JPS643924B2 - - Google Patents

Info

Publication number
JPS643924B2
JPS643924B2 JP57131115A JP13111582A JPS643924B2 JP S643924 B2 JPS643924 B2 JP S643924B2 JP 57131115 A JP57131115 A JP 57131115A JP 13111582 A JP13111582 A JP 13111582A JP S643924 B2 JPS643924 B2 JP S643924B2
Authority
JP
Japan
Prior art keywords
coil
heating
tapered member
secondary coil
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57131115A
Other languages
Japanese (ja)
Other versions
JPS5923813A (en
Inventor
Toshihiko Hirai
Manabu Kuronuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP57131115A priority Critical patent/JPS5923813A/en
Publication of JPS5923813A publication Critical patent/JPS5923813A/en
Publication of JPS643924B2 publication Critical patent/JPS643924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明はテーパー部材の表面均一焼戻し方法お
よび焼戻し用加熱コイルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for uniformly tempering the surface of a tapered member and a heating coil for tempering.

テーパー部材の所定長さにわたる周面を焼戻し
するため、誘導加熱手段を用いて表層部を均一に
加熱する場合には、所定長さある被加熱部の一方
端側と他方端側とでは表層の後背質量に差があつ
て、熱伝導による熱の拡散が異るので、大径部は
小径部より電磁エネルギーの付与を大にする必要
があると考えられている。上記考えにもとづいた
従来焼戻し方法および加熱コイルを第1図aおよ
びbに示す。例えばセンター支持されて回転する
テーパー部材Wの被加熱部hを、当該被加熱部h
の長さに適合する長さに多巻回した加熱コイル
C′によつて誘導加熱するもので、この加熱コイル
C′の巻回ピツチを大径部側で密に小径部側で粗と
し、第1図aの如く同一内径で多巻回したものを
用いるかさらに上記に加えて、第1図bの如く大
径部側から小径部側へかけて内径を縮少しつつ多
巻回したものを用いるようにしている。ところで
上記加熱コイルC′の製作調整において、被加熱部
hを全長にわたつて均一加熱する適正な不等ピツ
チや巻径は計算から求めることはできない。その
ため、予め想定したピツチや内径で多巻回した加
熱コイルC′を製作し、当該加熱コイルC′を用いて
テーパー部材Wを加熱し、加熱温度を測温すると
ともに、第1図cの如く表層の焼戻し硬さを測定
して所定等硬度曲線を求めた結果にもとづいて、
ピツチや内径を修正する作業を数回にわたつて繰
り返しつつ、不均一加熱から均一加熱が得られる
ように調整している。この作業には多大の労力と
時間が費される。そのうえ上記の如く多大の労力
と時間を費して調整された加熱コイルC′は、長尺
の銅パイプを曲げ加工して作られたか、長尺の銅
帯を曲げ加工と口一付けによつて作られたもので
あるので、使用中に流れる電流による自己発熱や
管内に流通する自己冷却用冷却水による冷却等の
熱的変化の繰り返しを受け、徐々にピツチや巻径
が変化し、これに気付かぬまま使用して不均質な
不良熱処理品を多数生産してしまうような不測の
事故を惹起する慮が多分にあつた。
In order to temper the circumferential surface of a tapered member over a predetermined length, when heating the surface layer uniformly using induction heating means, the surface layer is Since there is a difference in rear mass and the diffusion of heat due to thermal conduction is different, it is thought that it is necessary to apply more electromagnetic energy to the large diameter part than to the small diameter part. A conventional tempering method and heating coil based on the above idea are shown in FIGS. 1a and 1b. For example, the heated portion h of the tapered member W that is supported at the center and rotates is
Heating coil with multiple turns to match the length of the
This heating coil
The winding pitch of C' is made denser on the large diameter side and coarser on the small diameter side, and multiple turns are used with the same inner diameter as shown in Fig. 1a, or in addition to the above, as shown in Fig. 1b. The inner diameter is reduced from the large-diameter side to the small-diameter side, and a large number of turns are used. By the way, in manufacturing and adjusting the heating coil C', it is not possible to determine from calculation the appropriate unequal pitch and winding diameter to uniformly heat the heated portion h over its entire length. Therefore, a heating coil C' is manufactured with multiple turns at a predetermined pitch and inner diameter, the heating coil C' is used to heat the tapered member W, and the heating temperature is measured, as shown in Figure 1 c. Based on the results of measuring the tempering hardness of the surface layer and obtaining a predetermined isohardness curve,
By repeating the process of adjusting the pitch and inner diameter several times, adjustments were made to achieve uniform heating instead of uneven heating. This work requires a lot of effort and time. Moreover, the heating coil C', which took a great deal of effort and time to adjust as described above, was made by bending a long copper pipe, or by bending and fitting a long copper strip. During use, the pitch and winding diameter gradually change due to repeated thermal changes such as self-heating caused by the current flowing through the tube and cooling by the self-cooling water flowing inside the tube. There were many considerations that could lead to unforeseen accidents such as the production of a large number of non-uniform and defective heat-treated products due to unnoticed use.

本発明はテーパー部材の表面焼戻しを行う場合
の従来方法に存する上述の如き欠点を解消する目
的でなされたものであつて、多大の労力と時間の
かゝる加熱コイルのピツチや巻径の調整を一切行
う必要もなく、また使用中の保守に配慮する必要
もなく、極めて容易にテーパー部材の表面を均一
加熱して焼戻しをなしうる方法および焼戻し用加
熱コイルを提供するものである。
The present invention was made for the purpose of eliminating the above-mentioned drawbacks of the conventional method for surface tempering of a tapered member, and it eliminates the need to adjust the pitch and winding diameter of the heating coil, which requires a great deal of labor and time. The present invention provides a method and a heating coil for tempering that can extremely easily uniformly heat and temper the surface of a tapered member without having to carry out any steps or to consider maintenance during use.

本発明を第2図に示す実施例に従つて説明す
る。
The present invention will be explained according to the embodiment shown in FIG.

第2図においてaは一部断面正面図、bは平面
図である。テーパー部材Wは例えば図示しない回
転載置台に載置され、またはセンター支持されて
回転可能である。当該テーパー部材Wの被加熱部
hを加熱する加熱コイルCは、本発明ではC1
して示す多巻回の一次コイルと当該一次コイル
C1の内径内に配置されるC2として示す単巻回の
二次コイルとからなる。上記一次コイルC1はテ
ーパー部材Wの大径部直径より十分大なる所定の
同一内径でほぼ均等ピツチをもつて多巻回されて
いるが、従来加熱コイルにおけるが如き特別のピ
ツチ配慮は不要である。当該一次コイルC1のコ
イル長さは被加熱部hの長さとほぼ等しいかやゝ
短かくすればよく、リードRおよびR′を介して
図示しない誘導加熱電源の出力端子に接続され
る。二次コイルC2はテーパー部材Wの被加熱部
hの長さに等しい巾と、被加熱部hの大径部側の
周径に所定間隙をへだてて対向可能な一方端面か
ら他方端面まで同一内径となる如く単巻回されて
いる。当該二次コイルC2は例えば図示の如く、
環周の一部に巾方向の切欠きSが形成された所謂
ドーナツ型の内腔Dを有する中空環状筒体であ
り、上記切欠きSの端面は閉面となつている。上
記切欠きSの間隙には電気絶縁材を嵌着して環状
二次コイルC2を補強してもよい。当該二次コイ
ルC2と前記一次コイルC1とは同軸に配置されか
つ二次コイルC2の外周と一次コイルC1の内径と
の間隙は良好な電磁結合を保持可能に設定され
る。必要に応じて自己冷却用冷却水を一次コイル
の管内および二次コイルの腔内に通水するように
してもよい。
In FIG. 2, a is a partially sectional front view, and b is a plan view. The tapered member W is rotatable, for example, by being placed on a rotating mounting table (not shown) or by being supported at the center. In the present invention, the heating coil C that heats the heated portion h of the tapered member W includes a multi-turn primary coil indicated as C 1 and the primary coil.
It consists of a single turn secondary coil, shown as C 2 , which is placed within the inner diameter of C 1 . The primary coil C 1 has a predetermined inner diameter that is sufficiently larger than the diameter of the large diameter part of the tapered member W, and is wound in multiple turns with a substantially uniform pitch, but there is no need to take special pitch considerations as in conventional heating coils. be. The coil length of the primary coil C1 may be approximately equal to or slightly shorter than the length of the heated portion h, and is connected to an output terminal of an induction heating power source (not shown) via leads R and R'. The secondary coil C 2 has a width equal to the length of the heated part h of the tapered member W, and is the same from one end face to the other end face that can face the circumference of the large diameter part of the heated part h with a predetermined gap. It is single-wound so that it has the inner diameter. The secondary coil C2 is, for example, as shown in the figure.
It is a hollow annular cylinder having a so-called donut-shaped inner cavity D in which a notch S in the width direction is formed in a part of the circumference, and the end face of the notch S is a closed surface. An electrical insulating material may be fitted into the gap of the notch S to reinforce the annular secondary coil C2 . The secondary coil C 2 and the primary coil C 1 are arranged coaxially, and the gap between the outer circumference of the secondary coil C 2 and the inner diameter of the primary coil C 1 is set to maintain good electromagnetic coupling. If necessary, self-cooling water may be passed through the tube of the primary coil and the cavity of the secondary coil.

上記構成からなる加熱コイルを用いてテーパー
部材Wの被加熱部hを加熱する場合を以下に述べ
る。
The case where the heated portion h of the tapered member W is heated using the heating coil having the above configuration will be described below.

テーパー部材Wを加熱コイルC内の所定位置に
配置し、回転状態を維持せしめたのち、図示しな
い電源を投入する。所定周波数の電流I1はリード
RおよびR′を介して一次コイルC1に流れ一次誘
導磁束Φ1を発生する。当該一次誘導磁束Φ1は二
次コイルC2に誘導電流I2を誘起し、二次コイルC2
を流れる誘導電流I2によつて発生する二次誘導磁
束Φ2がテーパー部材Wの被加熱部hを均熱加熱
する。
After the tapered member W is placed at a predetermined position within the heating coil C and maintained in a rotating state, a power source (not shown) is turned on. A current I 1 of a predetermined frequency flows through the leads R and R' to the primary coil C 1 to generate a primary induced magnetic flux Φ 1 . The primary induced magnetic flux Φ 1 induces an induced current I 2 in the secondary coil C 2 , and the secondary coil C 2
The secondary induced magnetic flux Φ 2 generated by the induced current I 2 flowing through uniformly heats the heated portion h of the tapered member W.

本発明の均熱加熱作用を以下に詳述する。 The soaking heating function of the present invention will be explained in detail below.

一次コイルC1の発生する誘導磁束Φ1は多巻回
されたそれぞれの導管cの個々に発生する誘導磁
束φの合成されたものである。従つて一次コイル
C1に所定間隙をへだてて対向している二次コイ
ルC2の外環壁では、上記導管cそれぞれに最近
接した位置で最も強く、また最遠接した位置で最
も弱い個々の導管cから発生する誘導磁束φを受
けるので、その強弱に応じて外環壁に周方向の誘
導電流I2が流れることとなる。しかし、例えば
個々の導管cを方向に流れる電流I1によつて発
生した矢印方向の誘導磁束φで合成された誘導磁
束Φ1によつて二次コイルC2の外周環壁C2aに誘起
され、その位置によつて強さの相違する二次誘導
電流I2は、当該二次コイルC2の切欠きSの閉端
面を第2図bに矢印で示される如く反転して内周
環壁C2bへと流れる間に、その強弱度が均等化
し、内周環壁C2bを流れる二次誘導電流I2は巾
方向にわたり均一な電流の流れと化す。従つて二
次コイルC2の内周環壁C2bからは、その位置によ
つて差が生ずることのない二次誘導磁束Φ2が発
生することとなる。
The induced magnetic flux Φ 1 generated by the primary coil C 1 is a combination of the induced magnetic flux φ generated individually in each of the multi-turn conduits c. Therefore the primary coil
On the outer ring wall of the secondary coil C 2 facing C 1 with a predetermined gap, the strength is strongest at the position closest to each of the above-mentioned conduits c, and the weakest at the position farthest from each conduit c. Since it receives the generated induced magnetic flux φ, a circumferential induced current I 2 flows in the outer ring wall depending on its strength. However, for example, an induced magnetic flux Φ 1 synthesized by the induced magnetic flux φ in the direction of the arrow generated by the current I 1 flowing in the direction of the individual conduit c induces it in the outer ring wall C 2 a of the secondary coil C 2 . The secondary induced current I2 , which varies in strength depending on its position, reverses the closed end surface of the notch S of the secondary coil C2 as shown by the arrow in FIG. While flowing to the wall C 2 b, its strength is equalized, and the secondary induced current I 2 flowing through the inner ring wall C 2 b becomes a uniform current flow across the width. Therefore, the inner circumferential ring wall C 2 b of the secondary coil C 2 generates a secondary induced magnetic flux Φ 2 that does not vary depending on its position.

一方上記二次コイルC2の内周環壁C2bが対向す
るワークWの被加熱部hの図示下方端方向径は大
径で表面後背質量が大であるので大きなエネルギ
ーの付与を必要とし、上方端方向径は小径で表面
後背質量が小であるので下方端方向程のエネルギ
ーの付与は必要としない。而して上下方向に均一
な二次誘導磁束Φ2を発生している二次コイルC2
の内周環壁C2bとテーパー部材Wの被加熱部hと
は大径部方向で小、小径部方向で大なる間隙とな
つているので、テーパー角が極端に大きい場合を
除き、二次誘導磁束Φ2のテーパー部材Wに及ぼ
す電磁エネルギーは間隙の差と後背質量の差とを
相殺してほぼ均一に付与されることとなり、かつ
被加熱部hの上下端部を直線的に結ぶが如くほぼ
等温度に昇温加熱せしめることとなる。
On the other hand, the diameter of the heated part h of the workpiece W, which the inner circumferential ring wall C 2 b of the secondary coil C 2 faces in the lower end direction in the figure, is large and the mass behind the surface is large, so it is necessary to apply a large amount of energy. Since the diameter in the upper end direction is small and the mass behind the surface is small, it is not necessary to apply as much energy as in the lower end direction. The secondary coil C 2 generates a secondary induced magnetic flux Φ 2 that is uniform in the vertical direction.
There is a gap between the inner circumferential ring wall C 2 b and the heated part h of the tapered member W, which is small in the direction of the large diameter part and large in the direction of the small diameter part. The electromagnetic energy exerted on the tapered member W by the secondary induced magnetic flux Φ 2 is applied almost uniformly by canceling out the difference in gap and the difference in rear mass, and linearly connects the upper and lower ends of the heated part h. As a result, the temperature is increased to approximately the same temperature.

被加熱部hが所定焼戻し温度まで昇温した時点
で電源を断とし、テーパー部材Wの回転を停止し
たうえ加熱コイルC外に排出し、焼戻し工程を終
了する。
When the heated portion h reaches a predetermined tempering temperature, the power is turned off, the rotation of the tapered member W is stopped, and the tapered member W is discharged outside the heating coil C, thereby completing the tempering process.

尚単巻回の二次コイルC2が発生する誘導磁束
Φ2が上下方向端で均一ならば、本発明の単巻回
の二次コイルを直接電源に接続し、一次コイルを
廃止とすれば一次コイルC1の電磁エネルギーを
二次コイルC2に誘導する際に生ずるエネルギー
ロスが防げると考えるかもしれないが、これでは
均一加熱の目的は達せられない。その理由は、テ
ーパー部材Wの被加熱部hの長さに応じたコイル
巾をもつ単巻回コイルを必要とするが、コイル巾
が大となるに従つて出力端子に接続するコイルの
入力端子からリードを介して流れる電流が最短距
離の回路を形成しようとするので、コイルの巾方
向で不均一な電流が流れ、不均一加熱の結果しか
得られない。
If the induced magnetic flux Φ 2 generated by the single-turn secondary coil C 2 is uniform at the upper and lower ends, then if the single-turn secondary coil of the present invention is directly connected to the power source and the primary coil is abolished, Although one might think that this would prevent the energy loss that occurs when the electromagnetic energy of the primary coil C 1 is induced into the secondary coil C 2 , this does not achieve the purpose of uniform heating. The reason for this is that a single-turn coil is required with a coil width corresponding to the length of the heated portion h of the tapered member W, but as the coil width increases, the input terminal of the coil connected to the output terminal Since the current flowing through the leads attempts to form the shortest distance circuit, non-uniform current flows across the width of the coil, resulting in non-uniform heating.

発明者は本発明の効果を確認するため次の焼戻
し試験を行つた。
The inventor conducted the following tempering test to confirm the effects of the present invention.

◎焼戻し試験 (1) 供試体;テーパーシヤフト 大径部………φ50mm 小径部………φ30mm 軸長………138mm 表面硬さ………HS75 (2) 焼戻し設備;電源400KW 8KHz加熱コイル 一次コイルC1 コイル長 133mm 内径 φ90mm 巻回数 3 二次コイルC2 コイル巾 133mm 内径 φ60mm (3) 加熱温度測定試験 上記焼戻し設備をもちい、供試体TPを250℃
を目標加熱温度として8.7秒間加熱し、その被
加熱部の長さ方向の温度を測定した。
◎Tempering test (1) Specimen; Taper shaft large diameter part... φ50mm Small diameter part......φ30mm Shaft length......138mm Surface hardness...H S 75 (2) Tempering equipment; Power supply 400KW 8KHz heating coil Primary coil C 1 coil length 133mm Inner diameter φ90mm Number of turns 3 Secondary coil C 2 coil width 133mm Inner diameter φ60mm (3) Heating temperature measurement test Using the above tempering equipment, test specimen T P was heated to 250℃.
was heated for 8.7 seconds at a target heating temperature, and the temperature in the length direction of the heated part was measured.

測定方法;被加熱部を巾の大なる単巻回二次コ
イルで巻回して加熱する関係上、直接測温可
能な計測器の使用ができないので、第3図に
示す如く供試体TPの表面軸方向に下記3種
類の測温試薬を縞状に塗布して通電加熱し、
加熱終了後測温試薬の変色を観察してその加
熱温度を測定した。
Measurement method: Because the heated part is heated by winding it with a large single-turn secondary coil, it is not possible to use a measuring device that can directly measure the temperature . The following three types of temperature reagents are applied in stripes along the axial direction of the surface and heated with electricity.
After the heating was completed, the heating temperature was measured by observing the color change of the temperature measuring reagent.

測温試薬a………239℃で変色 b………253℃で変色 c………274℃で変色 測定結果;供試体TPの被加熱部hの全長にわ
たり、測定試薬のaおよびbに変色が生じて
いるが、cの変色はみられず、これにより、
被加熱部は全長にわたりほぼ255〜270℃の間
まで昇温加熱されたことが判明し、ほぼ均一
加熱が達成されていることが証明された。
Temperature measuring reagent a: Changes color at 239°C b: Changes color at 253°C c: Changes color at 274°C Measurement results: Measurement reagents a and b change over the entire length of the heated part h of the specimen T P. Although discoloration has occurred, discoloration of c is not observed, and as a result,
It was found that the temperature of the heated part was increased to approximately 255-270°C over the entire length, proving that almost uniform heating was achieved.

(4) 硬さ測定試験 上記加熱済供試体TPの被加熱部hの表面硬
度を軸方向にそつてシヨア硬さ試験機で測定
し、測定位置および測定値を第3図に記入し
た。
(4) Hardness measurement test The surface hardness of the heated portion h of the heated specimen T P was measured in the axial direction using a Shore hardness tester, and the measurement positions and measured values are shown in FIG.

測定結果;被加熱部hの長さ方向で範囲HS
の測定値のばらつきしかなく、ほぼ均一な焼
戻しが達成されていることが証明された。
Measurement result: Range H S 5 in the length direction of the heated part h
It was proven that almost uniform tempering was achieved, with only variations in the measured values.

上記実施例では、二次コイルC2として巾方向
に切欠きSがあり、当該切欠き端面を閉面とした
中空環状体を用いているが、これに替えて導体板
材をほぼ筒状に曲げ、対向端面を所定間隙をへだ
てる如く形成したものでもよい。この場合使用す
る板材は電源の周波数に応じて磁束の透過深度以
上の厚さを有するものであれば同様の効果を得ら
れる。
In the above embodiment, a hollow annular body with a notch S in the width direction and a closed end face of the notch is used as the secondary coil C2 , but instead of this, the conductor plate material is bent into a substantially cylindrical shape. , the opposite end surfaces may be formed so as to be separated by a predetermined gap. In this case, the same effect can be obtained as long as the plate material used has a thickness equal to or greater than the penetration depth of the magnetic flux depending on the frequency of the power source.

本発明はテーパー部材の所定長さにわたる被加
熱部を、多巻回して電源に接続する一次コイル内
に配置され、被加熱部と間隙をへだてて対向する
単巻回の二次コイルによつて、一次コイルの発生
する不均一な一次誘導磁束を均等化した二次誘導
磁束に変換して誘導加熱するようにした技術思想
であつて、上記均等化された二次誘導磁束は間隙
の小なる後背大質量部である大径部から、間隙の
大なる後背小質量部である小径部まで、被加熱部
の全長にわたつてほぼ均一な誘導発熱の効果を生
ずるが如き電磁エネルギー付与作用があるので、
被加熱部はほぼ均一な加熱温度で焼戻しされるこ
ととなる。
In the present invention, a heated portion of a tapered member over a predetermined length is arranged in a primary coil that is wound in multiple turns and connected to a power source, and is arranged in a single-turn secondary coil that faces the heated portion with a gap therebetween. , is a technical idea that converts the non-uniform primary induction magnetic flux generated by the primary coil into an equalized secondary induction magnetic flux and performs induction heating, and the equalized secondary induction magnetic flux is There is an effect of imparting electromagnetic energy that produces an almost uniform induction heating effect over the entire length of the heated part, from the large diameter part which is the rear large mass part to the small diameter part which is the rear small mass part where there is a large gap. So,
The heated portion is tempered at a substantially uniform heating temperature.

本発明方法を実施する加熱コイルは、一次コイ
ルとして特別の配慮を必要とするような不等ピツ
チの多巻回コイルではなく、ほぼ等ピツチ程度に
巻回すれば足り、また二次コイルとして熱的変化
の繰り返しによつても全く変形のおそれのない単
巻回コイルを用いるので製作が極めて簡易であ
る。
The heating coil for carrying out the method of the present invention is not a multi-turn coil with unequal pitches that requires special consideration as a primary coil, but it suffices to be wound with approximately equal pitches, and it can be used as a secondary coil to heat the coil. Since a single-turn coil is used, which has no risk of deformation even when subjected to repeated physical changes, manufacturing is extremely simple.

従つて、従来多巻回加熱コイルを用いた場合に
問題とされた数回の加熱と硬さ測定の繰り返しに
よつて始めて均一加熱を達するような加熱コイル
調整に要する多大の労力と時間とを費す欠点が解
消されるとともに、使用中の熱的変化の繰り返し
によつて必然的に発生する加熱コイルの変形とそ
の変形に伴う保守または変形によつて惹起される
不均一加熱による不良熱処理品の生産の慮れが完
全に防止されることとなり、本発明の実施によつ
てテーパー部材の表面均一焼戻しは従来にくらべ
極めて容易かつ安定性を維持しうるものとなるの
でその実用性が高く評価される。
Therefore, the large amount of effort and time required to adjust the heating coil to achieve uniform heating only after repeating several heating and hardness measurements, which was a problem when conventional multi-turn heating coils were used, can be avoided. This eliminates the disadvantages of heating coils that inevitably occur due to repeated thermal changes during use, and prevents defective heat-treated products due to uneven heating caused by maintenance or deformation associated with the deformation. By implementing the present invention, uniform tempering of the surface of a tapered member can be achieved much more easily and with stability maintained than in the past, and its practicality is highly praised. be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aおよびbはそれぞれ従来テーパー部材
の表面焼戻し方法にもとづく焼戻し用加熱コイル
を示す一部断面正面図、第1図cは従来加熱コイ
ルがピツチや巻径の調整を必要とすることを説明
するためのテーパー部材の断面正面図、第2図a
およびbはそれぞれ本発明方法の一実施例加熱コ
イルの一部断面正面図および平面図、第3図は本
発明の効果を確認するための焼戻し試験における
測温試薬の塗布状態と硬さ測定位置および測定値
を示す供試体の正面図である。 W……テーパー部材、h……被加熱部、C……
加熱コイル、C1……一次コイル、C2……二次コ
イル、Φ1……一次誘導磁束、Φ2……二次誘導磁
束、S……切り欠き。
Figures 1a and b are partially sectional front views showing heating coils for tempering based on the conventional surface tempering method for tapered members, and Figure 1c shows that conventional heating coils require adjustment of pitch and winding diameter. Cross-sectional front view of the tapered member for explanation, FIG. 2a
and b are respectively a partial cross-sectional front view and a plan view of a heating coil according to an embodiment of the method of the present invention, and Fig. 3 is a state of application of a temperature reagent and a hardness measurement position in a tempering test to confirm the effects of the present invention. and a front view of the specimen showing measured values. W...Tapered member, h...Heated part, C...
Heating coil, C1 ...Primary coil, C2 ...Secondary coil, Φ1 ...Primary induced magnetic flux, Φ2 ...Secondary induced magnetic flux, S...Notch.

Claims (1)

【特許請求の範囲】 1 テーパー部材の所定長さにわたる周面を誘導
加熱手段により焼戻しする場合において、上記テ
ーパー部材の被加熱部を、多巻回して電源に接続
する一次コイル内に配置され、被加熱部と間隙を
へだてて対向する単巻回の二次コイルによつて、
一次コイルの発生する不均一な一次誘導磁束を均
等化した二次誘導磁束に変換して誘導加熱するよ
うにしたことを特徴とするテーパー部材の表面均
一焼戻し方法。 2 テーパー部材の所定長さにわたる被加熱部の
表面を加熱する加熱コイルが、電源に接続する一
次コイルと当該一次コイル内に配置された二次コ
イルとから構成され、上記一次コイルはほぼ等ピ
ツチで被加熱部の長さと等しいかまたはやゝ短い
コイル長さに同一巻回内径で多巻回された多巻回
コイルからなり、上記二次コイルは被加熱部に対
応する巾と被加熱部の大径部周と所定間隙をへだ
てて対向可能な両端面内径を同一径として単巻回
された単巻回コイルからなり、一次コイルと二次
コイルとは同軸的に配置されるとともに一次コイ
ルの内径が二次コイルの外周壁と電磁結合が良好
な所定間隙を保持して対向するように設定されて
いることを特徴とするテーパー部材の表面均一焼
戻し用加熱コイル。 3 二次コイルが巾方向に所定間隙の切り欠きの
ある中空環状体であつて、上記切り欠き端面が閉
端面となつている特許請求の範囲第2項記載のテ
ーパー部材の表面均一焼戻し用加熱コイル。 4 二次コイルが導体板材を環状に曲げて所定間
隙をへだてて端面を対向させ切り欠きが形成され
ている筒体であつて、当該板材の厚さが電源の周
波数に応じて一次コイルの一次誘導磁束の透過深
度以上の厚さである特許請求の範囲第2項記載の
テーパー部材の表面均一焼戻し用加熱コイル。
[Scope of Claims] 1. In the case of tempering the circumferential surface of a tapered member over a predetermined length by induction heating means, the heated portion of the tapered member is arranged in a primary coil which is wound in multiple turns and connected to a power source, By a single-turn secondary coil facing the heated part across a gap,
A method for uniformly tempering the surface of a tapered member, characterized in that non-uniform primary induction magnetic flux generated by a primary coil is converted into equalized secondary induction magnetic flux for induction heating. 2. A heating coil that heats the surface of the heated portion over a predetermined length of the tapered member is composed of a primary coil connected to a power source and a secondary coil disposed within the primary coil, and the primary coil is arranged at approximately equal pitches. The secondary coil consists of a multi-turn coil with the same inner diameter and a coil length that is equal to or slightly shorter than the length of the heated section, and the secondary coil has a width corresponding to the heated section and a coil length that is slightly shorter than the heated section. The primary coil and the secondary coil are arranged coaxially, and the primary coil and the secondary coil are arranged coaxially. 1. A heating coil for uniformly tempering the surface of a tapered member, the inner diameter of which is set to face the outer circumferential wall of a secondary coil with a predetermined gap maintaining good electromagnetic coupling. 3. Heating for uniform surface tempering of a tapered member according to claim 2, wherein the secondary coil is a hollow annular body having a notch with a predetermined gap in the width direction, and the end face of the notch is a closed end face. coil. 4. The secondary coil is a cylindrical body in which a conductor plate is bent into an annular shape and a notch is formed with the end faces facing each other with a predetermined gap, and the thickness of the plate varies depending on the frequency of the power source. The heating coil for surface uniform tempering of a tapered member according to claim 2, wherein the heating coil has a thickness greater than the penetration depth of the induced magnetic flux.
JP57131115A 1982-07-29 1982-07-29 Method for uniform surface tempering of tapered material and heating coil for tempering Granted JPS5923813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131115A JPS5923813A (en) 1982-07-29 1982-07-29 Method for uniform surface tempering of tapered material and heating coil for tempering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131115A JPS5923813A (en) 1982-07-29 1982-07-29 Method for uniform surface tempering of tapered material and heating coil for tempering

Publications (2)

Publication Number Publication Date
JPS5923813A JPS5923813A (en) 1984-02-07
JPS643924B2 true JPS643924B2 (en) 1989-01-24

Family

ID=15050331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131115A Granted JPS5923813A (en) 1982-07-29 1982-07-29 Method for uniform surface tempering of tapered material and heating coil for tempering

Country Status (1)

Country Link
JP (1) JPS5923813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470019A (en) * 2014-12-11 2015-03-25 中国航空工业标准件制造有限责任公司 Combined induction heating coil
WO2015041240A1 (en) * 2013-09-17 2015-03-26 高周波熱錬株式会社 Induction heating coil, induction heating device, and heating method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660408B2 (en) * 1987-09-29 1997-10-08 高周波熱錬株式会社 Induction tempering method for cylindrical body with shaft
JP5231109B2 (en) * 2008-07-10 2013-07-10 Ntn株式会社 High frequency induction heating and tempering apparatus and high frequency induction heating and tempering method
JP7010369B2 (en) * 2018-04-16 2022-01-26 日本製鉄株式会社 Induction hardening equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041240A1 (en) * 2013-09-17 2015-03-26 高周波熱錬株式会社 Induction heating coil, induction heating device, and heating method
JP2015060634A (en) * 2013-09-17 2015-03-30 高周波熱錬株式会社 Induction heating coil and induction heating apparatus and heating method
CN104470019A (en) * 2014-12-11 2015-03-25 中国航空工业标准件制造有限责任公司 Combined induction heating coil

Also Published As

Publication number Publication date
JPS5923813A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
JPH0774392B2 (en) Induction heating device
FI57181B (en) FASTRANSFORMATIONSMAETARE
KR890702043A (en) Single superconducting electromagnet
JPS643924B2 (en)
US1987458A (en) Induction heater
JPS583720A (en) Method and apparatus for conditioning cooling degree of passing rolled wire material
US2435242A (en) Method of making gear heating coils
JPH03169462A (en) Roll for continuous casting device of thin metal strip
JPH06128623A (en) Heating roll
JP7045128B2 (en) Induction heating coil
JPS6262432B2 (en)
JPS609820A (en) Method and heating coil for uniform heating of step part of stepped member and its neighboring part
JPH04183822A (en) Method for heating metal wire
JPH08171982A (en) Induction heating coil
DE664929C (en) Metal pipe and extrusion press with electrically heated sensor
JPS602627A (en) High-frequency hardening method of outside cylinder of constant-velocity universal joint
JPH0355790A (en) High-frequency heating method and its device
JPH02301522A (en) Induction heating device
JPS5933475A (en) Fixation roll of copying machine
JP2002018524A (en) Deformation straightening apparatus of annular member
GB574805A (en) Improvements in or relating to electric induction heaters
JPH0553844B2 (en)
JPS6048697B2 (en) Heat pipe roll performance inspection method
SU1569341A1 (en) Device for induction heating of hollow cylindrical articles
JP2002129243A (en) Method for heating cylindrical metal coil