JPS646929B2 - - Google Patents

Info

Publication number
JPS646929B2
JPS646929B2 JP20341082A JP20341082A JPS646929B2 JP S646929 B2 JPS646929 B2 JP S646929B2 JP 20341082 A JP20341082 A JP 20341082A JP 20341082 A JP20341082 A JP 20341082A JP S646929 B2 JPS646929 B2 JP S646929B2
Authority
JP
Japan
Prior art keywords
sheet
molded product
metal
injection
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20341082A
Other languages
Japanese (ja)
Other versions
JPS5993323A (en
Inventor
Mitsuo Shiino
Akio Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP20341082A priority Critical patent/JPS5993323A/en
Publication of JPS5993323A publication Critical patent/JPS5993323A/en
Publication of JPS646929B2 publication Critical patent/JPS646929B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 本発明は異方導電性シート、特には絶縁性材料
中に金属線または金属繊維をその表面に直角に配
向させた異方導電性シートの製造方法に関するも
のである。 各種の熱可塑性樹脂またはゴム材料からなる絶
縁性シート中にその表面に直角の方向に導電性繊
維材料を配向させてなるシートは、その導電性繊
維材料の配向方向には導電性を示すが、そのシー
ト表面と平行になる横方向には絶縁性が保たれる
ということから、異方導電性シートと呼称されて
おり、これは例えばプリント回路基板と各種の電
気、電子素子との導通を得るためのコネクターと
して有用とされている。しかし、この異方導電性
シートの製造は、従来、絶縁性材料に導電性繊維
物質を混合したのち、これらを押出機またはロー
ルを用いてシート状に成形し、その際導電性繊維
をその押出方向に配向させ、このようにして得た
シート状物を積層し、ついでこれを加熱プレスに
より一体化するという方法で行なわれているた
め、これは使用に当つてこのようにして得られた
シート状物をその目的に応じて打抜き加工する必
要があり、これでは組立加工が合理化され連続押
入機が広く導入されている電子部品の組立には不
利を伴なうという問題点があり、これについては
上記した従来法においてこれを連続シート状とす
ることも不可能ではないけれども、これは生産性
が著しく低く、装置的にも複雑になるという欠点
がある。 本発明はこのような不利を解決した連続テープ
状の異方導電性シートの製造方法に関するもので
あり、これは絶縁性材料に金属線または金属繊維
を混合したのち、これを円盤状に成形される金型
にその中心部から円周方向に射出成形して金属線
または金属繊維が射出方向に配向された円盤状成
形品を作り、ついでこの成形品をその円周方向に
沿つてスライスし、連続シート状体を取得するこ
とを特徴とするものである。 これを説明すると、本発明者らは異方導電性シ
ートの連続的製造方法について種々検討の結果、
これには円盤状の成形品をその表面からその円周
方向にスライスすることがよく、そのためには導
電性繊維状物を含む絶縁性材料を中心から放射状
に射出して円盤状体を成形させればこの導電性繊
維がその射出方向に配向されるので、この円盤状
体の表面に沿つてその円周方向にスライスすれば
異方導電性シートを連続シートとして取得できる
ことを確認して本発明を完成させた。 本発明の方法に使用される絶縁性材料はポリエ
チレン、ポリプロピレンなどのポリオレフイン樹
脂、塩化ビニル樹脂、ポリフエニレンサルフアイ
ド樹脂などの熱可塑性樹脂、不飽和ポリエステ
ル、フエノール樹脂、尿素樹脂、メラミン樹脂、
グアナミン樹脂などの熱硬化性樹脂、天然ゴム、
エチレン−プロピレンゴム、シロキサンゴムなど
の合成ゴム類を含む各種ゴム弾性体などが例示さ
れるが、これは流動性のある室温硬化性のもので
あつてもよい。なお、これらの樹脂、ゴム類には
必要に応じ補強用充填剤、増量剤、可塑剤、顔
料、染料、溶剤、硬化剤、安定剤などが添加され
ていてもよい。 つぎにこの絶縁性材料に配合される金属線また
は金属繊維としては銅、黄銅、ステンレススチー
ル、タングステンカーバイト、鉛、ハンダ合金な
どで作られた金属線あるいはウイスカー法、ウイ
スカーメツキ法、蒸着法、溶融紡糸法、引抜き
法、せん断法、切削法などで作られた上記金属線
と同種金属からなる金属繊維などが例示される
が、これらは耐環境性を改良する目的で金メツキ
あるいは防錆処理を施したものであつてもよい。
しかし、この金属線または金属繊維は後述するよ
うに射出成形によつて絶縁性材料中に配合される
必要があるので、これは直径が2〜500μm、好
ましくは15〜50μm、さらに好ましくは20〜30μ
mで、長さが0.1〜20mm、好ましくは1〜10mm、
さらに好ましくは3〜5mm、アスペクト比(/
D)が5〜200、好ましくは80〜120の範囲のもの
とすることがよい。 本発明の方法はまずこの絶縁性材料と金属線ま
たは金属繊維を均一に混合するのであるが、これ
は各種のミキシングロールのような混練機で行な
えばよく、これらの混合比は目的とするシートの
導電性密度、この抵抗値を充分に低く安定したも
のとするということから絶縁性材料100容量部に
対し金属線または金属繊維を10〜500容量部、好
ましくは30〜100容量部、さらに好ましくは50〜
80容量部の範囲とすることがよい。 この混合物はついで射出成形することによつ
て、この金属線または金属繊維がその射出方向に
配向された成形品とされるが、これは円盤状の金
型またはその射出口を一定速度で360゜回転させな
がら、この金型中に上記の混合物を射出すること
によつて円盤状のものとする必要がある。この射
出成型は例えば第1図に示したように回転成形機
1のホツパー2に上記の混合物を投入し、射出プ
ランジヤー3からこれを回転しつつある金型4に
射出することによつて行なわれるが、この方法で
得られた円盤状成形品は第2図に示したように金
属線または金属繊維が射出方向に配向されたもの
とされる。なお、この成型品の大きさ、厚さなど
は任意とされるが、これは例えば後述するシート
化工程のためには直径が50〜500mm、厚さが0.5〜
20mm好ましくは1〜5mmの範囲のものとすること
がよい。 つぎにこの円盤状成形品は第3図に示したよう
に必要に応じ適宜の枚数を積層したうえでシート
化工程に送られるが、この積層に当つてはこれら
の表面に適宜の接着剤、例えば室温硬化性のシリ
コーンゴムなどを塗布して加圧積着させればよ
く、このものはついでこの成型品中に配向された
金属線または金属繊維の配向方向と直角にスライ
スすることによつてリボン状のシートとされる。
このシート化工程は例えば第4図に示したように
円盤状成型品の外周に切削刃を接触させて公知の
方法で皮ムキをするように行なえばよいのである
が、この成形品が比較的軟かいマトリツクス中に
硬い金属線または金属繊維を含むものであるとい
うことから、この切削刃としては超硬丸刃を高速
で回転させる、いわゆる回転刃とすることがよ
い。これによつて得られるシート状物の厚さはこ
の切削刃の円盤状成形品への接触によつて任意に
調整することができるが、通常これは0.1〜1mm
の範囲とすることがよく、これはまた連続的なリ
ボン状として取得されるので、これはリールに巻
き取つてもよいし、適宜の長さに切断して製品化
してもよい。 本発明の方法で得られるシート状の成型品はそ
れが円盤状成型品の表面から、そのマトリツクス
中にその射出方向に配向された金属線または金属
繊維と直角の方向に切削されたものであるので、
これは金属線または金属繊維が絶縁性材料の厚み
方向に配向分散されたものとなるので、このシー
トは沿面方向には良好な電気絶縁性をもつが、こ
れの面に垂直な方向には高い導電性を示す異方導
電性のものとなるし、これはまたその形状がリボ
ン状の連続シートであるので連続押入機などによ
つて行なわれている電子部品の組立に有利に使用
することができるという有利性をもつものであ
り、本発明方法はこれを工業的に簡単にしかも連
続的に生産するという優位性をもつものである。 つぎに本発明方法の実施例をあげる。 実施例 シリコーンゴムKE171−U〔信越化学工業(株)製、
商品名〕100重量部にその硬化触媒C−8(同社・
商品名)2重量部を加えて2本ロールで5分間混
練したのち、これに直径30μm×長さ3mmの黄銅
短繊維を65容量部添加し、これらをミクシングロ
ールで5分間混練した。 ついで、これをゴム用射出成形機RJ−150(川
尻油圧機械(株)製、商品名)を用いて射出圧150
Kg/cm2で175℃に保持したキヤビテイ寸法が150mm
φ×厚さ2mmの円盤状金型に加硫時間2分で射出
して円盤状成形品としたのち、この表面に室温硬
化性のシリコーンゴム組成物KE−42RTV〔信越
化学工業(株)製、商品名〕を厚さ50μm塗布して積
層して全厚みが20mmの成形品とし、冷間プレスで
10Kg/cm2の加圧下に24時間放置した。 つぎに、この成形品を東芝タンガロイ社製の直
径200mmの超硬丸刃を取りつけた回転刃スライラ
ーを用いて1200RPMの回転でスライスして0.3mm
のシートを作つたところ、平行方向の抵抗値が
6.2×1012Ωで、垂直方向の抵抗値が50mΩ/mm2
ある連続シート状の異方導電性シートが得られ
た。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an anisotropically conductive sheet, particularly an anisotropically conductive sheet in which metal wires or metal fibers are oriented perpendicularly to the surface of an insulating material. A sheet made of an insulating sheet made of various thermoplastic resins or rubber materials with conductive fiber materials oriented in a direction perpendicular to its surface exhibits conductivity in the direction in which the conductive fiber materials are oriented; It is called an anisotropic conductive sheet because its insulation properties are maintained in the lateral direction parallel to the sheet surface, and it is used to provide electrical continuity between, for example, printed circuit boards and various electrical and electronic devices. It is said to be useful as a connector for However, conventionally, this anisotropic conductive sheet has been manufactured by mixing conductive fibers with an insulating material and then forming them into a sheet using an extruder or roll. The sheet materials obtained in this way are laminated, and then they are integrated by hot pressing. It is necessary to punch out shaped objects according to their purpose, and there is a problem that this is disadvantageous for the assembly of electronic parts, where assembly processing has been streamlined and continuous press machines have been widely introduced. Although it is not impossible to form this into a continuous sheet using the above-mentioned conventional method, this has the drawbacks of extremely low productivity and complicated equipment. The present invention relates to a method for manufacturing a continuous tape-shaped anisotropic conductive sheet that solves these disadvantages, and this involves mixing metal wires or metal fibers with an insulating material, and then forming the mixture into a disk shape. Injection molding is performed from the center of the mold in the circumferential direction to produce a disk-shaped molded product in which metal wires or metal fibers are oriented in the injection direction, and then this molded product is sliced along the circumferential direction. This method is characterized by obtaining a continuous sheet-like body. To explain this, the present inventors conducted various studies on continuous manufacturing methods for anisotropically conductive sheets, and found that
This is often done by slicing a disc-shaped molded product from its surface in the circumferential direction. To do this, an insulating material containing conductive fibers is injected radially from the center to form a disc-shaped body. Since the conductive fibers are oriented in the injection direction, it was confirmed that an anisotropic conductive sheet could be obtained as a continuous sheet by slicing it in the circumferential direction along the surface of the disk-shaped body. completed. The insulating materials used in the method of the present invention include polyolefin resins such as polyethylene and polypropylene, thermoplastic resins such as vinyl chloride resins and polyphenylene sulfide resins, unsaturated polyesters, phenolic resins, urea resins, melamine resins,
Thermosetting resins such as guanamine resin, natural rubber,
Examples include various rubber elastic bodies including synthetic rubbers such as ethylene-propylene rubber and siloxane rubber, but these may also be fluid and room temperature curable. Note that reinforcing fillers, extenders, plasticizers, pigments, dyes, solvents, curing agents, stabilizers, and the like may be added to these resins and rubbers as necessary. Next, the metal wires or metal fibers that are mixed into this insulating material include metal wires made of copper, brass, stainless steel, tungsten carbide, lead, solder alloy, etc., whisker method, whisker plating method, vapor deposition method, etc. Examples include metal fibers made of the same type of metal as the metal wires mentioned above, which are made by melt spinning, drawing, shearing, cutting, etc., but these are coated with gold or anti-rust to improve their environmental resistance. It may also be one that has been subjected to
However, since this metal wire or metal fiber needs to be blended into an insulating material by injection molding as described later, it has a diameter of 2 to 500 μm, preferably 15 to 50 μm, and more preferably 20 to 50 μm. 30μ
m, the length is 0.1 to 20 mm, preferably 1 to 10 mm,
More preferably 3 to 5 mm, aspect ratio (/
D) is preferably in the range of 5 to 200, preferably 80 to 120. In the method of the present invention, first, this insulating material and metal wire or metal fiber are mixed uniformly, but this can be done using a kneading machine such as various mixing rolls, and these mixing ratios are adjusted to match the desired sheet size. In order to keep the electrical conductivity density and resistance value sufficiently low and stable, the metal wire or metal fiber is added in an amount of 10 to 500 parts by volume, preferably 30 to 100 parts by volume, more preferably 100 parts by volume of the insulating material. is 50~
The range is preferably 80 parts by volume. This mixture is then injection molded to form a molded product in which the metal wires or metal fibers are oriented in the direction of injection. The mixture must be injected into the mold while rotating to form a disc. This injection molding is carried out, for example , by charging the above mixture into a hopper 2 of a rotary molding machine 1 and injecting it from an injection plunger 3 into a rotating mold 4, as shown in FIG. However, the disk-shaped molded product obtained by this method has metal wires or metal fibers oriented in the injection direction, as shown in FIG. Note that the size and thickness of this molded product are arbitrary, but for example, for the sheet forming process described later, the diameter should be 50 to 500 mm and the thickness should be 0.5 to 0.5 mm.
The thickness is preferably 20 mm, preferably 1 to 5 mm. Next, as shown in Fig. 3, this disc-shaped molded product is laminated in an appropriate number of sheets as necessary and then sent to the sheet forming process. During this lamination, an appropriate adhesive is applied to the surfaces of these molded products. For example, it is sufficient to apply a room-temperature-curable silicone rubber and laminate it under pressure. It is said to be a ribbon-like sheet.
This sheeting process can be carried out by bringing a cutting blade into contact with the outer periphery of the disc-shaped molded product and peeling off the skin using a known method, as shown in Fig. 4, for example. Since the cutting blade contains hard metal wires or metal fibers in a soft matrix, it is preferable to use a so-called rotary blade that rotates a carbide round blade at high speed as the cutting blade. The thickness of the sheet-like product thus obtained can be adjusted arbitrarily by contacting the cutting blade with the disc-shaped molded product, but usually this is 0.1 to 1 mm.
Since it is also obtained in the form of a continuous ribbon, it may be wound onto a reel or cut into appropriate lengths to produce products. The sheet-shaped molded product obtained by the method of the present invention is cut from the surface of a disc-shaped molded product in a direction perpendicular to the metal wires or metal fibers oriented in the injection direction in the matrix. So,
This is because metal wires or metal fibers are oriented and dispersed in the thickness direction of the insulating material, so this sheet has good electrical insulation properties in the creeping direction, but has high electrical insulation properties in the direction perpendicular to the plane. It is anisotropically conductive and has a ribbon-like continuous sheet shape, so it can be advantageously used in the assembly of electronic parts, which is carried out using continuous pushing machines. The method of the present invention has the advantage of being able to produce it industrially easily and continuously. Next, examples of the method of the present invention will be given. Example Silicone rubber KE171-U [manufactured by Shin-Etsu Chemical Co., Ltd.]
Product name: 100 parts by weight of the curing catalyst C-8 (made by the company)
After adding 2 parts by weight of (trade name) and kneading for 5 minutes using two rolls, 65 parts by volume of short brass fibers having a diameter of 30 μm and a length of 3 mm were added thereto, and these were kneaded for 5 minutes using a mixing roll. Next, this was heated to an injection pressure of 150 using a rubber injection molding machine RJ-150 (manufactured by Kawajiri Hydraulic Machinery Co., Ltd., trade name).
Cavity dimension maintained at 175℃ at Kg/ cm2 is 150mm
A disc-shaped molded product was injected into a disc-shaped mold with a diameter of 2 mm and a thickness of 2 mm for a vulcanization time of 2 minutes, and then a room-temperature-curable silicone rubber composition KE-42RTV [manufactured by Shin-Etsu Chemical Co., Ltd.] was applied to the surface of the disc-shaped molded product. , trade name] to a thickness of 50 μm, layered to form a molded product with a total thickness of 20 mm, and cold-pressed.
It was left under a pressure of 10 kg/cm 2 for 24 hours. Next, this molded product was sliced into 0.3 mm slices at 1200 RPM using a rotary blade slicer equipped with a 200 mm diameter carbide round blade made by Toshiba Tungaloy.
When I made a sheet, the resistance value in the parallel direction was
A continuous anisotropically conductive sheet having a resistance of 6.2×10 12 Ω and a vertical resistance value of 50 mΩ/mm 2 was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で使用される回転式射出成
形材料の作動を示す縦断面略図、第2図はこの成
形で得られた円盤状成形品の上面図、第3図はそ
の積層品の斜視図、第4図は本発明方法のスライ
ス工程を示す縦断面略図を示したものである。 ……回転成形機、2……ホツパー、3……射
出プランジヤー、4……金型。
Figure 1 is a schematic longitudinal cross-sectional view showing the operation of the rotary injection molding material used in the method of the present invention, Figure 2 is a top view of the disc-shaped molded product obtained by this molding, and Figure 3 is a laminate of the same. The perspective view and FIG. 4 are schematic longitudinal cross-sectional views showing the slicing step of the method of the present invention. 1 ...Rotational molding machine, 2...Hopper, 3...Injection plunger, 4...Mold.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性材料に金属線または金属繊維を混合し
たのち、これを円盤状に成型される金型にその中
心部から円周方向に射出成形して金属線または金
属繊維が射出方向に配向された円盤状成形品を作
り、ついでこの成形品をその円周方向に沿つてス
ライスし、連続シート状体を取得することを特徴
とする異方導電性シートの製造方法。
1. After mixing metal wires or metal fibers with an insulating material, this is injection molded into a disk-shaped mold from the center in the circumferential direction, so that the metal wires or metal fibers are oriented in the injection direction. A method for producing an anisotropically conductive sheet, which comprises making a disc-shaped molded product, and then slicing the molded product along its circumferential direction to obtain a continuous sheet-like body.
JP20341082A 1982-11-19 1982-11-19 Manufacture of anisotropic conductive sheet Granted JPS5993323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20341082A JPS5993323A (en) 1982-11-19 1982-11-19 Manufacture of anisotropic conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20341082A JPS5993323A (en) 1982-11-19 1982-11-19 Manufacture of anisotropic conductive sheet

Publications (2)

Publication Number Publication Date
JPS5993323A JPS5993323A (en) 1984-05-29
JPS646929B2 true JPS646929B2 (en) 1989-02-07

Family

ID=16473601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20341082A Granted JPS5993323A (en) 1982-11-19 1982-11-19 Manufacture of anisotropic conductive sheet

Country Status (1)

Country Link
JP (1) JPS5993323A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095402A (en) * 1983-08-12 1985-05-28 マ−チン テレンス コ−ル Reflector for xenon flash tube
JP4510683B2 (en) * 2005-04-07 2010-07-28 アスモ株式会社 Pressure-sensitive sensor and method for manufacturing pressure-sensitive sensor

Also Published As

Publication number Publication date
JPS5993323A (en) 1984-05-29

Similar Documents

Publication Publication Date Title
JPS5826381B2 (en) Electromagnetic shield gasket and its manufacturing method
US4055615A (en) Method of manufacturing electric resistors
JPS6326783B2 (en)
US10857704B2 (en) Eyelet for biomedical electrode and process for production thereof
JPS646929B2 (en)
WO2011157528A1 (en) Use of a foaming agent to improve emi shielding
JPS5958709A (en) Anisotropic conductive sheet
JPS5922710A (en) Manufacture of electroconductive molding material
JPS59128704A (en) Method of producing conductive filler containing molding material
EP0267292B1 (en) Method for manufacturing pellets for making electromagnetic wave shielding material
JP4243949B2 (en) Conductive resin molded article having insulating surface layer and molding method thereof
JP3414576B2 (en) Wiring cable for low voltage
JPS6381032A (en) Heat-conductive elastic material
JPH0465014A (en) Conductor and manufacture thereof
JPH0553606B2 (en)
JPS6032933B2 (en) Method for manufacturing conductive elastomer molded products
JPH0545406B2 (en)
JPH08318056A (en) Production of inside blade of electric razor
JPH0348219B2 (en)
JPS63259920A (en) Manufacture of anisotropic conducting sheet
CN111319256A (en) Method for directly manufacturing organic polymer PTC thermosensitive device through 3D printing
JP2573555B2 (en) Synthetic resin composition
JPS61114841A (en) Manufacture of anisotropic conductive sheet
JPS6343213A (en) Manufacture of anisotropic conducting sheet
JPS60132742A (en) Preparation of metal fiber-contained thermoplastic resin sheet