en) * 1985-01-07 1985-02-13 Martin W J Automatic chemistry machine
JP2731423B2 (en) * 1989-06-30 1998-03-25 日本商事株式会社 Rotary cuvette
EP0569115A3 (en) * 1992-05-05 1994-01-05 General Atomics High throughput DNA preparation system

Also Published As

Publication number Publication date
WO2002042430A1 (en) 2002-05-30

Similar Documents

Publication Publication Date Title
JP3551293B2 (en) Nucleic acid extraction device
JP6245931B2 (en) Microfluidic device and target cell concentration method using the same
US9737890B2 (en) Microfluidic device and method for operating thereof
CN107076768B (en) For measuring the rotatable cylinder of the property of biological sample
JP3630493B2 (en) Liquid processing method and apparatus using dispenser
KR101102532B1 (en) Cartridge containing reagent therein, microfluidic device having the cartridge, manufacturing method of the microfluidic device, biochemistry analysis method using microfluidic device
KR100807931B1 (en) Apparatus for Purifying Nucleic Acid and Method of Purifying Nucleic Acid
US8323507B2 (en) Device and method for the elimination of magnetic particles from a liquid
JP4095886B2 (en) Chemical analysis device and genetic diagnosis device
JP6861206B2 (en) Tips with microfluidic valves and microfluidic valves, and how to use microfluidic valves
US7384602B2 (en) Chemical analysis apparatus and genetic diagnostic apparatus
JP2004521739A (en) Method and apparatus for mixing liquid samples using vortex action
US20090209752A1 (en) Device and method for treating or cleaning sample material, in particular nucleic acids
CN110872551A (en) Nucleic acid detection device and nucleic acid detection method
CN113699023B (en) Microfluidic chip, mixing device, molecular diagnosis equipment and sample detection method
US20060263265A1 (en) Blood micro-separator
KR102300539B1 (en) Interface module for measurment of rt-pcr and rotational rt-pcr device
JPWO2002042430A1 (en) Nucleic acid extraction device
EP1503209A1 (en) Chemical analyzer and gene diagnosing apparatus
CN118103140A (en) Separating analytes of different analyte classes
KR102565215B1 (en) Interface module for rt-pcr and apparatus using the same
CN210945545U (en) High-flux micro-fluidic rapid nucleic acid extraction and detection device
EP3922711A1 (en) Sample treating device
CN107418871A (en) A kind of preparation method of self-reacting device for enrichment cycles tumour cell
JP3582632B2 (en) Container for nucleic acid extraction