JPS645409B2 - - Google Patents

Info

Publication number
JPS645409B2
JPS645409B2 JP1203983A JP1203983A JPS645409B2 JP S645409 B2 JPS645409 B2 JP S645409B2 JP 1203983 A JP1203983 A JP 1203983A JP 1203983 A JP1203983 A JP 1203983A JP S645409 B2 JPS645409 B2 JP S645409B2
Authority
JP
Japan
Prior art keywords
valve
pressure
closed
opened
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1203983A
Other languages
Japanese (ja)
Other versions
JPS59138024A (en
Inventor
Setsuyuki Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1203983A priority Critical patent/JPS59138024A/en
Publication of JPS59138024A publication Critical patent/JPS59138024A/en
Publication of JPS645409B2 publication Critical patent/JPS645409B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

【発明の詳細な説明】 この発明は高速度再閉路を行うしや断器と隣接
する接地装置とで構成された開閉装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a switchgear comprising a shield disconnector that performs high-speed reclosing and an adjacent grounding device.

1000KVのような高電圧の2回線送電線におい
ては、一方の回線で地絡事故があつた場合、送電
線両端のしや断器を開いても他回線からの誘導電
圧により、事故点のアークがなかなか消弧されな
い。このため、しや断器の高速度再投入を行う
と、また事故点のアークが消減しない間に高電圧
加わり、再び事故を生じることになる。この対策
の一つとして、しや断器で送電線が切離された直
後に、高速で作動する接地装置を投入し、誘導電
圧を下げて事故点のアークを消弧させたのち、し
や断器の高速度再投入を行うことが行なわれる。
この場合の接地装置の動作は、例えば、しや断器
のしや断後5サイクル程度で高速度投入し、15サ
イクル程度投入状態におかれたのち高速度で開放
する必要がある。
In a high-voltage two-circuit transmission line such as 1000KV, if a ground fault occurs in one line, even if the shields and disconnectors at both ends of the transmission line are opened, the induced voltage from the other line will cause an arc at the fault point. is not easily extinguished. For this reason, if the breaker is turned on again at high speed, high voltage will be applied before the arc at the fault point is extinguished, causing another fault. One of the countermeasures is to turn on a grounding device that operates at high speed immediately after the transmission line is disconnected by a power line breaker, reduce the induced voltage and extinguish the arc at the fault point, and then A high speed re-closing of the disconnector is carried out.
In this case, the grounding device must be operated at high speed, for example, by closing at a high speed in about 5 cycles after the insulation breaks, and after being in the closing state for about 15 cycles, it is necessary to open at high speed.

ところで、従来の開閉装置は、しや断器と接地
装置がそれぞれ独立した制御操作機構を持つてい
たので、しや断器を開く指令、接地装置を閉じる
指令、接地装置を開く指令と多くの指令を出す必
要があるという欠点があつた。
By the way, in conventional switchgear, the insulation breaker and the grounding device each have independent control operation mechanisms, so there are many commands such as opening the insulation breaker, closing the earthing device, and opening the earthing device. The drawback was that it required issuing instructions.

この発明は上記欠点を解消するためになされた
もので、しや断器の開路時にしや断器の操作機構
と連動して接地装置が動作するようにすることに
よつて、動作の信頼性の高い開閉装置を提供す
る。
This invention was made in order to eliminate the above-mentioned drawbacks, and by making the grounding device operate in conjunction with the operation mechanism of the shield breaker when the circuit breaker is opened, the reliability of the operation is improved. We provide high-quality switchgear.

以下、図について説明する。第1図〜第3図に
おいて、1は接点で、2回線の送電線(図示せ
ず)間を接続する電路2を開閉する。3は電路2
を接地可能な接地装置。4は油圧による駆動装
置、5は操作シリンダで、駆動装置4による高圧
油の給排によつて動作を行う。6はリンク、7は
レバー、8はレバー7と接触子1とを連結した操
作ロツドである。駆動装置4、操作シリンダ5、
リンク6、レバー7及び操作ロツド8によつて接
点1を操作する操作機構9が構成されている。接
点1と操作機構9とによつてしや断器10が構成
されている。11は低圧部である油溜、12はア
キユムレータ、13は油溜11の作動油14をア
キユムレータ12に圧入するポンプである。アキ
ユムレータ12とポンプ13とによつて圧力流体
供給装置15が構成されている。16はシリンダ
装置で、シリンダ16aと接地装置3を駆動する
ピストン16bで構成されている。シリンダ16
aの一端側はアキユムレータ12と連通してい
る。17はシリンダ16aの他端側と油溜11と
を連通する第1の流路、18はシリンダ16aの
一端側とアキユムレータ12とを連通する第2の
流路、19は増幅装置で、第1の流路17を開閉
可能な弁19a、第2の流路18を開閉可能な弁
19b、及び弁19aが開き弁19bが閉じるよ
うに両弁19a,19bを駆動させるばね19c
によつて構成されている。20は制御装置で、弁
19aの外側と油溜11との間を開閉可能な弁2
0a、弁19aの外側とアキユムレータ12との
間を開閉可能な弁20b、両弁20a,20bを
連結した連結ロツド20c、及び弁20aが開き
弁20bが閉じるように両弁20a,20bを駆
動するばね20dによつて構成されている。制御
装置20と増幅装置19とによつて弁装置21が
構成されている。22はレバー7と連結する連結
ロツドで、レバー7の回転に応動して軸方向に駆
動するよう構成されている。23は連結ロツド2
0cにピン24を介して回動可能に連結された連
結リンク、25はばねで、ピン24を中心として
反時計方向の力を連結リンク23に加え、連結リ
ンク23をストツパ26に当接させる。連結リン
ク23がストツパ26と当接した状態では、連結
リンクの軸線が連結ロツド20cの軸線と一致あ
るいは少し上方に回転した状態になつているの
で、操作ロツド22が図面左側へ移動して操作リ
ンク23に力を加えた時に、操作リンク23が反
時計方向に回動するのが防止される。連結ロツド
22、連結リンク23、ピン24、ばね25及び
ストツパー26で伝達機構27が構成されてい
る。28はシリンダ、29はピストンで、ストツ
パー29aと操作ロツド29bとが設けられてい
る。30はピストン29を連結リンク23から遠
ざかる方向(上方)に押圧するばねである。シリ
ンダ28内が低圧である時はばね30によつてピ
ストン29が押し上げられてストツパー29aが
シリンダ28の内壁に当接している。また、この
状態でかつ連結リンク23がストツパー29aに
当接している時は操作ロツド29bの下端はギヤ
ツプgをあけて操作リンク23と対向している。
31は制御装置20の弁20a,20b間の空間
とシリンダ28との間に設けられた絞りで、シリ
ンダ28内に流入する作動油14の流量を調整で
きるように構成されている。32は逆止弁で、シ
リンダ28内よりも外側の圧力が低下するとシリ
ンダ28内の作動油14が流出するように構成さ
れている。シリンダ28、ピストン29、ばね3
0、絞り31及び逆止弁32によつて連動解除装
置33が構成されている。
The figures will be explained below. In FIGS. 1 to 3, reference numeral 1 denotes a contact point that opens and closes an electric line 2 that connects two power transmission lines (not shown). 3 is electric line 2
A grounding device that can be grounded. Numeral 4 is a hydraulic drive device, and 5 is an operating cylinder, which is operated by supplying and discharging high-pressure oil by the drive device 4. 6 is a link, 7 is a lever, and 8 is an operating rod that connects the lever 7 and the contactor 1. drive device 4, operation cylinder 5,
The link 6, the lever 7, and the operating rod 8 constitute an operating mechanism 9 for operating the contact 1. The contact 1 and the operating mechanism 9 constitute a sheath breaker 10. Reference numeral 11 denotes an oil sump which is a low pressure section, 12 an accumulator, and 13 a pump for pressurizing the hydraulic oil 14 from the oil sump 11 into the accumulator 12. The accumulator 12 and the pump 13 constitute a pressure fluid supply device 15. Reference numeral 16 denotes a cylinder device, which is composed of a cylinder 16a and a piston 16b that drives the grounding device 3. cylinder 16
One end side of a communicates with the accumulator 12. 17 is a first flow path that communicates between the other end of the cylinder 16a and the oil reservoir 11; 18 is a second flow path that communicates between one end of the cylinder 16a and the accumulator 12; 19 is an amplifier; a valve 19a that can open and close the flow path 17, a valve 19b that can open and close the second flow path 18, and a spring 19c that drives both valves 19a and 19b so that the valve 19a opens and the valve 19b closes.
It is composed of. 20 is a control device, which includes a valve 2 that can be opened and closed between the outside of the valve 19a and the oil reservoir 11;
0a, a valve 20b that can be opened and closed between the outside of the valve 19a and the accumulator 12, a connecting rod 20c connecting both the valves 20a and 20b, and driving both the valves 20a and 20b so that the valve 20a opens and the valve 20b closes. It is constituted by a spring 20d. A valve device 21 is configured by the control device 20 and the amplifier device 19. A connecting rod 22 is connected to the lever 7 and is configured to be driven in the axial direction in response to the rotation of the lever 7. 23 is connecting rod 2
A connecting link 25 rotatably connected to 0c via a pin 24 is a spring that applies a force in a counterclockwise direction around the pin 24 to the connecting link 23 to bring the connecting link 23 into contact with a stopper 26. When the connecting link 23 is in contact with the stopper 26, the axis of the connecting link is aligned with the axis of the connecting rod 20c or rotated slightly upward, so the operating rod 22 moves to the left in the drawing and closes the operating link. When force is applied to 23, the operating link 23 is prevented from rotating counterclockwise. A transmission mechanism 27 is composed of a connecting rod 22, a connecting link 23, a pin 24, a spring 25, and a stopper 26. 28 is a cylinder, 29 is a piston, and a stopper 29a and an operating rod 29b are provided. 30 is a spring that presses the piston 29 in a direction away from the connecting link 23 (upward). When the pressure inside the cylinder 28 is low, the piston 29 is pushed up by the spring 30 and the stopper 29a is in contact with the inner wall of the cylinder 28. In this state, when the connecting link 23 is in contact with the stopper 29a, the lower end of the operating rod 29b faces the operating link 23 with a gap g.
31 is a throttle provided between the space between the valves 20a, 20b of the control device 20 and the cylinder 28, and is configured to be able to adjust the flow rate of the hydraulic oil 14 flowing into the cylinder 28. Reference numeral 32 denotes a check valve, which is configured so that the hydraulic oil 14 inside the cylinder 28 flows out when the pressure outside the cylinder 28 decreases more than inside the cylinder 28. Cylinder 28, piston 29, spring 3
0, the throttle 31 and the check valve 32 constitute an interlock release device 33.

次に動作を説明する。第1図に示すように接地
装置3は開きしや断器10を閉路し、送電線に電
圧がかかつた状態にあるとき、送電線に事故を生
じると、しや断器10の駆動装置4が作動し、操
作シリンダ5のピストンが図面右側に移動し、リ
ンク6レバー7、連結ロツド8によつてしや断器
10の接触子1間を開き電流をしや断する。それ
と同時に、連結ロツド22は左側に動き、連結リ
ンク23、連結ロツド20cを介して、弁20
a,20bを左側へ移動させる。そして弁20a
が閉じ弁20bが開く、このため、弁20bの左
側の作動油が、弁19aの右側に入る。そして、
油圧によつて両弁19a,19bが左側へ移動し
て、弁19aが閉じ弁19bが開く。このため、
弁19bの左側の作動油は操作シリンダ16のピ
ストン16bの右側に入り、ピストン16bを左
側へ動かせ、ピストン16bと結ばれた接地装置
3の主接点は閉路する。一方、制御装置20から
の作動油は絞り31を通つてシリンダ28内に入
る。このため、ばね30を押し縮めながらピスト
ン29は下方に動き、ピストン29の移動量がギ
ヤツプgを越えると操作ロツド29bによつて、
連結リンク23をばね25にさからつて時計方向
に回転させる。第2図は、連結ロツド22と連結
リンク23の間の重なりがまさに外れようとする
状態である。この状態になるまでに、15サイクル
程度(0.3秒程度)の時間になるように、シリン
ダ28内の容積、絞り31の大きさ、ギヤツプg
の大きさなどを調整することができる。次の瞬
間、連結リンク23の先端は、連結ロツドから外
れる。そして、ばね22dによつて弁20a,2
0bが右側へ移動し、弁20aが開き弁20bが
閉じる。このため弁19aの右側への高圧油の供
給が止ると同時に弁20a,20bの間の油圧は
油溜11内と同じ抵圧となり、弁19aの右側の
圧力が下る。そして、ばね19cによつて弁19
a,19bが右側へ移動して、弁19aが開いて
弁19bが閉じ、弁19a,19b間の油圧がや
はり低圧となる。そして、ピストン16bは右側
へ動き、接地装置3が開き、最終的に、第3図の
状態となつて、一連の動作を完了する。即ち、し
や断器10が電路2を開きしや断完了した直後に
接地装置3が閉じ、約0.3秒で再び接地装置3が
開いて、しや断器10の再投入に備える。なお、
この時シリンダ28内は逆止弁32の働きで急速
に高圧油が排出され次の動作に備える。この後、
しや断器10が再投入を行うと、事故点のアーク
は消弧されているので、送電を始めることができ
る。しや断器10の投入時には、操作シリンダ5
のピストンは第3図の状態から左側へ動くので、
リンク6、レバー7によつて連結ロツド23が右
側へ移動して連結ロツド22の先端が連結リンク
23からはずれる。そして、連結リンク23はば
ね25の力によつて反時計回りに回転して、連結
ロツド22と連結リンク23は直線状に元の位置
へ復帰し、装置全体は、第1図の状態にもどる。
Next, the operation will be explained. As shown in FIG. 1, the grounding device 3 closes the opening circuit breaker 10, and when a voltage is applied to the power transmission line and an accident occurs on the transmission line, the grounding device 3 closes the opening circuit breaker 10. 4 is actuated, the piston of the operating cylinder 5 moves to the right in the drawing, and the link 6 lever 7 and connecting rod 8 open the contact 1 of the shear breaker 10 and cut off the current. At the same time, the connecting rod 22 moves to the left and connects the valve 20 via the connecting link 23 and the connecting rod 20c.
Move a and 20b to the left. and valve 20a
is closed and valve 20b is opened, so that the hydraulic fluid on the left side of valve 20b enters the right side of valve 19a. and,
Both valves 19a and 19b are moved to the left by the hydraulic pressure, so that valve 19a closes and valve 19b opens. For this reason,
The hydraulic fluid on the left side of the valve 19b enters the right side of the piston 16b of the operating cylinder 16, moving the piston 16b to the left, and the main contact of the grounding device 3 connected to the piston 16b is closed. On the other hand, hydraulic oil from the control device 20 enters the cylinder 28 through the throttle 31. Therefore, the piston 29 moves downward while compressing the spring 30, and when the amount of movement of the piston 29 exceeds the gap g, the operation rod 29b causes the piston 29 to move downward.
The connecting link 23 is placed against the spring 25 and rotated clockwise. FIG. 2 shows a state in which the overlap between the connecting rod 22 and the connecting link 23 is about to come off. The volume inside the cylinder 28, the size of the orifice 31, the gap g
You can adjust the size etc. At the next instant, the tip of the connecting link 23 is removed from the connecting rod. The valves 20a and 2 are then actuated by the spring 22d.
0b moves to the right, valve 20a opens and valve 20b closes. Therefore, at the same time as the supply of high pressure oil to the right side of the valve 19a is stopped, the oil pressure between the valves 20a and 20b becomes the same resistance pressure as in the oil reservoir 11, and the pressure on the right side of the valve 19a decreases. Then, the valve 19 is activated by the spring 19c.
a and 19b move to the right, valve 19a opens and valve 19b closes, and the oil pressure between valves 19a and 19b becomes low as well. Then, the piston 16b moves to the right, the grounding device 3 opens, and finally the state shown in FIG. 3 is reached, completing the series of operations. That is, the grounding device 3 closes immediately after the insulation circuit breaker 10 opens the electric circuit 2 and completes the insulation, and the earthing device 3 opens again in about 0.3 seconds to prepare for the reinsertion of the insulation circuit breaker 10. In addition,
At this time, high pressure oil is rapidly discharged from the cylinder 28 by the action of the check valve 32 in preparation for the next operation. After this,
When the circuit breaker 10 is turned on again, the arc at the fault point has been extinguished, so power transmission can begin. When the breaker 10 is turned on, the operating cylinder 5
Since the piston moves to the left from the state shown in Figure 3,
The connecting rod 23 is moved to the right by the link 6 and the lever 7, and the tip of the connecting rod 22 is removed from the connecting link 23. Then, the connecting link 23 is rotated counterclockwise by the force of the spring 25, and the connecting rod 22 and the connecting link 23 return to their original positions in a straight line, and the entire device returns to the state shown in FIG. .

以上のようにこの一実施例の開閉装置によれ
ば、しや断器10が開路した直後に接地装置3が
閉路及び開路を行うという一連の動作を、しや断
器の動作に従つて自動的に行うことができ、しか
もこれを簡単で信頼性の高い機構で実現できる。
As described above, according to the switching device of this embodiment, the series of operations in which the grounding device 3 closes and opens the circuit immediately after the breaker 10 opens the circuit is automatically performed according to the operation of the breaker 10. This can be achieved with a simple and reliable mechanism.

なお、上記一実施例では、弁装置21を増幅装
置19と制御装置20とで構成したが、小さな出
力で接地装置3を操作できる場合は、増幅装置1
9を省略して制御装置20で直接操作シリンダ1
6を操作するように構成することもできる。
In the above embodiment, the valve device 21 is composed of the amplifier device 19 and the control device 20, but if the grounding device 3 can be operated with a small output, the amplifier device 1
9 is omitted and the control device 20 directly operates the cylinder 1.
It can also be configured to operate 6.

又、上記一実施例では、油圧で操作するものを
示したが、アキユムレータ12をタンクにかえ、
油溜11は大気放出として省略し、ポンプ13を
コンプレツサーと代えれば空気で操作するように
構成できる。
Also, in the above embodiment, the one operated by hydraulic pressure was shown, but it is possible to change the accumulator 12 to a tank,
If the oil sump 11 is omitted and the pump 13 is replaced with a compressor, it can be configured to be operated by air.

上記実施例では、連結リンク23と連結ロツド
22の間は押し合う力で、力の伝達を行つたが、
第4図のようにレバー34及びばね35を追加
し、引張り力で伝達するようにした方が良い場合
もある。例えば連結ロツド22の長い時などであ
る。ばね22はレバー34が連結ロツド20cに
いつも接するようにしている。
In the above embodiment, force was transmitted between the connecting link 23 and the connecting rod 22 by pushing each other.
In some cases, it may be better to add a lever 34 and a spring 35 to transmit the tension force as shown in FIG. 4. For example, when the connecting rod 22 is long. The spring 22 keeps the lever 34 in constant contact with the connecting rod 20c.

又、連結ロツド22の代りに回転シヤフトとレ
バーを用いて力を伝達することもできる。さら
に、第5図に示すようにしや断器10の操作に流
体圧を使用する時はしや断時の流体圧の高低によ
り、指令を伝達することもできる。この例では、
駆動装置4の油圧がしや断器10のしや断動作時
下降するように構成し、しや断動作時に配管36
中の流体圧が下がる場合を示した。37はベロウ
ズ、38はばねであり、駆動装置4がしや断器1
0のしや断動作を行うと、配管36内の流体圧が
下り、ベロウズ37がばね38により圧縮され連
結リンク23を右側に引つ張る。連結リンク23
が引つ張られるとレバー34によつて弁20aが
閉じられ弁20bが閉じられる。この場合配管3
6だけ延長すればよいので、しや断器10と接地
装置3の間の距離が長い場合など、しや断器10
と接地装置3の厳密な位置関係調整が要らないた
め、組立が容易となる利点がある。
Also, instead of the connecting rod 22, a rotating shaft and lever can be used to transmit the force. Furthermore, as shown in FIG. 5, when fluid pressure is used to operate the shingle breaker 10, commands can be transmitted based on the level of fluid pressure when the shingle is cut off. In this example,
The hydraulic pressure of the drive device 4 is configured to be lowered during the shedding operation of the shearing disconnector 10, and the piping 36 is lowered during the shearing operation.
This shows the case where the fluid pressure inside decreases. 37 is a bellows, 38 is a spring, and the drive device 4 is connected to the disconnector 1.
When the zero opening and closing operation is performed, the fluid pressure in the pipe 36 decreases, the bellows 37 is compressed by the spring 38, and the connecting link 23 is pulled to the right. Connecting link 23
When is pulled, the lever 34 closes the valve 20a and closes the valve 20b. In this case piping 3
6, so if the distance between the ground breaker 10 and the grounding device 3 is long,
Since it is not necessary to precisely adjust the positional relationship between the grounding device 3 and the grounding device 3, there is an advantage that assembly is easy.

なお、ベロウズ38の代りにシリンダとピスト
ンを用いることもできる。
Note that a cylinder and a piston may be used instead of the bellows 38.

以上の例では、接地装置側の操作源となる流体
供給装置15はしや断器10に用いるものと別に
置いた例で示したが、しや断器10を操作するた
めのアキユムレータ(図示せず)やポンプ(図示
せず)で流体供給装置15を構成すると、装置全
体が単純安価となる。
In the above example, the fluid supply device 15, which serves as the operation source on the grounding device side, was placed separately from the one used for the shield and disconnector 10, but the accumulator (not shown) for operating the shield and disconnector 10 was shown as an example. If the fluid supply device 15 is configured with a pump (not shown) or a pump (not shown), the entire device will be simple and inexpensive.

なお、試験時など接地装置は動作させずしや断
器のみ動作させる必要のある場合がある。このよ
うな場合は、しや断器が操作されても接地装置へ
の機械的指令が断たれるような装置を設ける。す
なわち、第6図に示すように電磁石39に電流を
流すことにより掛金40を引き下げて、連結リン
ク23とレバー34の連結を断つ構造とする。
Note that there are cases, such as during testing, when it is necessary to operate the grounding device and only operate the cutter or disconnector. In such a case, a device will be provided that will cut off the mechanical command to the grounding device even if the breaker is operated. That is, as shown in FIG. 6, the latch 40 is pulled down by passing a current through the electromagnet 39, thereby breaking the connection between the connecting link 23 and the lever 34.

また、上記実施例は弁装置21によつて第1の
流路17が閉じられ第2の流路が開かれた時に、
シリンダ装置16が接地装置3を閉じるように構
成したものについて説明したが、これとは逆に、
第1の流路が開かれ第2の流路が閉じられた時
に、シリンダ装置が接地装置3を閉じるように構
成しても効果がある。
Further, in the above embodiment, when the first flow path 17 is closed and the second flow path is opened by the valve device 21,
Although the cylinder device 16 is configured to close the earthing device 3, it is explained that the cylinder device 16 closes the grounding device 3.
It is also effective to configure the cylinder device to close the grounding device 3 when the first flow path is opened and the second flow path is closed.

以上のようにこの発明によると、しや断器の開
路時に伝達機構によつてしや断器の操作装置の操
作力を弁装置に伝達し、シリンダ装置によつて接
地装置が閉じられるように弁装置を動作させ、弁
装置が動作してから所定の時間後に、連動解除装
置でしや断器の操作機構と伝達機構との連動を解
除して、接地装置を開くことによつて、しや断器
が開路した直後に、接地装置が閉路及び開路動作
を自動的に行うことができ、多くの指令を必要と
せず、信頼性が高い。
As described above, according to the present invention, when the shield breaker is opened, the operating force of the shield breaker operating device is transmitted to the valve device by the transmission mechanism, and the earthing device is closed by the cylinder device. The valve device is operated, and after a predetermined period of time after the valve device operates, the interlock between the operation mechanism of the shatter breaker and the transmission mechanism is released using the interlock release device, and the grounding device is opened. The grounding device can automatically close and open the circuit immediately after the circuit is opened or the disconnector is opened, and many commands are not required and the reliability is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はこの発明の一実施例の構成
で、第1図はしや断器が閉路状態であり接地装置
が開路状態を示し、第2図はしや断器が開路され
接地装置が閉路した状態を示し、第3図はしや断
器及び接地装置が共に開路した状態を示してい
る。第4図及び第5図はこの発明の他の実施例に
使用された伝達機構の構成図、第6図は必要に応
じて操作装置の操作力が弁装置に伝達しないよう
にできる伝達機構の構成図である。図中、1は接
触子、3は接地装置、9は操作機構、10はしや
断器、11は低圧部、15は圧力流体供給装置、
16はシリンダ装置、17は第1の流路、18は
第2の流路、19aは弁(第1の弁)、19bは
弁(第2の弁、21は弁装置、27は伝達機構、
33は連動解除装置である。なお、各図中同一符
号は同一又は相当部分を示す。
Figures 1 to 3 show the configuration of an embodiment of the present invention, in which Figure 1 shows the chopper or disconnector in a closed circuit state and the grounding device in an open circuit state, and Figure 2 shows the chopper or disconnector in an open circuit state. The grounding device is shown in a closed state, and FIG. 3 shows a state in which both the disconnector and the grounding device are opened. Figures 4 and 5 are block diagrams of a transmission mechanism used in other embodiments of the present invention, and Figure 6 is a diagram of a transmission mechanism that can prevent the operating force of the operating device from being transmitted to the valve device as required. FIG. In the figure, 1 is a contact, 3 is a grounding device, 9 is an operating mechanism, 10 is a bridge or disconnector, 11 is a low pressure section, 15 is a pressure fluid supply device,
16 is a cylinder device, 17 is a first flow path, 18 is a second flow path, 19a is a valve (first valve), 19b is a valve (second valve), 21 is a valve device, 27 is a transmission mechanism,
33 is an interlock release device. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 接点を開閉する操作機構を有するしや断器、
上記接点の少なくとも一方の電路を接地する接地
装置、第1の圧力の流体を供給する圧力流体供給
装置、上記第1の圧力より低い第2の圧力の低圧
部と接続された第1の流路、上記圧力流体供給装
置と接続された第2の流路、上記第1の流路と接
続された第1の弁が閉じ、上記第2の流路と接続
された第2の弁が開くと上記接地装置を閉じ、上
記第1の弁が開き、上記第2の弁が閉じると上記
接地装置を開くように上記第1の圧力の流体が供
給されるシリンダ装置、上記しや断器が開くとき
上記操作機構の駆動力が与えられて上記第1の弁
を閉じて上記第2の弁を開き、上記駆動力が除か
れると上記第1の弁を開いて上記第2の弁を閉じ
るように上記第1の流体を制御する弁装置、上記
しや断器の開路時に上記操作機構と連動して駆動
力を上記弁装置に伝達する伝達機構、上記第1の
弁が閉じ上記第2の弁が開いてから所定の時間後
に上記操作機構と上記伝達機構との連動を解除す
る連動解除装置を備えた開閉装置。
1. A circuit breaker with an operating mechanism for opening and closing contacts;
a grounding device that grounds at least one of the electric circuits of the contacts; a pressure fluid supply device that supplies fluid at a first pressure; and a first flow path connected to a low pressure section at a second pressure lower than the first pressure. , a second flow path connected to the pressure fluid supply device, a first valve connected to the first flow path closed, and a second valve connected to the second flow path opened; When the grounding device is closed, the first valve is opened, and the second valve is closed, the cylinder device to which the fluid at the first pressure is supplied opens the grounding device, and the breaker opens. When the driving force of the operating mechanism is applied, the first valve is closed and the second valve is opened, and when the driving force is removed, the first valve is opened and the second valve is closed. a valve device for controlling the first fluid; a transmission mechanism for transmitting driving force to the valve device in conjunction with the operating mechanism when the shield breaker is opened; and a transmission mechanism for transmitting driving force to the valve device when the first valve is closed. An opening/closing device comprising an interlock release device that releases the interlock between the operating mechanism and the transmission mechanism after a predetermined period of time after the valve opens.
JP1203983A 1983-01-25 1983-01-25 Switching device Granted JPS59138024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1203983A JPS59138024A (en) 1983-01-25 1983-01-25 Switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1203983A JPS59138024A (en) 1983-01-25 1983-01-25 Switching device

Publications (2)

Publication Number Publication Date
JPS59138024A JPS59138024A (en) 1984-08-08
JPS645409B2 true JPS645409B2 (en) 1989-01-30

Family

ID=11794456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1203983A Granted JPS59138024A (en) 1983-01-25 1983-01-25 Switching device

Country Status (1)

Country Link
JP (1) JPS59138024A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632727B2 (en) * 1973-02-12 1981-07-29
JPS53126168A (en) * 1977-04-08 1978-11-04 Mitsubishi Electric Corp Switch

Also Published As

Publication number Publication date
JPS59138024A (en) 1984-08-08

Similar Documents

Publication Publication Date Title
JPH07320611A (en) Gas insulated switching device
CN109285706B (en) Hydraulic operating mechanism and switch using same
JP2869265B2 (en) Breaker
JPH0142094B2 (en)
EP0593019B1 (en) Resistor-provided UHV breaker
JPS645409B2 (en)
US5419236A (en) Method for controlling a hydraulic drive and configuration for carrying out the method
JP4956115B2 (en) Operation device for gas insulated switchgear
US20060131154A1 (en) Assembly for controlling the force applied to a pantograph
JPS6319051B2 (en)
CN110047665B (en) Automatic control method applied to safe connection of high-voltage circuit
JPH07217401A (en) Hydraulic system for hydraulic driving gear for high-voltage circuit breaker
JPS6341172B2 (en)
CN209357634U (en) A kind of high-pressure frequency-conversion power frequency switching switch
JPS6334194Y2 (en)
SU957304A1 (en) High-voltage switch gas drive
JP3139812B2 (en) Hydraulic drive
JP3317534B2 (en) Hydraulic operation device for power switch
GB2024332A (en) Hydraulically operated actuation device for a high voltage circuit-breaker
RU2081468C1 (en) Vacuum circuit breaker
JP3346088B2 (en) Hydraulic operation circuit for power switchgear
JPH0253895B2 (en)
JP2839767B2 (en) Operating device for resistance cut-off circuit breaker
JPH0213408B2 (en)
JP3314400B2 (en) Gas circuit breaker