JPS649866B2 - - Google Patents

Info

Publication number
JPS649866B2
JPS649866B2 JP59093654A JP9365484A JPS649866B2 JP S649866 B2 JPS649866 B2 JP S649866B2 JP 59093654 A JP59093654 A JP 59093654A JP 9365484 A JP9365484 A JP 9365484A JP S649866 B2 JPS649866 B2 JP S649866B2
Authority
JP
Japan
Prior art keywords
dialysate
blood
dialyzer
line
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59093654A
Other languages
Japanese (ja)
Other versions
JPS60236660A (en
Inventor
Masahito Amamya
Hisashi Kuroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP59093654A priority Critical patent/JPS60236660A/en
Publication of JPS60236660A publication Critical patent/JPS60236660A/en
Publication of JPS649866B2 publication Critical patent/JPS649866B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ダイアライザと陰圧ポンプ間の排出
ラインに連通する限外濾過能測定用計量容器を設
けた人工透析装置に関し、更に詳しくは、計量容
器を外気に連通すると共に、前記排出ラインの真
空度の増加に対し前記計量容器を介して該排出ラ
インに流入する空気流量を非増加傾向に保持する
ようにした人工透析装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an artificial dialysis device equipped with a metering container for measuring ultrafiltration capacity that communicates with a discharge line between a dialyzer and a negative pressure pump, and more specifically, The present invention relates to an artificial dialysis apparatus in which a metering container is communicated with the outside air, and the flow rate of air flowing into the discharge line via the metering container is maintained at a non-increasing rate even as the degree of vacuum in the discharge line increases.

〔従来の技術〕[Conventional technology]

周知のように、人工透析装置のダイアライザに
おける限外濾過能(以下、UFRPと言う)は、
個々のダイアライザ毎に異なるうえ、透析を続け
ると、経時的に漸減する。又、同一のダイアライ
ザであつても、患者が異なるとUFRPも異なる。
このため、UFRPを基準にして所定の限外濾過を
行う人工透析装置にあつては、定期的に、又は、
必要に応じてUFRPの測定を行つている。
As is well known, the ultrafiltration capacity (hereinafter referred to as UFRP) of the dialyzer of an artificial dialysis machine is
It differs for each dialyzer, and it gradually decreases over time if dialysis is continued. Furthermore, even if the dialyzer is the same, the UFRP will be different for different patients.
For this reason, in the case of artificial dialysis equipment that performs a specified ultrafiltration based on UFRP, it is necessary to periodically or
UFRP measurements are performed as necessary.

従来、この種の人工透析装置として、例えば、
第5図に示す特開昭56−84606号公報に記載され
ている陰圧タイプの人工透析装置が知られてい
る。人工透析装置は、ダイアライザ1の透析液供
給ライン2に設置する流路開閉手段3(電磁弁)
と、透析液排出ライン4に設置する透析液供給ポ
ンプ5(ギヤポンプ等による陰圧ポンプ)と、排
出ライン4を後述する計量ライン6、又は、透析
液排出先7に接続する流路切換手段8(三方コツ
ク)と、血液圧センサ9及び透析液圧センサ10
からの信号を入力し、所定の処理をして得る限外
濾過圧(以下、TMPの言う)と設定値との差を
零にする信号を透析液供給ポンプ5に出力する
TMP計算回路11と、流路開閉手段3と流路切
換手段8の動作タイミングを制御するタイミング
回路(図示せず)とを備えている。計量ライン6
は、空気室が外気に開放された点滴筒形式のチヤ
ンバー12と、計量ポンプ13(ローラポンプ)
と、チヤンバー12内の液面を一定値にする信号
を計量ポンプ13に出力する液面センサ(図示せ
ず)とで構成されている。この液面センサを含む
制御系は、透析液の供給を中断してダイアライザ
1の限外濾過能(以下、UFRPと言う)を測定す
るときにのみ動作するようになつている。
Conventionally, as this type of artificial dialysis device, for example,
A negative pressure type artificial dialysis apparatus is known, which is described in Japanese Patent Application Laid-Open No. 56-84606, as shown in FIG. The artificial dialysis device has a flow path opening/closing means 3 (electromagnetic valve) installed in the dialysate supply line 2 of the dialyzer 1.
, a dialysate supply pump 5 (a negative pressure pump such as a gear pump) installed in the dialysate discharge line 4, and a flow path switching means 8 that connects the discharge line 4 to a metering line 6 (described later) or a dialysate discharge destination 7. (Mikata Kotsuku), blood pressure sensor 9 and dialysate pressure sensor 10
inputs a signal from the dialysate supply pump 5, and outputs a signal to zero the difference between the ultrafiltration pressure (hereinafter referred to as TMP) obtained by predetermined processing and the set value to the dialysate supply pump 5.
It includes a TMP calculation circuit 11 and a timing circuit (not shown) that controls the operation timing of the channel opening/closing means 3 and the channel switching means 8. Weighing line 6
The chamber 12 is in the form of a drip tube whose air chamber is open to the outside air, and the metering pump 13 (roller pump)
and a liquid level sensor (not shown) that outputs a signal to the metering pump 13 to maintain the liquid level in the chamber 12 at a constant value. The control system including this liquid level sensor is designed to operate only when the supply of dialysate is interrupted and the ultrafiltration capacity (hereinafter referred to as UFRP) of the dialyzer 1 is measured.

以上の構成において、透析は、流路開閉手段3
を開、流路切換手段8を排出ライン4と排出先7
とを連通する位置にして行われる。このとき、
TMP計算回路11の動作により、TMPは設定値
通りに制御されるので、ダイアライザ1におい
て、設定TMPに対応した限外濾過が継続して行
われる。
In the above configuration, dialysis is performed by the channel opening/closing means 3
the flow path switching means 8 to the discharge line 4 and the discharge destination 7.
This is done in a position that communicates with the At this time,
Since the TMP is controlled according to the set value by the operation of the TMP calculation circuit 11, ultrafiltration corresponding to the set TMP is continuously performed in the dialyzer 1.

一方UFRP測定は、流路開閉手段3を閉、流路
切換手段8を排出ライン4と計量ライン6とを連
通する位置にして行われる(チヤンバー12内は
外気と連通状態にある)。このときも、TMP計算
回路11の動作により、TMPは設定値通り制御
されるので、ダイアライザ1において、設定
TMPに対応した限外濾過が継続して行われる。
そして、排出ライン4の液体は、計量ライン6に
導かれ、チヤンバー12に流入し、液面センサを
含む制御系によつて操作される計量ポンプ13に
より排出される。これにより、チヤンバー12の
液面が一定に保持され、計量ポンプ13の吐出量
(排出量)から限外濾過量(以下、UFと言う)を
求めると共に、計量ポンプ13の動作時間から限
外濾過率(単位時間当りのUFで、以下、UFRと
言う)を算出する。そして、このときのTMPか
らUFRP(=UFR/TMP)を演算し、以下この
UFRPを基準にして所定の限外濾過を行う。
On the other hand, UFRP measurement is performed with the channel opening/closing means 3 closed and the channel switching means 8 placed in a position where the discharge line 4 and the measuring line 6 are communicated (the inside of the chamber 12 is in communication with the outside air). At this time, TMP is controlled according to the set value by the operation of the TMP calculation circuit 11, so the dialyzer 1
Ultrafiltration compatible with TMP continues.
The liquid in the discharge line 4 is then led to the metering line 6, flows into the chamber 12, and is discharged by a metering pump 13 operated by a control system including a liquid level sensor. As a result, the liquid level in the chamber 12 is kept constant, the amount of ultrafiltration (hereinafter referred to as UF) is determined from the discharge amount (discharge amount) of the metering pump 13, and the amount of ultrafiltration is determined from the operating time of the metering pump 13. Calculate the rate (UF per unit time, hereinafter referred to as UFR). Then, calculate UFRP (=UFR/TMP) from TMP at this time, and
Perform a prescribed ultrafiltration based on UFRP.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の人工透析装置にあつては、透析液供
給ポンプと計量ポンプを備え、夫々を操作端とす
る制御系を構成しているため、装置が複雑な構成
となるうえ、高価になる(ポンプ類は一般に高価
である)という問題がある。
The above-mentioned conventional artificial dialysis equipment is equipped with a dialysate supply pump and a metering pump, and constitutes a control system in which each is used as an operating end, making the equipment complex and expensive. The problem is that similar products are generally expensive.

そこで、本発明は、構成が簡単で、かつ、安価
なうえに、陰圧ポンプによる安定なTMP制御を
行う人工透析装置を提供するにある。
SUMMARY OF THE INVENTION Therefore, the present invention provides an artificial dialysis apparatus that is simple in construction, inexpensive, and performs stable TMP control using a negative pressure pump.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の構成は、ダイアライザの血液回路と患
者との間に血液流入ラインと血液流出ラインとを
接続し、前記血液流入ラインに血液ポンプを設
け、前記ダイアライザの透析液回路に透析液供給
ラインと透析液排出ラインとを接続し、前記透析
液供給ラインに第1の電磁弁を設け、前記透析液
排出ラインに陰圧ポンプを設け、前記血液回路に
血液圧センサを設け、前記透析液回路に透析液圧
センサを設け、前記陰圧ポンプと前記ダイアライ
ザとの間の前記透析液排出ラインに第2の電磁弁
を設け、この第2の電磁弁の上流側と下流側との
間に、下部を前記第2の電磁弁の上流側に接続し
上部をこの第2の電磁弁の下流側に接続すると共
に空気吸引ラインに接続した計量器を設け、前記
第1の電磁弁を開にし、前記血液ポンプを駆動
し、前記ダイアライザの血液回路に血液を流し、
前記ダイアライザ、前記計量器を通じ透析液を流
した状態で、前記血液圧センサで検出した血液圧
と前記透析液圧センサで検出した透析液圧との差
が設定限外過圧と一致するように前記陰圧ポン
プを制御して透析・限外過を行ない、前記ダイ
アライザの血液回路と透析液回路との間の圧力を
設定限外過圧に保持したまま、前記第1の電磁
弁を閉、前記第2の電磁弁を開にして前記空気吸
引ラインから導入される空気で空にされた前記計
量器が、前記第2の電磁弁を閉にして限外過後
の透析液で満たされる時間から限外過率を求め
る人工透析装置において、一方側に一定圧が加え
られ他方側に前記陰圧ポンプと前記ダイアライザ
との間の透析液圧が加えられた弾性膜と、この弾
性膜に支持され、先端が前記空気吸引ラインに挿
入され、前記陰圧ポンプと前記ダイアライザとの
間の透析液圧の低下に応じて弁開度が減少する調
節弁とからなる自動絞り装置を設け前記陰圧ポン
プの制御によつて前記透析液排出ラインの真空度
が増加したとき前記空気吸引ラインから導入され
る空気流量が増加しないようにしたことにある。
The configuration of the present invention is such that a blood inflow line and a blood outflow line are connected between the blood circuit of the dialyzer and the patient, a blood pump is provided in the blood inflow line, and a dialysate supply line is connected to the dialysate circuit of the dialyzer. a dialysate discharge line, a first electromagnetic valve is provided in the dialysate supply line, a negative pressure pump is provided in the dialysate discharge line, a blood pressure sensor is provided in the blood circuit, and the dialysate supply line is provided with a negative pressure pump; A dialysate pressure sensor is provided, a second solenoid valve is provided in the dialysate discharge line between the negative pressure pump and the dialyzer, and a lower part is provided between the upstream side and the downstream side of the second solenoid valve. is connected to the upstream side of the second solenoid valve, the upper part is connected to the downstream side of the second solenoid valve, and a meter is connected to the air suction line, the first solenoid valve is opened, and the meter is connected to the air suction line. driving a blood pump to flow blood through the blood circuit of the dialyzer;
With the dialysate flowing through the dialyzer and the meter, the difference between the blood pressure detected by the blood pressure sensor and the dialysate pressure detected by the dialysate pressure sensor matches a set limit overpressure. controlling the negative pressure pump to perform dialysis and ultrafiltration, and closing the first solenoid valve while maintaining the pressure between the blood circuit and the dialysate circuit of the dialyzer at the set ultraoverpressure; From the time when the meter is emptied with air introduced from the air suction line by opening the second solenoid valve and is filled with post-ultradialysate by closing the second solenoid valve. An artificial dialysis device for obtaining an ultra-high pass rate includes an elastic membrane to which a constant pressure is applied on one side and dialysate pressure between the negative pressure pump and the dialyzer on the other side, and a membrane supported by the elastic membrane. , the negative pressure pump is provided with an automatic throttling device comprising a control valve whose tip is inserted into the air suction line and whose opening degree decreases in response to a decrease in dialysate pressure between the negative pressure pump and the dialyzer; This control prevents the flow rate of air introduced from the air suction line from increasing when the degree of vacuum in the dialysate discharge line increases.

〔作用〕[Effect]

本発明の人工透析装置は、計量容器を介して透
析液排出ラインに流入する空気流量を、該排出ラ
インの真空度の増加に対し、非増加傾向を保持す
る下で、TMP制御をすると共に、UFRP測定の
とき、UFの計量を計量容器内に外気を取入れ完
全に空にした後、該計量容器内に限外濾過による
液体を導入して求める。
The artificial dialysis apparatus of the present invention performs TMP control on the air flow rate flowing into the dialysate discharge line via the metering container while maintaining a non-increasing tendency with respect to an increase in the degree of vacuum in the discharge line. When measuring UFRP, the amount of UF is determined by introducing outside air into a measuring container, completely emptying it, and then introducing ultrafiltrated liquid into the measuring container.

〔実施例〕〔Example〕

以下、図面を参照し本発明について説明する。 The present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す構成図であ
り、第5図に付した記号と同一のものは同一意味
で用いられている。この実施例は、ダイアライザ
1及びその周辺機器と、この周辺機器からの信号
及びキーボード21からの信号を入力し(キーボ
ードには、UFRの設定スイツチや透析、UFRP
測定等の動作を指定する動作モード指定スイツチ
が設けられている)、所定の処理をして周辺機器
類を操作するマイクロコンピユータから成る制御
部22とで構成される。透析液供給ライン2は、
給液弁23と、定流量弁24と、ピンチバルブ2
5と、透析液圧センサ10とを有し、透析液供給
部(図示せず)からの所定濃度の透析液をダイア
ライザ1に供給する構成となつている。透析液排
出ライン4は、ピンチバルブ26と、ギヤポンプ
等からなる陰圧ポンプ5とを有し、ダイアライザ
1からの透析液、限外濾過液等を排出先7に流す
構成となつている。透析液排出ライン4は、流体
の出・入口に超音波センサ27を有する計量容器
28を設置する計量ライン29と連通すると共に
(計量ライン29は、ピンチバルブ26を設置す
る透析液排出ライン4に対してバイパス流路を構
成している)、ピンチバルブ30を有するバイパ
スライン31を介して透析液供給ライン2と連通
する構成となつている。計量容器28は、逆止弁
32及び自動絞り装置33を有する空気吸引ライ
ン54を介して外気と連通する構成となつてい
る。自動絞り装置33は、第2図に示すように、
弁収納室34、並びに、弁収納室34を介して連
通する空気流入口35及び空気流出口36(空気
流出口36が、空気吸引ライン54に接続され
る)を有する本体37と、本体37と蓋38で挾
持され(蓋38の中心部39は貫通されている)、
かつ、スプリング40及び41で位置決めされる
(静止位置が決まる)シリコンゴム等から成る弾
性膜42に支持される先端がテーパ状の調節弁4
3と、本体37のねじ部44と螺合結合する支持
部45及び弁収納室34の内壁とOリング46を
介在して気密的に接触する筒部47から成る部材
であつて、長手方向に設ける貫通孔48を介して
弁収納室34と空気流入口35を連通する調節ね
じ49を有する。調節ねじ49は、弁収納室34
に設置するスプリング50の弾性力を常時受ける
ようになつており(第2図下方向の力を受け、螺
合結合部におけるバツクラツシユによる影響を解
消している)、調節弁43の先端と調節ねじ47
の貫通孔48とで形成する隙間を調節し、透析液
排出ライン2への空気吸引量特性が第3図の特性
A、又は、Bとなるようになつている。
FIG. 1 is a block diagram showing one embodiment of the present invention, and the same symbols as those in FIG. 5 are used with the same meaning. This embodiment inputs the dialyzer 1 and its peripheral equipment, signals from this peripheral equipment, and signals from the keyboard 21 (the keyboard includes the UFR setting switch, dialysis, UFRP
(An operation mode designation switch is provided for designating operations such as measurement), and a control section 22 consisting of a microcomputer that performs predetermined processing and operates peripheral devices. The dialysate supply line 2 is
Liquid supply valve 23, constant flow valve 24, and pinch valve 2
5 and a dialysate pressure sensor 10, and is configured to supply dialysate of a predetermined concentration to the dialyzer 1 from a dialysate supply section (not shown). The dialysate discharge line 4 includes a pinch valve 26 and a negative pressure pump 5 such as a gear pump, and is configured to flow the dialysate, ultrafiltrate, etc. from the dialyzer 1 to a discharge destination 7. The dialysate discharge line 4 communicates with a metering line 29 in which a metering container 28 having an ultrasonic sensor 27 is installed at the fluid outlet and inlet (the metering line 29 is connected to the dialysate drain line 4 in which a pinch valve 26 is installed). 2), which communicates with the dialysate supply line 2 via a bypass line 31 having a pinch valve 30. The metering container 28 is configured to communicate with the outside air via an air suction line 54 having a check valve 32 and an automatic throttle device 33. The automatic diaphragm device 33, as shown in FIG.
A main body 37 having a valve storage chamber 34, an air inlet 35 and an air outlet 36 communicating with each other via the valve storage chamber 34 (the air outlet 36 is connected to the air suction line 54); It is held by a lid 38 (the center part 39 of the lid 38 is penetrated),
A control valve 4 having a tapered tip supported by an elastic membrane 42 made of silicone rubber or the like is positioned (resting position is determined) by springs 40 and 41.
3, a supporting portion 45 that is threadedly coupled to the threaded portion 44 of the main body 37, and a cylindrical portion 47 that is in airtight contact with the inner wall of the valve housing chamber 34 via an O-ring 46, and An adjustment screw 49 is provided that communicates the valve storage chamber 34 and the air inlet 35 through a through hole 48 provided therein. The adjustment screw 49 is connected to the valve storage chamber 34.
The end of the control valve 43 and the control screw are always subjected to the elastic force of the spring 50 installed at the bottom (receiving the downward force in Fig. 2, eliminating the effect of buckling at the threaded joint). 47
The gap formed by the through hole 48 is adjusted so that the air suction amount characteristic to the dialysate discharge line 2 becomes characteristic A or B in FIG. 3.

一方、ダイアライザ1の血液回路は、定速回転
をする血液ポンプ60と、動脈圧センサ9を有す
る動脈チヤンバー51と、静脈圧センサ52を有
する静脈チヤンバー53とを備えている。
On the other hand, the blood circuit of the dialyzer 1 includes a blood pump 60 that rotates at a constant speed, an arterial chamber 51 having an arterial pressure sensor 9, and a venous chamber 53 having a venous pressure sensor 52.

次に、上記構成の人工透析装置の透析動作及び
UFRP測定動作について説明する。
Next, the dialysis operation of the artificial dialysis machine with the above configuration and
The UFRP measurement operation will be explained.

透析動作…キーボード21にて透析モードを指
定し、動作スタート指令を与えると、制御部22
は、血液ポンプ60を駆動し、血液をダイアライ
ザ1の血液回路に連続的に流す。と同時に、給液
弁23及びピンチバルブ25を開、ピンチバルブ
26及び30を閉にし、給液弁23→定流量弁2
4→ピンチバルブ25→ダイアライザ1→計量容
器28→陰圧ポンプ5→排出先7から成る流路を
構成すると共に、陰圧ポンプ5を駆動して透析液
を前記流路にほぼ定流量で流す。又、制御部22
は、血液圧センサ9,53及び透析液圧センサ1
0の各信号M1,M3及びM2を用い、(1)式に基づ
く処理をして動作中のTMPnを求める。
Dialysis operation: When the dialysis mode is designated with the keyboard 21 and an operation start command is given, the control unit 22
drives the blood pump 60 to cause blood to flow continuously into the blood circuit of the dialyzer 1. At the same time, the liquid supply valve 23 and the pinch valve 25 are opened, the pinch valves 26 and 30 are closed, and the liquid supply valve 23 → constant flow valve 2
4→Pinch valve 25→Dializer 1→Measuring container 28→Negative pressure pump 5→Discharge destination 7 is formed, and the negative pressure pump 5 is driven to flow dialysate through the channel at a substantially constant flow rate. . Moreover, the control section 22
are blood pressure sensors 9, 53 and dialysate pressure sensor 1
Using each of the signals M 1 , M 3 and M 2 of 0, TMP n during operation is determined by processing based on equation (1).

TMPn=M1−M2+ΔP 又は、 (1) TMPn=M1+M3/2−M2+ΔP 但し、ΔP…オフセツト そして、制御部22は、このTMPnを測定値、
キーボード21で設定するUFRによつて決定さ
れる信号を設定値とする制御演算をして得る信号
で陰圧ポンプ5を操作する。
TMP n = M 1 - M 2 + ΔP or (1) TMP n = M 1 + M 3 /2 - M 2 + ΔP However, ΔP...offset Then, the control unit 22 converts this TMP n into the measured value,
The negative pressure pump 5 is operated using a signal obtained by performing control calculations using the signal determined by the UFR set on the keyboard 21 as a set value.

ところで、一般に、陰圧ポンプを制御系の操作
端として備えたものにおいて、陰圧ポンプに空気
が混入すると、吸引ラインの到達真空度を低下さ
せ(第4図参照)、制御系の動作を不安定にする
が、第1図の構成にあつては、上記透析動作のと
き、自動絞り装置33が、下記の動作をし、所定
のUFRを得ることができる。
By the way, in general, in devices equipped with a negative pressure pump as the operating end of the control system, if air gets mixed into the negative pressure pump, the ultimate vacuum level of the suction line will be reduced (see Figure 4), and the operation of the control system will be disrupted. However, in the configuration shown in FIG. 1, during the above-mentioned dialysis operation, the automatic throttling device 33 performs the following operation to obtain a predetermined UFR.

自動絞り装置33は、透析液排出ライン4の真
空度に応じて調節弁43を上下動して調節弁43
の先端と調節ねじ49の貫通孔48との隙間を可
変し、透析液排出ライン4への空気吸引量(空気
流入量)を、第3図の特性A、又は、Bに基づき
調節する(因みに、特性Cは、調節弁43を固定
したときの特性である)。このため、陰圧ポンプ
5によつて透析液排出ライン4の真空度が増加し
ても、透析液排出ライン4に流入する空気流量を
非増加傾向に保持することができる。従つて、陰
圧ポンプ5の動作は安定し、透析液排出ライン4
に所望の真空度(陰圧)を得ることができる。即
ち、制御部22は、安定したTMP制御をするこ
とができ、所定のUFRを得ることができる。
The automatic throttle device 33 moves the control valve 43 up and down according to the degree of vacuum in the dialysate discharge line 4.
The gap between the tip of the adjusting screw 49 and the through hole 48 of the adjustment screw 49 is varied, and the amount of air suction (air inflow amount) into the dialysate discharge line 4 is adjusted based on characteristics A or B in FIG. , characteristic C is the characteristic when the control valve 43 is fixed). Therefore, even if the degree of vacuum in the dialysate discharge line 4 is increased by the negative pressure pump 5, the air flow rate flowing into the dialysate discharge line 4 can be maintained in a non-increasing manner. Therefore, the operation of the negative pressure pump 5 is stable, and the dialysate discharge line 4
The desired degree of vacuum (negative pressure) can be obtained. That is, the control unit 22 can perform stable TMP control and obtain a predetermined UFR.

UFRP測定動作…透析動作中定期的に(プログ
ラムに基づく動作)、又は、必要に応じて(キー
ボード21からの指定に基づく動作)UFRP測定
モードに切換えられると、制御部22は、以下の
2つのステツプを経てUFRP測定を行う。
UFRP measurement operation: When switched to the UFRP measurement mode periodically during dialysis operation (operation based on a program) or as needed (operation based on designation from the keyboard 21), the control unit 22 performs the following two operations. Perform UFRP measurement through steps.

第1ステツプとして、制御部22は、ダイアラ
イザ1の血液回路を透析状態に保持すると共に、
ピンチバルブ25を閉、給液弁23、ピンチバル
ブ26及び30を開にして供給元から透析液をバ
イパスライン31を介して排出先7に流す流路を
構成する(ダイアライザ1への透析液の供給が中
断される)。この構成において、計量容器28に
吸引ライン54を外気が導入され、計量容器28
に残留する液体は排出され計量容器28が完全に
空になる。このときも、陰圧ポンプ5を操作端と
する制御系及び自動絞り装置33が動作している
ため、所定のTMPの下での限外濾過が行れてい
る。
As a first step, the control unit 22 maintains the blood circuit of the dialyzer 1 in a dialysis state, and
The pinch valve 25 is closed, and the liquid supply valve 23, pinch valves 26 and 30 are opened to form a flow path for flowing dialysate from the supply source to the discharge destination 7 via the bypass line 31 (dialysate flow to the dialyzer 1). (supply may be interrupted). In this configuration, outside air is introduced into the metering container 28 through the suction line 54, and the metering container 28
The remaining liquid is drained and the metering container 28 is completely emptied. At this time as well, since the control system using the negative pressure pump 5 as the operating end and the automatic diaphragm device 33 are operating, ultrafiltration is performed under the predetermined TMP.

第2ステツプは、上記状態にて、制御部22
は、ピンチバルブ26を閉にし、ダイアライザ→
計量容器28→陰圧ポンプ5→排出先7の流路を
構成する。これにより、限外濾過による液体は、
計量容器28に導入される。そして、制御部22
は、2個の超音波センサ27による液位検出信号
をトリガとして、限外濾過による液体が計量容器
28を満たす時間Tを計数し、UFR(=V/T、
Vは計量容器28の容積)を求め、このときの
TMPからUFRP(=UFR/TMP)を求めてその
値をRAMに格納する。以後、この更新された
UFRPを用いて透析動作を行う。
In the second step, in the above state, the control section 22
Close the pinch valve 26 and turn the dialyzer →
A flow path from the measuring container 28 to the negative pressure pump 5 to the discharge destination 7 is configured. This allows the ultrafiltrated liquid to
It is introduced into the metering container 28. Then, the control section 22
is triggered by the liquid level detection signals from the two ultrasonic sensors 27, counts the time T during which the ultrafiltrated liquid fills the measuring container 28, and calculates UFR (=V/T,
V is the volume of the measuring container 28), and at this time
Calculate UFRP (=UFR/TMP) from TMP and store the value in RAM. Since then, this updated
Perform dialysis operation using UFRP.

〔発明の効果〕〔Effect of the invention〕

以上、説明した通り、本発明の人工透析装置に
よれば、ダイアライザと陰圧ポンプ間の排出ライ
ンに連通する限外濾過能測定用計量容器を設け、
該計量容器と外気を連通すると共に、前記排出ラ
インの真空度の増加に対し前記計量容器を介して
該排出ラインに流入する空気流量を非増加傾向に
保持するようにしたため、装置の構成が簡単で、
かつ、安価になり、しかも、安定なTMP制御を
行うことができる。
As explained above, according to the artificial dialysis apparatus of the present invention, a metering container for measuring ultrafiltration capacity is provided which communicates with the discharge line between the dialyzer and the negative pressure pump,
The measuring container communicates with outside air, and the air flow rate flowing into the discharge line through the measuring container is maintained at a non-increasing tendency even when the degree of vacuum in the discharge line increases, so the configuration of the device is simple. in,
Moreover, it is inexpensive, and moreover, stable TMP control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す構成図、第
2図は、自動絞り装置の構成図、第3図は、自動
絞り装置の特性図、第4図は、陰圧ポンプ(ギヤ
ポンプ)の特性図、第5図は、従来例を示す構成
図である。 1……ダイアライザ、2……透析液供給ライ
ン、4……透析液排出ライン、5……陰圧ポン
プ、22……制御部、28……計量容器、33…
…自動絞り装置。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram of an automatic throttle device, FIG. 3 is a characteristic diagram of the automatic throttle device, and FIG. 4 is a negative pressure pump (gear pump). ), FIG. 5 is a configuration diagram showing a conventional example. DESCRIPTION OF SYMBOLS 1... Dialyzer, 2... Dialysate supply line, 4... Dialysate discharge line, 5... Negative pressure pump, 22... Control unit, 28... Measuring container, 33...
...Automatic squeezing device.

Claims (1)

【特許請求の範囲】[Claims] 1 ダイアライザの血液回路と患者との間に血液
流入ラインと血液流出ラインとを接続し、前記血
液流入ラインに血液ポンプを設け、前記ダイアラ
イザの透析液回路に透析液供給ラインと透析液排
出ラインとを接続し、前記透析液供給ラインに第
1の電磁弁を設け、前記透析液排出ラインに陰圧
ポンプを設け、前記血液回路に血液圧センサを設
け、前記透析液回路に透析液圧センサを設け、前
記陰圧ポンプと前記ダイアライザとの間の前記透
析液排出ラインに第2の電磁弁を設け、この第2
の電磁弁の上流側と下流側との間に、下部を前記
第2の電磁弁の上流側に接続し、上部をこの第2
の電磁弁の下流側に接続すると共に空気吸引ライ
ンに接続した計量器を設け、前記第1の電磁弁を
開にし、前記血液ポンプを駆動し、前記ダイアラ
イザの血液回路に血液を流し、前記ダイアライ
ザ、前記計量器を通じ透析液を流した状態で、前
記血液圧センサで検出した血液圧と前記透析液圧
センサで検出した透析液圧との差が設定限外過
圧と一致するように前記陰圧ポンプを制御して透
析・限外過を行ない、前記ダイアライザの血液
回路と透析液回路との間の圧力を設定限外過圧
に保持したまま、前記第1の電磁弁を閉、前記第
2の電磁弁を開にして前記空気吸引ラインから導
入される空気で空にされた前記計量器が、前記第
2の電磁弁を閉にし限外過後の透析液で満たさ
れる時間から限外過率を求める人工透析装置に
おいて、一方側に一定圧が加えられ他方側に前記
陰圧ポンプと前記ダイアライザとの間の透析液圧
が加えられた弾性膜と、この弾性膜に支持され、
先端が前記空気吸引ラインに挿入され、前記陰圧
ポンプと前記ダイアライザとの間の透析液圧の低
下に応じて弁開度が減少する調節弁とからなる自
動絞り装置を設け、前記陰圧ポンプの制御によつ
て前記透析液排出ラインの真空度が増加したとき
前記空気吸引ラインから導入される空気流量が増
加しないようにしたことを特徴とする人工透析装
置。
1. A blood inflow line and a blood outflow line are connected between the blood circuit of the dialyzer and the patient, a blood pump is provided in the blood inflow line, and a dialysate supply line and a dialysate discharge line are connected to the dialysate circuit of the dialyzer. a first electromagnetic valve is provided in the dialysate supply line, a negative pressure pump is provided in the dialysate discharge line, a blood pressure sensor is provided in the blood circuit, and a dialysate pressure sensor is provided in the dialysate circuit. a second electromagnetic valve is provided in the dialysate discharge line between the negative pressure pump and the dialyzer;
between the upstream side and the downstream side of the solenoid valve, the lower part is connected to the upstream side of the second solenoid valve, and the upper part is connected to the upstream side of the second solenoid valve.
A meter is provided downstream of the solenoid valve and connected to the air suction line, the first solenoid valve is opened, the blood pump is driven, blood flows through the blood circuit of the dialyzer, and the first solenoid valve is connected to the air suction line. , with the dialysate flowing through the meter, adjust the negative pressure so that the difference between the blood pressure detected by the blood pressure sensor and the dialysate pressure detected by the dialysate pressure sensor matches the set limit overpressure. The pressure pump is controlled to perform dialysis and ultrafiltration, and while the pressure between the blood circuit and the dialysate circuit of the dialyzer is maintained at the set limit overpressure, the first electromagnetic valve is closed, and the first electromagnetic valve is closed. From the time when the meter is emptied with air introduced from the air suction line by opening the second solenoid valve, it is filled with dialysate after the limit has passed by closing the second solenoid valve. In an artificial dialysis device for determining the rate, an elastic membrane to which a constant pressure is applied on one side and a dialysate pressure between the negative pressure pump and the dialyzer is applied to the other side, and supported by this elastic membrane,
An automatic throttling device is provided, the tip of which is inserted into the air suction line, and includes a control valve whose opening degree decreases in accordance with a decrease in dialysate pressure between the negative pressure pump and the dialyzer, and the negative pressure pump An artificial dialysis apparatus characterized in that the flow rate of air introduced from the air suction line does not increase when the degree of vacuum in the dialysate discharge line increases.
JP59093654A 1984-05-10 1984-05-10 Artificial dialytic apparatus Granted JPS60236660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093654A JPS60236660A (en) 1984-05-10 1984-05-10 Artificial dialytic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093654A JPS60236660A (en) 1984-05-10 1984-05-10 Artificial dialytic apparatus

Publications (2)

Publication Number Publication Date
JPS60236660A JPS60236660A (en) 1985-11-25
JPS649866B2 true JPS649866B2 (en) 1989-02-20

Family

ID=14088365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093654A Granted JPS60236660A (en) 1984-05-10 1984-05-10 Artificial dialytic apparatus

Country Status (1)

Country Link
JP (1) JPS60236660A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119276A (en) * 1984-11-14 1986-06-06 株式会社 ニツシヨ− Apparatus and method for controlling ultrafiltration amount

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156470A (en) * 1984-01-25 1985-08-16 横河電機株式会社 Artificial dialytic apparatus

Also Published As

Publication number Publication date
JPS60236660A (en) 1985-11-25

Similar Documents

Publication Publication Date Title
US4997570A (en) Method and device for ultrafiltration during hemodialysis
US3990973A (en) Apparatus for measuring ultrafiltration rate
EP1424089B1 (en) Dialysis machine
US4606826A (en) Apparatus for controlling ultrafiltration and method for the same
US8235931B2 (en) Waste balancing for extracorporeal blood treatment systems
US7686778B2 (en) Waste balancing for extracorporeal blood treatment systems
US4747950A (en) Method and apparatus for controlled ultrafiltration during hemodialysis
US4021341A (en) Hemodialysis ultrafiltration system
EP0188451A1 (en) Blood extraction and reinfusion flow control system and method.
JPH0152026B2 (en)
JPH0364148B2 (en)
US4758336A (en) Dialytic apparatus
CA1103589A (en) Hemodialysis ultrafiltration system with controlled liquid extraction from blood
JP2524876Y2 (en) Hemodialysis machine
JPS649866B2 (en)
JPS649024B2 (en)
JP2769514B2 (en) Water removal control device for hemodialysis machine
JPS6226804B2 (en)
JPH0212109B2 (en)
JPS6330025B2 (en)
JPS649025B2 (en)
JPH0627166Y2 (en) Dialysis machine
JPS63234973A (en) Apparatus for controlling ultrafiltration quantity
JPH0516871B2 (en)
JPS60156470A (en) Artificial dialytic apparatus