JPS647896B2 - - Google Patents

Info

Publication number
JPS647896B2
JPS647896B2 JP22598583A JP22598583A JPS647896B2 JP S647896 B2 JPS647896 B2 JP S647896B2 JP 22598583 A JP22598583 A JP 22598583A JP 22598583 A JP22598583 A JP 22598583A JP S647896 B2 JPS647896 B2 JP S647896B2
Authority
JP
Japan
Prior art keywords
oil
rear wheels
wheel drive
rotational speed
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22598583A
Other languages
Japanese (ja)
Other versions
JPS60116529A (en
Inventor
Takeo Hiramatsu
Yoshimasa Nagayoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP58225985A priority Critical patent/JPS60116529A/en
Priority to DE19843441076 priority patent/DE3441076A1/en
Priority to FR8417165A priority patent/FR2554768B1/en
Priority to KR1019840007054A priority patent/KR890001335B1/en
Priority to US06/670,903 priority patent/US4676336A/en
Publication of JPS60116529A publication Critical patent/JPS60116529A/en
Publication of JPS647896B2 publication Critical patent/JPS647896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3505Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with self-actuated means, e.g. by difference of speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【発明の詳細な説明】 本発明は前輪および後輪を同一のエンジンで駆
動する場合の駆動連結装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drive coupling device when front wheels and rear wheels are driven by the same engine.

前輪および後輪を同一のエンジンで駆動する四
輪駆動車においては、前輪および後輪のタイヤの
有効半径に多少の相違があつたり、旋回走行時に
前輪は後輪に対して旋回半径が大きいことなどに
より、速く回転しようとして前後の駆動軸の間に
捩りトルクを生じ、ブレーキ作用したのと同じ状
態になつて、いわゆるタイトコーナブレーキング
現象を生じ、走行性の悪化、タイヤの摩耗などを
生じるため、これを防止する手段が必要である。
In four-wheel drive vehicles where the front and rear wheels are driven by the same engine, there is a slight difference in the effective radius of the front and rear tires, and the front wheels have a larger turning radius than the rear wheels when turning. As a result, torsional torque is generated between the front and rear drive shafts as they try to rotate faster, resulting in the same state as braking, resulting in the so-called tight corner braking phenomenon, resulting in poor running performance and tire wear. Therefore, a means to prevent this is necessary.

このため従来の四輪駆動車は、駆動連結部分に
おいて、前輪側と後輪側がドグクラツチなどで連
結されており、コーナリング時において、前・後
輪の回転速度が異なるにもかかわらず、前・後輪
が等速で回転するため、後輪から前輪へブレーキ
トルクがかかる。この現象を低減させるために、
特開昭58−20521号公報では、連結部分に湿式多
板クラツチを用いて、コーナリング時にクラツチ
をスライドさせて前・後輪の回転速度差を吸収す
る方法が提案されているが、伝達トルク容量やス
リツプによる焼損の恐れなどがあつた。
For this reason, in conventional four-wheel drive vehicles, the front and rear wheels are connected at the drive connection part using a dog clutch, etc., and when cornering, even though the rotational speeds of the front and rear wheels are different, Since the wheels rotate at a constant speed, brake torque is applied from the rear wheels to the front wheels. To reduce this phenomenon,
Japanese Patent Application Laid-Open No. 58-20521 proposes a method in which a wet multi-plate clutch is used in the connection part and the clutch is slid during cornering to absorb the difference in rotational speed between the front and rear wheels, but the transmission torque capacity is There was a risk of burnout due to burns or slips.

また、特開昭49−50626号公報において、回転
力の一部を一対の車輪から他の対の車輪に移し得
るように、第1回転軸と第2回転軸とを遊星歯車
方式のギヤポンプを介して連結した四輪駆動用駆
動連結装置が報告されている。しかし、上述した
ようなギヤポンプでは、歯先部の密封性が低いた
め大流量且つ高油圧が要求される上記駆動連結装
置には必ずしも適さないばかりか該装置全体が比
較的大型となり且つ耐摩耗性が低いので耐久性に
乏しいという問題があつた。また、同公報の技術
では入出力軸間の相対回転の方向によつてはギヤ
ポンプ内で加圧された流体が一旦オイル溜りに吐
出されたのちオリフイスを経てポンプ内部に戻る
ので、オイル溜りの存在によつて動力伝達開始の
応答性が劣るという問題があつた。
Furthermore, in Japanese Patent Application Laid-Open No. 49-50626, a planetary gear type gear pump is used to connect the first rotating shaft and the second rotating shaft so that a part of the rotational force can be transferred from one pair of wheels to another pair of wheels. A drive coupling device for four-wheel drive has been reported. However, the gear pump described above is not necessarily suitable for the above-mentioned drive coupling device that requires a large flow rate and high oil pressure because of the poor sealing performance of the tooth tips, and the entire device is relatively large and has poor wear resistance. There was a problem that the durability was poor due to the low In addition, with the technology disclosed in the same publication, depending on the direction of relative rotation between the input and output shafts, the pressurized fluid inside the gear pump is once discharged into the oil pool and then returns to the inside of the pump via the orifice. However, there was a problem in that the responsiveness of the start of power transmission was poor.

このような事情に鑑み、本発明は四輪駆動走行
時において、前輪および後輪間の回転速度差によ
つて駆動系に生じる不具合を解消するためになさ
れたものであり、前輪および後輪に、それぞれ駆
動連結された回転軸の回転速度差を吸収する四輪
駆動用駆動連結装置を提供することを目的とす
る。
In view of these circumstances, the present invention was made in order to eliminate the problems that occur in the drive system due to the difference in rotational speed between the front wheels and the rear wheels during four-wheel drive driving. It is an object of the present invention to provide a four-wheel drive drive coupling device that absorbs the difference in rotational speed between rotary shafts that are drive-coupled.

上記目的を達成する本発明の四輪駆動用駆動連
結装置は、前輪に駆動力を伝達する第1の回転軸
と、後輪に駆動力を伝達する第2の回転軸と、前
記第1と第2の回転軸の連結手段として使用さ
れ、前記第1と第2の回転軸の回転速度差によつ
て駆動られると共に、回転速度差に応じた油量を
吐出するベーンポンプとから成る四輪駆動用駆動
連結装置において、前記ベーンポンプの吐出口と
吸込口とを直接連通する油路を設け、同油路に油
流通制御手段を介装したことを特徴とするもので
ある。
A four-wheel drive drive coupling device of the present invention that achieves the above object includes a first rotating shaft that transmits driving force to the front wheels, a second rotating shaft that transmits driving force to the rear wheels, and a second rotating shaft that transmits driving force to the rear wheels. A four-wheel drive system comprising a vane pump that is used as a connecting means for the second rotating shaft, is driven by the difference in rotational speed between the first and second rotating shafts, and discharges an amount of oil according to the difference in rotational speed. The vane pump drive coupling device is characterized in that an oil passage is provided that directly communicates the discharge port and suction port of the vane pump, and an oil flow control means is interposed in the oil passage.

以下、一実施例に基づいて本発明の内容を具体
的に説明する。
Hereinafter, the content of the present invention will be specifically explained based on one example.

第1図は、本発明にかかる四輪駆動用駆動連結
装置を利用した四輪駆動装置の概略構成図を示
す。
FIG. 1 shows a schematic configuration diagram of a four-wheel drive device using a four-wheel drive drive coupling device according to the present invention.

エンジン1に発生する出力は、エンジン1に連
結された変速機2を介して、その出力軸3に取り
付けたドライブギヤ4から駆動力として取り出さ
れ、アイドルギヤ5を介して両端部にギヤ6,7
を具えた中間伝達軸8に伝達され、この中間伝達
軸8の一方のギヤ7から前輪9の差動装置10に
駆動力が伝達されて前輪9が駆動されると共に、
前輪9に伝達された駆動力がそのまま第1回転軸
11にギヤ12を介して伝達され四輪駆動用駆動
連結装置13を経て第2回転軸14に伝達され、
さらに、回転取出方向を変換する歯車機構15を
介して後輪16用の差動装置17に駆動力が伝達
され、後輪16を駆動する。
The output generated by the engine 1 is extracted as driving force from a drive gear 4 attached to an output shaft 3 of the engine 1 via a transmission 2 connected to the engine 1. 7
The driving force is transmitted to an intermediate transmission shaft 8 having a drive force, and the driving force is transmitted from one gear 7 of this intermediate transmission shaft 8 to a differential device 10 for the front wheels 9 to drive the front wheels 9.
The driving force transmitted to the front wheels 9 is directly transmitted to the first rotating shaft 11 via the gear 12, and is then transmitted to the second rotating shaft 14 via the four-wheel drive drive coupling device 13.
Furthermore, the driving force is transmitted to the differential device 17 for the rear wheels 16 via the gear mechanism 15 that changes the direction of rotation, thereby driving the rear wheels 16.

四輪駆動用駆動連結装置13は、第2図にその
断面構造を示すように、ベーンポンプ20と、こ
れに付属する油圧制御回路21とで構成されてお
り、ベーンポンプはロータ20aとカムリング2
0bとから成り、ロータ20aは前輪9への駆動
力がそのまま伝達される第1の回転軸11と連結
され、カムリング20bは後輪16に駆動力を伝
達する第2の回転軸14と連結している。
The four-wheel drive drive coupling device 13 is composed of a vane pump 20 and an attached hydraulic control circuit 21, as shown in its cross-sectional structure in FIG.
0b, the rotor 20a is connected to the first rotating shaft 11 that directly transmits the driving force to the front wheels 9, and the cam ring 20b is connected to the second rotating shaft 14 that transmits the driving force to the rear wheels 16. ing.

このベーンポンプ20は、その回転数に比例し
て油量を吐出し、ロータ20aとカムリング20
bとの間に相対回転すなわち第1回転軸11と第
2回転軸14との間に相対回転が生ずると油圧ポ
ンプとして機能して油圧が発生し、ベーンポンプ
20の吐出口(相対回転方向先端の吸込吐出口が
これに相当)を塞ぐことで油を介してその静圧で
ロータ20aとカムリング20bとが剛体のよう
になつて一体回転する。この結果カムリング20
bの対角位置に2つのポンプ室が形成され、回転
方向基端側に位置したとき吸込口となり、先端側
に位置したとき吐出口となる4個の吸込吐出口2
2,23,24,25が対角位置に形成してあ
り、これら対角位置の吸込吐出口22,24と吸
込吐出口23,25によりそれぞれカムリング2
0bの回転状態でも固定側に油を送通し得る機構
を介して第1油路26と第2油路27とで連通し
ている。
This vane pump 20 discharges an amount of oil in proportion to its rotation speed, and pumps out an amount of oil between the rotor 20a and the cam ring 20.
When a relative rotation occurs between the first rotating shaft 11 and the second rotating shaft 14, it functions as a hydraulic pump and generates hydraulic pressure. By blocking the suction and discharge ports (which correspond to the suction and discharge ports), the rotor 20a and the cam ring 20b become like a rigid body and rotate together under the static pressure via the oil. As a result, cam ring 20
Two pump chambers are formed at diagonal positions of b, and there are four suction and discharge ports 2, which become suction ports when located on the proximal end side in the rotational direction and serve as discharge ports when located on the distal end side.
2, 23, 24, and 25 are formed at diagonal positions, and the cam ring 2 is
The first oil passage 26 and the second oil passage 27 communicate with each other via a mechanism that allows oil to flow to the stationary side even in the rotating state of 0b.

さらに、油圧制御回路21は、第1油路26と
第2油路27との間にそれぞれチエツク弁28,
29を介してオイル溜30と連通し、オイル溜3
0からの流れのみを許容する一方通路を形成する
ように構成され、さらに第1油路26と第2油路
27との間に流出のみを許容する相対向する二つ
のチエツク弁31,32を介して両油路26,2
7が連通され、チエツク弁31,32の中間部が
リリーフ弁33に連通している。このリリーフ弁
33には一定パネ力のスプリング34が配装さ
れ、スプリング34側中間部にはオイル溜30と
二つのチエツク弁28,29に至る油路の中間に
接続する連通路35が設けてあり、スプリング3
4の頂部にはチエツク弁36が配設されベーンポ
ンプ20の吐出口を一定の制御圧で塞ぐと共にベ
ーンポンプ20の吸込吐出口22,25および2
3,24間に両吸込吐出口を直接連通する油路と
して油路39,40を設け、同油路39,40に
油流通制御手段としてのオリフイス37,38を
介装してリリーフ弁33の油圧制御の調整機能を
果させている。
Further, the hydraulic control circuit 21 includes check valves 28 and 28 between the first oil passage 26 and the second oil passage 27, respectively.
The oil reservoir 3 communicates with the oil reservoir 30 through the oil reservoir 29.
It is configured to form a one-way passage that only allows flow from 0, and further includes two opposing check valves 31 and 32 that allow only outflow between the first oil passage 26 and the second oil passage 27. Both oil passages 26, 2
7 are in communication, and the intermediate portions of the check valves 31 and 32 are in communication with a relief valve 33. This relief valve 33 is equipped with a spring 34 with a constant spring force, and a communication passage 35 is provided at the middle part on the side of the spring 34 to connect the oil reservoir 30 to the middle of the oil passage leading to the two check valves 28 and 29. Yes, spring 3
A check valve 36 is disposed at the top of the vane pump 20 and closes the discharge port of the vane pump 20 with a constant control pressure, and also closes the suction and discharge ports 22, 25 and 2 of the vane pump 20.
Oil passages 39 and 40 are provided between 3 and 24 as oil passages that directly communicate the suction and discharge ports, and orifices 37 and 38 as oil flow control means are interposed in the oil passages 39 and 40 to control the relief valve 33. It performs the adjustment function of hydraulic control.

すなわち、この油路39および40は通常オリ
フイス37,38が油路39,40内の油流通調
整制御手段として働き、第1の回転軸と第2の回
転軸の回転速度差が小さい場合は、油路39,4
0内への油の流入はないが、回転速度差が増し、
ベーンポンプ20の吐出圧が高くなり、オリフイ
スの油流通抵抗以上になつたときには、リリーフ
弁33の設定制御圧に達しなくとも、油路39お
よび40に油が流れ、回転速度差に応じたトルク
を第2回転軸に伝達し、リリーフ弁33の油圧制
御機能を調整する働きをさせている。
That is, in the oil passages 39 and 40, the orifices 37 and 38 normally function as oil flow adjustment control means in the oil passages 39 and 40, and when the difference in rotation speed between the first rotation shaft and the second rotation shaft is small, Oil road 39,4
There is no oil flowing into 0, but the rotation speed difference increases,
When the discharge pressure of the vane pump 20 becomes high and exceeds the oil flow resistance of the orifice, oil flows into the oil passages 39 and 40 even if it does not reach the set control pressure of the relief valve 33, and torque corresponding to the rotational speed difference is generated. It is transmitted to the second rotating shaft and functions to adjust the hydraulic control function of the relief valve 33.

油圧制御回路21を、このように構成すると、
ロータ20aとカムリング20bとの相対回転方
向によらず前輪と後輪の回転速度差が小さいとき
は、ベーンポンプの吐出圧によりオリフイスの流
通抵抗に抗し油路26,27を通り吸込口へ逸出
し、回転速度差に応じたトルクが後輪16に伝達
される。これに反し、両者の回転速度差が大きい
ときは、吐出圧がリリーフ弁33の弁体36の設
定値を越える程度になつて初めて、オイル溜30
が吸込口と連通する。この状態をオリフイスを用
いないとき(つまり、油路37,38を用いない
とき。)と用いたときの前・後輪の回転速度差対
吐出圧との関係を示せば第3図の特性曲線a,b
のごとくなり、オリフイスを用いた方が吐出圧が
低くなることが判る(ただし、曲線aはオリフイ
スを使用したときの特性曲線、bはオリフイスを
用いない場合の特性曲線を示す。) このような四輪駆動用駆動連結装置による駆動
状態について説明する。
When the hydraulic control circuit 21 is configured in this way,
Regardless of the relative rotation direction of the rotor 20a and cam ring 20b, when the difference in rotational speed between the front and rear wheels is small, the discharge pressure of the vane pump resists the flow resistance of the orifice and escapes through the oil passages 26 and 27 to the suction port. , torque corresponding to the rotational speed difference is transmitted to the rear wheels 16. On the other hand, when the difference in rotational speed between the two is large, the oil reservoir 3
communicates with the suction port. The characteristic curve in Figure 3 shows the relationship between the rotational speed difference between the front and rear wheels and the discharge pressure when the orifice is not used (that is, when the oil passages 37 and 38 are not used) and when the orifice is used. a, b
It can be seen that the discharge pressure is lower when an orifice is used. (However, curve a shows the characteristic curve when an orifice is used, and curve b shows the characteristic curve when an orifice is not used.) The driving state by the four-wheel drive drive coupling device will be explained.

通常の直進状態では、前輪9と後輪16のタイ
ヤの有効半径が同一でタイヤのスリツプ回転速度
が少いことから、四輪駆動用駆動連結装置13の
第1回転軸11と第2回転軸14との間に回転速
度差が生じない。したがつて、ベーンポンプ20
には油圧の発生はなく、後輪16に駆動が伝達さ
れず前輪9のみによる前2輪駆動となる。
In a normal straight-ahead state, the effective radius of the tires of the front wheels 9 and rear wheels 16 is the same and the slip rotational speed of the tires is small. There is no difference in rotational speed between the two and 14. Therefore, vane pump 20
There is no hydraulic pressure generated, and drive is not transmitted to the rear wheels 16, resulting in front two-wheel drive using only the front wheels 9.

さらに、直進状態でも加速時のように大きなス
リツプがなくても通常前輪9が約1%以内でスリ
ツプするので、これによる回転速度差が生じる
が、その差が少く、油圧がリリーフ弁33の設定
値より小さく、オリフイスの流通抵抗程度のもの
であるときは、ベーンポンプの吐出圧を油路2
6,27により吸込口へ逃し、回転速度差が大き
くなると、ベーンポンプ30が機能してこの回転
速度差に応じた油圧が発生し、ロータ20aとカ
ムリング20bとが一体となつて回転し、この油
圧とベーンの受圧面積とに対応した駆動力が後輪
16にに伝達されて四輪駆動状態となる。
Furthermore, even when driving straight, the front wheels 9 usually slip within about 1%, even if there is no large slip as when accelerating, and this causes a difference in rotational speed. If the pressure is smaller than the flow resistance of the orifice, the vane pump discharge pressure should be changed to oil line 2.
6 and 27 to the suction port, and when the rotational speed difference becomes large, the vane pump 30 functions to generate oil pressure corresponding to this rotational speed difference, and the rotor 20a and cam ring 20b rotate as one, and this oil pressure increases. A driving force corresponding to the pressure-receiving area of the vane is transmitted to the rear wheels 16, resulting in a four-wheel drive state.

この場合のベーンポンプ20における油の流れ
は、第4図aに示すように、相対的にロータ20
aが回転することとなり、吸込吐出口23,25
が吸込口となつてチエツク弁29を介してオイル
溜30から油が吸込まれる一方、吸込吐出口2
2,24が吐出口となつてチエツク弁28,32
を閉じる。と同時にチエツク弁31を介してリリ
ーフ弁33に導びかれる(図中実線矢印が吐出油
の流れを、破線矢印が吸込油の流れをそれぞれ示
す)。
In this case, the oil flow in the vane pump 20 is relative to the rotor 20 as shown in FIG. 4a.
a rotates, and the suction and discharge ports 23 and 25
serves as a suction port and oil is sucked in from the oil reservoir 30 via the check valve 29, while the suction and discharge port 2
2 and 24 serve as discharge ports, and check valves 28 and 32
Close. At the same time, the oil is guided to the relief valve 33 via the check valve 31 (solid line arrows in the figure indicate the flow of discharged oil, and dashed line arrows indicate the flow of suction oil).

次に、後輪16の回転速度に比べ前輪9の回転
速度が非常に大きくなる場合、例えば雪路走行時
や急加速時あるいはブレーキ時の後輪がロツク気
味となる場合には、四輪駆動用駆動連結装置13
の第1回転軸11と第2回転軸14との間に回転
速度差が非常に大きくなり、ベーンポンプ20で
第4図aに示す状態の油の流れが生じて大きな油
圧が発生するが、設定値を越えると、リリーフ弁
33がスプリング34に抗して開き吐出口がほぼ
一定に制御され、後輪16に一定の吐出圧に対応
した一定の駆動力が伝達された四輪駆動状態とな
る。この結果、前輪9の回転速度が減少すると共
に後輪16の回転速度が増大することとなり回転
速度差を縮少するようになり、前輪9のスリツプ
状態では後輪16への駆動トルクが増大されて走
行不能となることを回避できると共に後輪16が
ロツク気味の場合には、前輪9のブレーキトルク
を増大して後輪16のロツクを防止する。
Next, when the rotational speed of the front wheels 9 becomes very large compared to the rotational speed of the rear wheels 16, for example, when the rear wheels tend to lock up when driving on snowy roads, when accelerating suddenly, or when braking, four-wheel drive drive coupling device 13
The difference in rotational speed between the first rotating shaft 11 and the second rotating shaft 14 becomes very large, and an oil flow as shown in FIG. 4a occurs in the vane pump 20, generating a large hydraulic pressure. When the value is exceeded, the relief valve 33 opens against the spring 34 and the discharge port is controlled to be almost constant, resulting in a four-wheel drive state in which a constant driving force corresponding to a constant discharge pressure is transmitted to the rear wheels 16. . As a result, the rotational speed of the front wheels 9 decreases and the rotational speed of the rear wheels 16 increases, reducing the rotational speed difference, and when the front wheels 9 are in a slip state, the driving torque to the rear wheels 16 increases. When the rear wheels 16 are a little locked, the brake torque of the front wheels 9 is increased to prevent the rear wheels 16 from locking.

一方、前輪9の回転速度に比べ後輪16の回転
速度が大きくなる場合、四輪駆動用駆動装置13
の第1回転軸11と第2回転軸14との間に上述
の場合とは反対方向に回転速度差が生じる。しか
し、その差が小さく設定値を越えない範囲でも、
ベーンポンプ20の吐出圧によりオリフイス37
により吸込口へ逃すことにより駆動力が後輪に伝
達され、四輪駆動状態となる。
On the other hand, if the rotational speed of the rear wheels 16 is higher than the rotational speed of the front wheels 9, the four-wheel drive drive device 13
A difference in rotational speed occurs between the first rotating shaft 11 and the second rotating shaft 14 in the opposite direction to that in the above case. However, even if the difference is small and does not exceed the set value,
The orifice 37 is opened by the discharge pressure of the vane pump 20.
The driving force is transmitted to the rear wheels by releasing it to the intake port, resulting in a four-wheel drive state.

さらに前輪9の回転速度に比べ後輪16の回転
速度がさらに大きくなる場合、例えば前輪9のブ
レーキ状態でロツク気味となる場合では、四輪駆
動用駆動連結装置13の第1回転軸11と第2回
転軸14との間に非常に大きな回転速度差が生
じ、ベーンポンプ20では、第4図bに示すよう
な油の流れが生じ、吸込吐出口22,24が吸込
口となり、チエツク弁28を介してオイル溜30
から油が吸込まれる一方、吸込吐出口23,25
が吐出口となり第2油路27を経てチエツク弁2
9,31を閉じてチエツク32からリリーフ弁3
3に導びかれ大きな油圧が作用するが、この油圧
もリリーフ弁33により一定に保持され一定の駆
動力が後輪16に伝達されて四輪駆動状態とな
る。この結果、後輪16へのブレーキトルクを増
大して前輪9のロツクを防止する。
Further, when the rotational speed of the rear wheels 16 becomes higher than the rotational speed of the front wheels 9, for example, when the brake state of the front wheels 9 becomes slightly locked, the first rotating shaft 11 of the four-wheel drive drive coupling device 13 A very large rotational speed difference occurs between the two rotating shafts 14, and in the vane pump 20, oil flows as shown in FIG. Oil reservoir 30 through
While oil is sucked in from the suction and discharge ports 23 and 25
becomes the discharge port and passes through the second oil passage 27 to the check valve 2.
9, 31 and check 32 to relief valve 3.
3, a large oil pressure is applied, but this oil pressure is also held constant by the relief valve 33, and a constant driving force is transmitted to the rear wheels 16, resulting in a four-wheel drive state. As a result, the brake torque to the rear wheels 16 is increased to prevent the front wheels 9 from locking.

また、通常の旋回走行時には、前輪9の回転速
度が後輪16の回転速度よりわずかに大きく、前
輪9によるブレーキトルクが作用し、後輪16に
駆動トルクが作用して四輪駆動状態となつて旋回
走行がなされる。
Further, during normal cornering, the rotational speed of the front wheels 9 is slightly higher than the rotational speed of the rear wheels 16, and the brake torque from the front wheels 9 acts, and the driving torque acts on the rear wheels 16, resulting in a four-wheel drive state. Turning is performed.

このように、四輪駆動用駆動連結装置13では
吐出圧を、リリーフ弁33により一定値まで保持
せしめると共に、オリフイスを有する油路を設
け、回転差が小さくとも、ある一定値を越える回
転差を生じたときは、回転差に応じたトルクを後
輪に伝達せしめる構成にし、油路が塞がれている
ために、吐出圧が蓄積増大し、回転速度差がそれ
程大きくないにかかわらず大きな伝達量が後輪に
伝達される欠点を除き、回転差に応じたトルクを
後輪に伝達し、前・後輪の連結力を大にして四輪
駆動を可能にしたものである。
In this way, in the four-wheel drive drive coupling device 13, the discharge pressure is maintained at a constant value by the relief valve 33, and an oil passage with an orifice is provided, so that even if the rotation difference is small, the rotation difference exceeding a certain value can be prevented. When this occurs, the structure is configured to transmit torque according to the rotational speed difference to the rear wheels, and because the oil passage is blocked, the discharge pressure accumulates and increases, resulting in a large transmission even though the rotational speed difference is not that large. This eliminates the disadvantage that the amount of torque is transmitted to the rear wheels, and instead transmits torque to the rear wheels according to the rotational difference, increasing the coupling force between the front and rear wheels and making four-wheel drive possible.

かように四輪駆動用駆動連結装置13で吐出圧
をリリーフ弁33により一定値以上とならないよ
うに制御することで、従来パートタイム四輪駆動
車で四輪駆動状態を必要とする場合には運転者の
操作が必要であつたものが、自動的に四輪駆動と
二輪駆動との切換が行なわれると共に前輪と後輪
との回転速度差に応じた駆動力による4輪駆動状
態が得られる。また、フルタイム四輪駆動車では
必ず装備されていたセンタデフに比べ小型コンパ
クト化をはかることができると共に重量軽減もは
かれ、コスト低減ともなる。
In this way, by controlling the discharge pressure in the four-wheel drive drive coupling device 13 using the relief valve 33 so that it does not exceed a certain value, when a four-wheel drive state is required in a conventional part-time four-wheel drive vehicle, What used to require operation by the driver now automatically switches between four-wheel drive and two-wheel drive, and a four-wheel drive state is now achieved using driving force that corresponds to the difference in rotational speed between the front and rear wheels. . In addition, it can be made smaller and more compact than the center differential that is always installed in full-time four-wheel drive vehicles, and it also reduces weight and costs.

次に、油圧制御回路21が異なる実施例につい
て、第5図および第6図に基づいて説明する。
Next, an embodiment in which the hydraulic control circuit 21 is different will be described based on FIGS. 5 and 6.

第5図に示す実施例の四輪駆動用駆動連結装置
は、第2図に示す油路39,40中のオリフイス
37,38の代りに、第5図に示す構造の油流通
制御装置41を配置した以外は、ベーンポンプ2
0の構成は、第2図のものと同一である。この流
通制御装置41は、ベーンポンプの吐出口と吸込
口とを直接連通する油路42中に配置され、吐出
口側油路と吸込口側油路42間に配置したケーシ
ング43内にスプリング44を介して、エンジン
(図示せず。)負荷の大小に応じ、伸張縮小自在の
ダイアフラム45に取り付けたニードル弁46で
連通穴47を開閉自在に構成したものである。
The four-wheel drive drive coupling device of the embodiment shown in FIG. 5 has an oil flow control device 41 having the structure shown in FIG. 5 instead of the orifices 37 and 38 in the oil passages 39 and 40 shown in FIG. Vane pump 2 except for the one placed
The configuration of 0 is the same as that in FIG. This flow control device 41 is arranged in an oil passage 42 that directly communicates the discharge port and suction port of the vane pump, and a spring 44 is installed in a casing 43 arranged between the discharge port side oil passage and the suction port side oil passage 42. Through the needle valve 46 attached to a diaphragm 45 that can be expanded and contracted, the communication hole 47 can be opened and closed depending on the magnitude of the load on the engine (not shown).

すなわち、エンジンのトルクが大きくなる程、
マニホールド負圧が小さくなりオリフイスの径が
小さくなるから、装置は閉状態にしないで、ある
程度開状態にしておく。これに対し、エンジンの
負荷が小さくなつてきたときは、さらに油路を大
きく開き、前・後輪のスリツプ量を大きくする。
エンジンの負荷が大きくなつたときは、駆動力も
大きくなるから、油路のオリフイスを小さくし、
四輪で駆動させる。
In other words, as the engine torque increases,
Since the manifold negative pressure becomes smaller and the diameter of the orifice becomes smaller, the device should not be closed but left open to some extent. On the other hand, when the engine load decreases, the oil passage is opened further to increase the amount of slip on the front and rear wheels.
When the load on the engine increases, the driving force also increases, so the orifice in the oil passage should be made smaller.
It is driven by four wheels.

第6図に示す装置は、本発明にかかる四輪駆動
用駆動連結装置において、油路39,40(第2
図参照のこと。)のオリフイス37,38の代り
に、第6図に示す構造の油流通制御装置48を配
置した以外は、ベーンポンプ20の構成は第2図
のものと同一である。この流通制御装置48はベ
ーンポンプの吐出口と吸込口とを直接連通する油
路42中に配置され、吐出口側と吸込口側の油路
42間に配置されたケーシング43内には、ハン
ドルのパワステアリングのオイルポンプ吐出圧を
伝達する伝達口48aとマニホールド負圧を伝達
する伝達口49と吸込側通路42とが開口されて
おり、ケーシング43のマニホールド負圧伝達口
49とオイルポンプ吐出圧伝達口48a間にスプ
リング44を介してピストン50が配装され、オ
イルポンプの吐出圧およびマニホールドの負圧で
上下動可能に収納され、ピストン50の下端には
ニードル弁51が設けられ、油路42の吐出口を
開閉聞自在に配置されている。
The device shown in FIG. 6 is a four-wheel drive drive coupling device according to the present invention.
See diagram. The configuration of the vane pump 20 is the same as that shown in FIG. 2, except that an oil flow control device 48 having the structure shown in FIG. 6 is arranged in place of the orifices 37 and 38 shown in FIG. This flow control device 48 is arranged in an oil passage 42 that directly communicates the discharge port and suction port of the vane pump, and a handle is disposed in a casing 43 arranged between the oil passage 42 on the discharge port side and the suction port side. A transmission port 48a for transmitting power steering oil pump discharge pressure, a transmission port 49 for transmitting manifold negative pressure, and a suction side passage 42 are open, and a manifold negative pressure transmission port 49 of the casing 43 and oil pump discharge pressure transmission are opened. A piston 50 is disposed between the ports 48a via a spring 44, and is housed so as to be movable up and down by the discharge pressure of the oil pump and the negative pressure of the manifold.A needle valve 51 is provided at the lower end of the piston 50, and the oil passage 42 The discharge port is arranged so that it can be opened and closed freely.

この構造の流通制御装置48を用いると、操舵
角が高くなる程、パワステアリングのオイル圧が
高くなるので、ニードル弁51は後退し、油路は
大きく開口し、前・後輪の回転差の許容を大に
し、前・後輪の直進状態のときは、回転差が大き
いときは回転差を許容しないで、トルクを伝達す
るようにする。
When the flow control device 48 having this structure is used, the higher the steering angle, the higher the power steering oil pressure, so the needle valve 51 is moved backward, the oil passage is wide open, and the rotation difference between the front and rear wheels is reduced. Increase the tolerance, and when the front and rear wheels are running straight, if the rotation difference is large, torque is transmitted without allowing the rotation difference.

また、マニホールド負圧を伝達口49に入れ、
エンジンのトルクと連動させることによつて、エ
ンジンのトルクと操舵角の大小に応じ、前・後輪
を四輪駆動に適宜切り換えるようにすることがで
きる。
Also, input the manifold negative pressure into the transmission port 49,
By interlocking with the engine torque, the front and rear wheels can be switched to four-wheel drive as appropriate depending on the engine torque and the steering angle.

ただし、マニホールド負圧と、パワステアリン
グのオイル圧では格段の圧力差があるので、使用
するスプリング44はかなり強大のものを使用す
る必要がある。
However, since there is a significant pressure difference between the manifold negative pressure and the power steering oil pressure, it is necessary to use a fairly strong spring 44.

また、ブレーキ油圧の大小に応じ、オリフイス
径の閉又は開操作する方法又はアクセルのオフ動
作に応じ、アクセルオフ時にオリフイス径を絞る
などの走行条件によつて、流通を可変的に制限す
る手段を用いることによつて同様の目的を達成す
ることができる。
In addition, means for variably restricting the flow depending on driving conditions, such as closing or opening the orifice diameter depending on the magnitude of brake oil pressure, or narrowing the orifice diameter when the accelerator is off, depending on the accelerator off operation. A similar purpose can be achieved by using

上記実施例では、四輪駆動用駆動連結装置のベ
ーンポンプとして吸込吐出口が4個の平衡形のも
ので説明したが、駆動力の伝達量によつては吸込
吐出口が2個の不平衡形ベーンポンプとすること
も可能である。また、通常の直進状態で前輪を駆
動するものに限らず後輪を駆動する形式のものに
も適用できる。さらに、変速機も手動式、自動式
のいずれであつても良く、リリーフ弁の制御も油
圧を用いるデユーテイ制御に限らず機械式に制御
するもの等であつても良い。
In the above embodiment, the vane pump for a four-wheel drive drive coupling device is a balanced type with four suction and discharge ports, but depending on the amount of driving force transmitted, an unbalanced type with two suction and discharge ports may be used. A vane pump is also possible. Furthermore, the present invention is applicable not only to a type that drives the front wheels in a normal straight-ahead state but also to a type that drives the rear wheels. Furthermore, the transmission may be either manual or automatic, and control of the relief valve is not limited to duty control using hydraulic pressure, but may be mechanically controlled.

以上、実施例とともに具体的に説明したように
本発明によれば、前輪に駆動力を伝達する第1の
回転軸と後輪に駆動力を伝達する第2の回転軸と
をこれらの回転速度差に応じて駆動され且つ回転
速度差に応じた油量を吐出するベーンポンプを介
して連結し、その静的油圧により駆動力を伝達し
て四輪駆動状態を得ると共に第1回転軸と第2回
転軸との相対回転方向に応じて自動的に吐出口と
吸込口とが切換わるので何んら操作を必要とせず
四輪駆動状態が得られるので、パートタイム四輪
駆動車のタイトコーナレーキング現象などの不具
合や運転操作の煩雑さを解消できる。また特に従
来のギヤポンプに代えて、比較的小型でありなが
ら大流量と高油圧を実現できるベーンポンプを用
いたことにより、小型軽量化を計りつつ同時に比
較的大きな駆動力を伝達し得る装置構成を実現で
きると共に、騒音が小さく耐摩耗性に優れるため
上記装置構成に係る静粛性及び信頼性を著しく高
めることができる。またセンタデフに対し、小
型、軽量、安価である。更にベーンポンプの吐出
口と吸入口とを直接連通する油路を設け、同油路
に油流通制御手段を介装したことにより、相対回
転の方向によらず動力伝達開始の応答性が良い。
As described above in detail with the embodiments, according to the present invention, the first rotating shaft that transmits driving force to the front wheels and the second rotating shaft that transmits driving force to the rear wheels are rotated at these rotational speeds. The first rotating shaft and the second Since the discharge port and suction port are automatically switched according to the direction of rotation relative to the rotating shaft, four-wheel drive can be achieved without any operation, making it ideal for tight corner raking in part-time four-wheel drive vehicles. It is possible to eliminate problems such as phenomena and the complexity of driving operations. In particular, by replacing the conventional gear pump with a vane pump that is relatively small but capable of achieving large flow rates and high oil pressure, we have achieved a device configuration that is both compact and lightweight, and at the same time can transmit a relatively large driving force. In addition, since the noise is small and the wear resistance is excellent, the quietness and reliability of the above device configuration can be significantly improved. It is also smaller, lighter, and cheaper than a center differential. Furthermore, by providing an oil passage that directly communicates the discharge port and suction port of the vane pump and installing an oil flow control means in the oil passage, the responsiveness of starting power transmission is good regardless of the direction of relative rotation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる四輪駆動用駆動連結装
置を使用した四輪駆動車の概略構成図、第2図は
本発明にかかる四輪駆動用駆動連結装置の一実施
例の構成を示す断面図、第3図は本発明にかかる
四輪駆動用駆動連結装置と従来の四輪駆動用駆動
連結装置における前・後輪回転速度差対吐出圧の
特性曲線の比較図、第4図aおよびbはそれぞれ
第2図に示す四輪駆動用駆動連結装置における油
の流路を示す説明図、第5図および第6図はいず
れも本発明の他の実施例に使用する吐出口と吸込
口とを直接連通する油路の流通制御装置の他の実
施例の構成を示す要部断面図である。 図面中、9は前輪、10は前輪用の差動装置、
11は第1の回転軸、13は四輪駆動用駆動連結
装置、14は第2の回転軸、16は後輪、17は
後輪用の差動装置、20はベーンポンプ、20a
はロータ、20bはカムリング、21は油圧制御
回路、22,23,24,25は吸込吐出口、2
6,27は第1および第2油路、28,29,3
1,32はチエツク弁、30はオイル溜、33は
リリーフ弁、37,38はオリフイス、39,4
0は吐出口と吸込口とを直接連通する油路、4
1,48は流通制御装置である。
FIG. 1 is a schematic configuration diagram of a four-wheel drive vehicle using the four-wheel drive drive coupling device according to the present invention, and FIG. 2 shows the configuration of an embodiment of the four-wheel drive drive coupling device according to the present invention. A cross-sectional view, FIG. 3 is a comparison diagram of the characteristic curve of the front/rear wheel rotational speed difference versus discharge pressure between the four-wheel drive drive coupling device according to the present invention and the conventional four-wheel drive drive coupling device, and FIG. 4a and b are explanatory diagrams showing the oil flow path in the four-wheel drive drive coupling device shown in FIG. 2, respectively, and FIGS. 5 and 6 are the discharge port and suction port used in other embodiments of the present invention FIG. 7 is a cross-sectional view of main parts showing the configuration of another embodiment of a flow control device for an oil path that directly communicates with the port. In the drawing, 9 is a front wheel, 10 is a differential gear for the front wheels,
11 is a first rotating shaft, 13 is a four-wheel drive drive coupling device, 14 is a second rotating shaft, 16 is a rear wheel, 17 is a differential device for the rear wheels, 20 is a vane pump, 20a
is a rotor, 20b is a cam ring, 21 is a hydraulic control circuit, 22, 23, 24, 25 are suction and discharge ports, 2
6, 27 are the first and second oil passages, 28, 29, 3
1 and 32 are check valves, 30 is an oil reservoir, 33 is a relief valve, 37 and 38 are orifices, 39 and 4
0 is an oil passage that directly communicates the discharge port and the suction port; 4
1, 48 is a distribution control device.

Claims (1)

【特許請求の範囲】[Claims] 1 前輪に駆動力を伝達する第1の回転軸と、後
輪に駆動力を伝達する第2の回転軸と、前記第1
と第2の回転軸の連結手段として使用され、かつ
第1と第2の回転軸の回転速度差によつて駆動さ
れると共に回転速度差に応じた油量を吐出するベ
ーンポンプとからなる四輪駆動用駆動連結装置に
おいて、前記ベーンポンプの吐出口と吸込口とを
直接連通する油路を設け、同油路に油流通制御手
段を介装したことを特徴とする四輪駆動用駆動連
結装置。
1 a first rotating shaft that transmits driving force to the front wheels; a second rotating shaft that transmits driving force to the rear wheels;
and a vane pump that is used as a connecting means for the second rotating shaft, is driven by the difference in rotational speed between the first and second rotating shafts, and discharges an amount of oil according to the difference in rotational speed. A drive coupling device for four-wheel drive, characterized in that an oil passage is provided that directly communicates the discharge port and suction port of the vane pump, and an oil flow control means is interposed in the oil passage.
JP58225985A 1983-11-11 1983-11-30 Driving-coupling device for four-wheel driving Granted JPS60116529A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58225985A JPS60116529A (en) 1983-11-30 1983-11-30 Driving-coupling device for four-wheel driving
DE19843441076 DE3441076A1 (en) 1983-11-11 1984-11-09 Power transmission device for four-wheel drive motor vehicles
FR8417165A FR2554768B1 (en) 1983-11-11 1984-11-09 POWER TRANSMISSION DEVICE FOR A VEHICLE
KR1019840007054A KR890001335B1 (en) 1983-11-11 1984-11-10 Power transmission apparatus for vehicle
US06/670,903 US4676336A (en) 1983-11-11 1984-11-13 Power transmission apparatus for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225985A JPS60116529A (en) 1983-11-30 1983-11-30 Driving-coupling device for four-wheel driving

Publications (2)

Publication Number Publication Date
JPS60116529A JPS60116529A (en) 1985-06-24
JPS647896B2 true JPS647896B2 (en) 1989-02-10

Family

ID=16837980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225985A Granted JPS60116529A (en) 1983-11-11 1983-11-30 Driving-coupling device for four-wheel driving

Country Status (1)

Country Link
JP (1) JPS60116529A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421709Y2 (en) * 1985-06-24 1992-05-18
JPH0423055Y2 (en) * 1985-06-24 1992-05-28
JPH078620B2 (en) * 1986-06-04 1995-02-01 日産自動車株式会社 Torque transmission device
JPH0826902B2 (en) * 1987-05-14 1996-03-21 日産自動車株式会社 Rotation sensitive joint
US4958711A (en) * 1987-10-02 1990-09-25 Nissan Motor Co., Ltd. Rotational speed differential responsive type joint
EP0315214B1 (en) * 1987-11-06 1993-03-10 Nissan Motor Co., Ltd. Rotational speed differential responsive type torque transmitting assembly
JP2545575B2 (en) * 1988-03-31 1996-10-23 三菱自動車工業株式会社 Drive coupling device
JP2545574B2 (en) * 1988-03-30 1996-10-23 三菱自動車工業株式会社 Oil-sealed drive coupling device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950626A (en) * 1973-06-21 1974-05-16

Also Published As

Publication number Publication date
JPS60116529A (en) 1985-06-24

Similar Documents

Publication Publication Date Title
JPS647896B2 (en)
JP2555489B2 (en) Power transmission device for four-wheel drive vehicle
KR890001336B1 (en) Differential with differential motion limiting mechanism
JPH038499Y2 (en)
JPH0436888B2 (en)
KR920007462B1 (en) Power transmission apparatus for vehicle of four-wheeled drive type
JPH0435367B2 (en)
JPH038498Y2 (en)
JPH0511061Y2 (en)
JPH0423055Y2 (en)
JPH0215699Y2 (en)
JPH0139226Y2 (en)
JPS6365533B2 (en)
JPH0344581Y2 (en)
JPH0421709Y2 (en)
JPH0512093Y2 (en)
JPH0435366B2 (en)
JPH0440976Y2 (en)
JPS61102326A (en) Vehicle power transmission device
JPH0118418Y2 (en)
JPS60110533A (en) Drive connection device for four-wheel drive
JPH0215698Y2 (en)
JPH0511060Y2 (en)
JP3406384B2 (en) Power transmission device for four-wheel drive vehicles
JPH0716512Y2 (en) Drive coupling device for four-wheel drive