JPS643523B2 - - Google Patents

Info

Publication number
JPS643523B2
JPS643523B2 JP60258496A JP25849685A JPS643523B2 JP S643523 B2 JPS643523 B2 JP S643523B2 JP 60258496 A JP60258496 A JP 60258496A JP 25849685 A JP25849685 A JP 25849685A JP S643523 B2 JPS643523 B2 JP S643523B2
Authority
JP
Japan
Prior art keywords
pressure
supply tank
stock solution
sludge
pressurized fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60258496A
Other languages
Japanese (ja)
Other versions
JPS62121612A (en
Inventor
Noboru Imasaka
Shinji Kaneko
Toshihiko Onozuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP60258496A priority Critical patent/JPS62121612A/en
Publication of JPS62121612A publication Critical patent/JPS62121612A/en
Publication of JPS643523B2 publication Critical patent/JPS643523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、上水や下水中から取り出された汚
泥等を過圧搾して、脱水ケーキを生成させる汚
泥等の処理方法およびその装置に関する。 (従来の技術) 従来、上水や下水から分離、除去される汚泥を
処理するためのフイルタープレスとしては、特開
昭59−209621号公報に記載のように、フイルター
プレスへ原液を圧入して、その原液の自己圧のみ
によつて原液過を行なうもの(以下、従来例(1)
とする)と、当初は上記例と同じく原液の自己圧
のみによつて原液過を行なつた後に、原液の供
給を止め、室に内蔵する圧力水導入部に圧力流
体を導入して、その加圧流体によつて更に圧搾し
て脱水するもの(以下、従来例(2)とする)が知ら
れている。 そして、この従来例(2)には、その原液供給方式
により、原液供給を板の中央から行なうセンタ
フイード形、板の上側から行なうアツパーフイ
ード形など、また、加圧方式により加圧流体圧が
室の両面から作用するもの、片面だけから作用
するものなど数種類があるが、初めに自己圧によ
る過を行ない、その後に加圧流体により圧搾脱
水するという本質的なやり方には変りがない。 (発明が解決しようとする問題点) 上記従来技術にあつては次のような問題があ
る。 すなわち、従来例の(1)では、原液の消費速度が
一定以下の低速となるまで原液を供給し続ける
が、原液が室内で望ましい形状に脱水ケーキ
(以下、単にケーキとする)化するには、長時間
を要する。そのため、単位時間当たりの処理量が
少なく、時間を要した割にはケーキの含水率が低
くならない。 一方、従来例の(2)では、室内の原液に対する
脱水力が高まつて、ケーキの低含水率化は図られ
るが、圧搾中には原液の供給がないので、脱水力
の高まりに比例してケーキ厚は薄くなり、その結
果、ケーキの排出工程においてケーキの剥離が困
難になる。 また、圧搾工程を設けるので、過工程を短く
すると、その分、処理量が少なくなる、という欠
点があり、かつ動力費も過時間を短くする割合
には従来例(1)と余り変らないという問題点があ
る。 この発明は、上記実情に鑑み案出されたもの
で、その目的とするところは、剥離が困難になら
ないようにケーキの有効厚を確保して剥離性を向
上させるとともに、その低水分化を行ない、圧搾
中に原液の消費分を供給させて、サイクルタイム
を短縮する一方、単位時間当たりの処理量を増大
させ、動力費を低減できる汚泥等の処理方法なら
びにその装置を提供するにある。 (問題点を解決するための手段) 上記目的のもとにこの発明は、第1に積層状態
の多数の板により形成される室内に原液を圧
入して布により過脱水し、その一定時間後
に、板と可動隔壁との間に過圧より低く調圧
された圧力流体を送給し、上記過脱水に併せて
原液を圧搾脱水し、次いで圧搾脱水のみを行うよ
うした汚泥等の処理方法を特徴とするものであ
り、第2には上記方法を実施するための装置とし
て、室を形成する板の少なくとも一側に可動
隔壁を設けて多数積層し、板と可動隔壁との間
には加圧流体導入部を設け、隣接板で形成され
る室にはポンプに連らなる原液供給管を接続
し、該原液供給管の途中には圧気供給手段に連ら
なる第1圧力供給槽を接続し、上記加圧流体導入
部に加圧流体を圧送する配管には、上記第1圧力
供給槽に連通する第2圧力供給槽を接続すると共
に該2圧力供給槽と上記加圧流体導入部との間に
減圧弁を配設し、かつ加圧流体配管には加圧流体
を放圧するブロー弁を設けたことを特徴とするも
のである。 (作用) 積層板で形成される室内に第1圧力供給槽
から原液を圧送すれば、原液が各室中に行き渡
つて原液の自己圧による過脱水が行なわれ、そ
の過程で、第1圧力供給槽に連通して同圧化され
た第2圧力供給槽中の加圧流体を減圧弁により
過圧より低く調圧して、板の圧力流体導入部に
導けば、室内における過圧の損失低下により
可動隔壁が拡張して、過脱水に併せて原液の圧
搾脱水が行なわれ、その間、原液の供給も継続さ
れ、室にはケーキ層が迅速に肉層に形成され
る。 (実施例) 以下、第1図ないし第3図に基づいてこの発明
の実施例を説明する。 図中の4はこの発明に係る処理装置における単
式フイルタプレスを示し、その内部には、第3図
のように両面が凹状になり、そこに可動隔壁(ダ
イヤフラム)10を設けた板9と、設けない
板8とが交互に多数(図示では一対だけを示す)
開閉可能に配設され、両板8,9によつて横方
向に所要数(通常10〜70)の室16が形成され
ている。両板8,9は環状の枠形をなし、板
8は下部に液路15aを備え、両面には外面に
多くの液すじを設けた表面板11がべたに取付け
られ、外周縁と内周縁はシール材18aで密封さ
れ、その外側は布12aで包被されており、ま
た、他方の板9は上部に圧力流体導入路14を
備えるとともに下部には液路15bを備え、両
面には上記導入路14に通じる圧力流体導入部1
3を介在させて外面に多くの液すじを有する可動
隔壁(以下、ダイヤフラムという)10が装着さ
れ、外周縁および内周縁には同じくシール材18
bで密封され、その外側は布12bで包被され
ている。 そして、各室16内には原液供給口17から
原液Aが給泥弁V2を介して給泥管P1により供給
され、各布12a,12bで過された液D
は下部の液路15a,15bから液排出管
P7を経て機外に排出するようになされている。
第1図に示すように、給泥管P1は原液供給ポン
プ1に接続されて原液Aの供給を受けるものであ
り、ポンプ1のデリバリー部とフイルタープレス
4の手前には逆止弁V1,V3が配置されて、要所
の給泥圧が後退しないようになされ、また、給泥
弁V2と原液供給ポンプ1との間には原液連通管
P3を介して第1圧力供給槽2が連結されている。 この第1圧力供給槽2の頂部は、ガス補給管
P5により、図示しない空気源装置に連結されて
圧縮空気が供給されるようになつているとともに
途中にガス連通弁V4を備えたガス連通管P2によ
つて第2圧力供給槽3に接続されている。 一方、第2圧力供給槽3に接続された圧力流体
管P3は途中に加圧流体弁V5と減圧弁5を備えて
フイルタープレス4に対する多くの圧力流体導入
管P6に連結されると共にその終端部にはブロー
弁6が設置されて大気に放圧できるようになされ
ている。このブロー弁6の位置は配管P3の内圧
を放圧できる部位であれば、どこでもよい。 そして、第1図は圧力流体として水Cを用いる
場合を示し、給水槽7から補給水管P4により補
給水弁V6を介して一定水量が第2圧力供給槽3
に移送される。フイルタープレスの運転時には、
補給水管P4の補給水弁V6は閉止される。そして、
この第2圧力供給槽2内の空気圧を受けて、圧搾
用圧力が付与される。給水槽7はブロー弁6から
の放圧時の水を受け入れることにより加圧水の循
環利用が計られる。 第2図は圧力流体として空気ないし他の不活性
ガスを用いる場合を示すが、第1図に比べ給水槽
7と補給水管P4が省略されているだけでその他
の点は同じである。 上記構成のもとに汚泥等を処理する場合には、
先ず給泥管P1上の弁V2を開いて、予め蓄圧して
いた第1圧力供給槽2内の原液Aを、フイルター
プレス4の原液供給口17を通じて各室16へ
供給する。当初には原液Aが各室16内に充分
に行き渡り、自己圧による過作用が円滑に進行
し、予め定めた一定時間(例えば、過工程の1/
4期間)は過のみの脱水が続けられる。 その後、配管P3上の加圧流体弁V5を開いて、
第2圧力供給槽3から該槽中の圧力流体をフイル
タープレスの導入管P6を介して流体導入部14
より圧力流体導入部13へ供給し、ダイヤフラム
10を第3図点線のように拡張させて、室16
内の原液に対し過工程と併行して圧搾工程を開
始する。 このようにフイルタープレスに圧力流体を供給
するときには、ガス連通管P2の連通弁V4は開と
なり、また、配管P3を流れる圧力流体は減圧弁
5により減圧され、圧搾圧が原液供給圧より原液
性状とフイルタープレスのフイード形態によつて
予め決める範囲(通常1.0〜1.5Kg/cm2)、小さく
なるように調圧される。 過工程中にこれを併行して行なう圧搾工程
は、圧搾開始から過工程終了後における圧搾単
独工程まで継続してもよい(操作1)が、過工
程に併行して行なう圧搾工程のときにだけ、ブロ
ー弁6を間欠的に操作して、圧搾動作を継続的に
行なつてもよい(操作2)。 操作2においては、ブロー弁6の断続的操作に
よつて、圧力流体導入管P6を介して板側部の
圧力流体導入部13内が減圧し、室16内部の
スラツジと布12との間に負圧部が発生し、そ
の結果、室16内に空隙を生ぜしめ、その部分
へ新たな原液を誘引する。 また、操作1にあつては、圧搾圧と過圧との
差圧に変化を与えるように操作することにより、
室内スラツジの不特定部分に方向が一定しない
作用圧が惹起される。 上記2つの操作は、圧搾圧と過圧との加圧方
向が同一でないので、スラツジ内の不均質部に剪
断力が生じ、過作用を停滞せしめていた圧密現
象ないしブリツジ現象によつてスラツジ内に包み
込まれたスラツジ結合水または内部水などの相対
位置を変化せしめ、通常の過理論が説明すると
ころの過作用が進展し、より以上の脱水効果が
得られるようになる。 さらに詳述すれば、当初の過圧により原液が
ケーキE化していくと、次第にケーキ化した室
16の最奥部16aの近くでは、過圧が、原液
の流路途中で生じる圧力損失により減少してい
き、圧搾流体の圧力を予め減圧弁5で過圧より
小さくなるように減圧してあつても、最奥部16
aに近い部分に対する圧力流体導入部13の圧搾
圧はケーキEに及ぼす過圧に比べて上回る圧力
を示し、ケーキEに対し圧搾効果を及ぼすように
なる。 そして、操作2にあつては、ブロー弁6を開く
ことにより圧力流体を放圧して圧搾を打ち切る
と、ダイヤフラム10が拡張状態から実線状態に
復元することにより、室16中に負圧が発生
し、その結果空隙部が生じ、その空隙部に原液が
供給されることになり、その後、再びブロー弁6
を閉じて圧搾工程を再開することにより、ケーキ
の低水分化(絞り)と原液の補給とを交互に行な
うことができ、それだけ原液の処理量を増加でき
る。 上述の例では、原液と圧力流体の圧力調整を、
それぞれの配管中に設けた圧力供給槽1,2の連
動関係と減圧弁5の減圧作動によつて行うように
したものを示したが、これらの代りに、原液供給
管P1と圧力流体配管P3とに、それぞれ流量調節
手段を介在させ、それらを電気的に連係すること
によつて行なうようにしてもよい。そして、その
流量調整手段には、圧力調整制御弁と原液または
加圧流体を供給するポンプ類を備えて、当該配管
系に設置するようにしたものなどが含まれる。ま
た、上述の例では板9の両面に設けた可動隔壁
10によつて室16内のスラツジを圧搾するよ
うにしたものを示したが、可動隔壁10はすべて
の板に設けるようにしても、または各板の片
側にだけ設けるようにしてもその機能に変りはな
い。 「試験例」 次に、本発明と従来技術とを比較試験した結果
を表1、表2に示す。表中の対比例の数値は前
記従来例に基づくもので、対比例の数値は従
来例2に基づくものである。 表1は処理工程についての比較を示すものであ
り、過圧および圧搾圧の初期時における圧力の
立上り速度は同じである。そして、本発明の実施
条件は下記による。 試 料 原液濃度 過圧 圧搾圧 上水汚泥 2.5Dry% 8Kg/cm2 7.5Kg/cm2 また、表2は汚水の処理結果の比較を示すもの
であり、この表2における単位時間当たりの処理
量率は、対比例を基準100として、その他の場
合を指数化して表示したものである。ちなみに、
このときの本発明によるサイクルタイム当たりの
動力比は対比例の60〜70%であつた。
(Industrial Application Field) The present invention relates to a method and apparatus for treating sludge, etc., in which sludge, etc. taken out from tap water or sewage is over-pressed to produce a dehydrated cake. (Prior art) Conventionally, as a filter press for treating sludge separated and removed from tap water or sewage, as described in Japanese Patent Application Laid-Open No. 59-209621, a filter press is used in which raw liquid is forced into the filter press. , which performs filtration of the stock solution only by the self-pressure of the stock solution (hereinafter referred to as conventional example (1)
), the filtrate is initially filtered using only the self-pressure of the undiluted solution as in the above example, and then the supply of the undiluted solution is stopped and pressure fluid is introduced into the pressure water inlet built into the chamber. There is a known method that further compresses and dehydrates with pressurized fluid (hereinafter referred to as conventional example (2)). Conventional example (2) has a center feed type in which the liquid is supplied from the center of the plate, an upper feed type in which the liquid is supplied from the top of the plate, and a pressurized type in which pressurized fluid pressure is applied to the chamber. There are several types, such as those that act from both sides and those that act only from one side, but the essential method remains the same: first filtration is performed using self-pressure, and then compression and dehydration are performed using pressurized fluid. (Problems to be Solved by the Invention) The above prior art has the following problems. In other words, in conventional example (1), the undiluted solution is continued to be supplied until the consumption rate of the undiluted solution becomes slow below a certain level, but in order to dehydrate the undiluted solution into a desired shape indoors, , it takes a long time. Therefore, the amount of processing per unit time is small, and the moisture content of the cake does not decrease even though it takes time. On the other hand, in conventional example (2), the dehydration power for the stock solution in the room increases and the moisture content of the cake is reduced, but since the stock solution is not supplied during pressing, the dehydration power increases in proportion to the increase in the dehydration power. As a result, the cake thickness becomes thinner, and as a result, it becomes difficult to peel off the cake during the cake discharge process. In addition, since a squeezing process is provided, there is a disadvantage that if the overstep is shortened, the throughput will be reduced by that amount, and the power cost is also the same as the conventional example (1) in terms of the rate at which the overtime is shortened. There is a problem. This invention was devised in view of the above circumstances, and its purpose is to improve peelability by ensuring an effective thickness of the cake so that peeling is not difficult, and to reduce the moisture content of the cake. An object of the present invention is to provide a method and apparatus for treating sludge, etc., which can shorten the cycle time by supplying the consumed amount of raw solution during squeezing, increase the throughput per unit time, and reduce power costs. (Means for Solving the Problems) Based on the above object, the present invention firstly involves pressurizing a stock solution into a chamber formed by a large number of laminated plates, super-dehydrating it with a cloth, and after a certain period of time, , a method for treating sludge, etc., in which a pressure fluid whose pressure is regulated to be lower than the overpressure is fed between a plate and a movable partition, the raw solution is compressed and dehydrated in addition to the above-mentioned excessive dewatering, and then only the compressed dewatering is performed. Secondly, as an apparatus for carrying out the above method, a movable partition wall is provided on at least one side of a plate forming a chamber, and a large number of movable partition walls are stacked, and a reinforcement is provided between the plate and the movable partition wall. A pressure fluid introduction section is provided, a stock solution supply pipe connected to a pump is connected to a chamber formed by adjacent plates, and a first pressure supply tank connected to a pressurized air supply means is connected in the middle of the stock solution supply pipe. A second pressure supply tank communicating with the first pressure supply tank is connected to the piping for feeding the pressurized fluid to the pressurized fluid introduction part, and the two pressure supply tanks and the pressurized fluid introduction part are connected to each other. The present invention is characterized in that a pressure reducing valve is disposed between them, and a blow valve for releasing the pressure of the pressurized fluid is provided in the pressurized fluid piping. (Function) When the undiluted solution is pumped from the first pressure supply tank into the chamber formed by the laminated plates, the undiluted solution is distributed throughout each chamber and excessive dehydration is performed due to the self-pressure of the undiluted solution. If the pressurized fluid in the second pressure supply tank, which is connected to the tank and has the same pressure, is regulated to a level lower than the overpressure using a pressure reducing valve and guided to the pressure fluid introduction part of the plate, the loss of overpressure in the room will be reduced. The movable partition wall expands, and the undiluted solution is compressed and dehydrated in conjunction with excessive dehydration. During this time, the undiluted solution is continued to be supplied, and a cake layer is rapidly formed in the chamber. (Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3. 4 in the figure indicates a single filter press in the processing apparatus according to the present invention, and inside thereof, as shown in FIG. A large number of plates 8 are alternately provided (only one pair is shown in the figure).
It is arranged to be openable and closable, and a required number (usually 10 to 70) of chambers 16 are formed in the horizontal direction by both plates 8 and 9. Both plates 8 and 9 have an annular frame shape, plate 8 has a liquid passage 15a at the bottom, and a surface plate 11 with many liquid streaks on the outer surface is attached to both sides, and the outer peripheral edge and inner peripheral edge are connected to each other. is sealed with a sealing material 18a, and the outside thereof is covered with a cloth 12a, and the other plate 9 has a pressure fluid introduction path 14 in the upper part and a liquid path 15b in the lower part, and has the above-mentioned on both sides. Pressure fluid introduction part 1 communicating with introduction path 14
A movable partition wall (hereinafter referred to as a diaphragm) 10 having many liquid streaks on its outer surface is attached with a sealing material 18 on the outer and inner peripheral edges.
b, and the outside is covered with cloth 12b. The stock solution A is supplied into each chamber 16 from the stock solution supply port 17 via the slurry supply pipe P 1 via the slurry supply valve V 2 , and the solution D passed through each of the cloths 12 a and 12 b.
is the liquid discharge pipe from the lower liquid passages 15a and 15b.
It is designed to be discharged outside the aircraft after passing through P7 .
As shown in FIG. 1, the slurry supply pipe P 1 is connected to the stock solution supply pump 1 to receive the stock solution A, and a check valve V 1 is installed in the delivery section of the pump 1 and in front of the filter press 4. , V 3 are arranged to prevent the slurry supply pressure at important points from retreating, and a stock solution communication pipe is provided between the slurry supply valve V 2 and the stock solution supply pump 1.
A first pressure supply tank 2 is connected via P3 . The top of this first pressure supply tank 2 is a gas supply pipe.
P 5 is connected to an air source device (not shown) to supply compressed air, and is connected to the second pressure supply tank 3 through a gas communication pipe P 2 equipped with a gas communication valve V 4 in the middle. It is connected. On the other hand, the pressure fluid pipe P 3 connected to the second pressure supply tank 3 is equipped with a pressurized fluid valve V 5 and a pressure reducing valve 5 in the middle, and is connected to many pressure fluid introduction pipes P 6 to the filter press 4. A blow valve 6 is installed at the terminal end so that the pressure can be released to the atmosphere. The blow valve 6 may be located anywhere as long as it can release the internal pressure of the pipe P3 . FIG. 1 shows a case where water C is used as the pressure fluid, and a constant amount of water is supplied from the water supply tank 7 to the second pressure supply tank 3 via the makeup water pipe P 4 and the makeup water valve V 6 .
will be transferred to. When operating the filter press,
The make-up water valve V 6 of the make-up water pipe P 4 is closed. and,
In response to the air pressure in the second pressure supply tank 2, compression pressure is applied. The water supply tank 7 receives water from the blow valve 6 when the pressure is released, so that the pressurized water can be recycled. FIG. 2 shows a case where air or other inert gas is used as the pressure fluid, but the other points are the same as in FIG. 1 except that the water supply tank 7 and the makeup water pipe P4 are omitted. When treating sludge etc. based on the above configuration,
First, the valve V 2 on the mud supply pipe P 1 is opened, and the stock solution A in the first pressure supply tank 2 whose pressure has been accumulated in advance is supplied to each chamber 16 through the stock solution supply port 17 of the filter press 4 . Initially, the stock solution A is sufficiently distributed in each chamber 16, and the overaction due to self-pressure progresses smoothly, and for a predetermined period of time (for example, 1/1 of the overstep).
During the 4th period) only excessive dehydration continues. Then open pressurized fluid valve V 5 on pipe P 3 ,
The pressure fluid in the tank is supplied from the second pressure supply tank 3 to the fluid introduction part 14 through the introduction pipe P 6 of the filter press.
The diaphragm 10 is expanded as shown by the dotted line in FIG. 3, and the chamber 16 is
The squeezing process is started on the stock solution in parallel with the passing process. When supplying pressure fluid to the filter press in this way, the communication valve V4 of the gas communication pipe P2 is opened, and the pressure fluid flowing through the pipe P3 is reduced in pressure by the pressure reducing valve 5, so that the squeezing pressure is equal to the stock solution supply pressure. The pressure is adjusted to be smaller within a predetermined range (usually 1.0 to 1.5 Kg/cm 2 ) depending on the properties of the stock solution and the feed configuration of the filter press. The squeezing step that is carried out in parallel during the over-step may be continued from the start of compression to the single-pressing step after the end of the over-step (operation 1), but only when the pressing step is performed in parallel with the over-step , the blow valve 6 may be operated intermittently to perform the squeezing operation continuously (operation 2). In operation 2, by intermittent operation of the blow valve 6, the pressure inside the pressure fluid introduction part 13 on the side of the plate is reduced through the pressure fluid introduction pipe P6, and the space between the sludge inside the chamber 16 and the cloth 12 is reduced. A vacuum is generated in the chamber 16, which creates a void in the chamber 16 and attracts fresh concentrate into that space. In addition, in operation 1, by operating to change the differential pressure between the squeezing pressure and the overpressure,
Acting pressure with inconsistent direction is induced in unspecified portions of the indoor sludge. In the above two operations, since the directions of squeezing pressure and overpressure are not the same, shear force is generated in the non-homogeneous parts of the sludge, and the consolidation phenomenon or bridging phenomenon that has caused the overaction to stagnate causes the sludge to become The relative position of the sludge bound water or internal water encased in the sludge is changed, and the overaction explained by the usual overflow theory develops, and an even greater dehydration effect can be obtained. More specifically, as the stock solution turns into a cake E due to the initial overpressure, the overpressure near the innermost part 16a of the chamber 16, which has gradually turned into a cake, decreases due to the pressure loss that occurs in the middle of the flow path of the stock solution. Even if the pressure of the compressed fluid is reduced in advance to be lower than the overpressure using the pressure reducing valve 5, the innermost part 16
The squeezing pressure of the pressure fluid introduction part 13 on the portion near a is higher than the overpressure exerted on the cake E, and exerts a squeezing effect on the cake E. In operation 2, when the blow valve 6 is opened to release the pressure fluid and stop the compression, the diaphragm 10 returns from the expanded state to the solid line state, and a negative pressure is generated in the chamber 16. As a result, a void is created, and the stock solution is supplied to the void, and then the blow valve 6 is opened again.
By closing the box and restarting the squeezing process, it is possible to alternately lower the moisture content of the cake (squeezing) and replenish the stock solution, thereby increasing the amount of stock solution processed. In the above example, the pressure adjustment of the stock liquid and pressure fluid is
Although this is shown to be achieved by the interlocking relationship between the pressure supply tanks 1 and 2 provided in each piping and the pressure reducing operation of the pressure reducing valve 5, instead of these, it is possible to connect the stock solution supply pipe P1 and the pressure fluid piping. P 3 and P 3 may each be provided with a flow rate adjusting means and electrically linked to each other. The flow rate adjustment means includes a pressure adjustment control valve and a pump for supplying raw liquid or pressurized fluid, and is installed in the piping system. Further, in the above example, the sludge in the chamber 16 is squeezed by the movable partition walls 10 provided on both sides of the plate 9, but even if the movable partition walls 10 are provided on all the plates, Alternatively, even if it is provided only on one side of each board, the function remains the same. "Test Example" Next, Tables 1 and 2 show the results of a comparative test between the present invention and the prior art. The numerical values of the comparative example in the table are based on the conventional example, and the numerical values of the comparative example are based on the conventional example 2. Table 1 shows a comparison of the processing steps, and the pressure rise rate at the initial stage of overpressure and squeezing pressure is the same. The conditions for implementing the present invention are as follows. Sample Raw solution concentration Overpressure Compressed water sludge 2.5Dry% 8Kg/cm 2 7.5Kg/cm 2 Table 2 shows a comparison of wastewater treatment results, and the amount of treatment per unit time in Table 2 The rate is expressed as an index for other cases, with the comparative example as the standard 100. By the way,
At this time, the power ratio per cycle time according to the present invention was 60 to 70% of that of the comparative example.

【表】【table】

【表】 なお、上述の例では上水汚泥を処理する場合に
ついて説明したが、これに限らず、本発明はその
他の化学工業用製品の脱水、廃液スラツジの脱水
に適用できるものである。 また、上述の例では両面にダイヤフラム10を
設けた板と設けない板とを交互に積層したも
のを示したが、これはすべての板の両面(端部
は片面)にダイヤフラムを設けたものとしてもよ
い。 (発明の効果) 以上のようにこの発明によれば、当初には原液
の自己圧のみによつて過脱水を行ない、一定時
間後には過脱水に併行して、過圧より若干低
く調圧された加圧流体により圧搾脱水を行ない、
その過圧と圧搾圧との差圧を適宜調整できるよ
うにしたので、原液を短時間で効率よく処理する
ことができ、室内でのケーキ形成中に過圧と
圧搾圧の差圧の変化によつて、ケーキを動的に形
成することができ、かつ、その間における継続的
な原液の供給により、ケーキの低含水率化と肥厚
化を適切に促進させることができ、ケーキ排出時
の剥離性が良好となり、しかも、原液の処理量が
増大する一方で、サイクルタイムが短縮し、省エ
ネルギー効果を充分に発揮できる工業的に有益な
ものである。
[Table] Note that although the above example describes the case of treating clean water sludge, the present invention is not limited to this, and the present invention can be applied to dewatering of other chemical industry products and waste liquid sludge. Furthermore, in the above example, plates with the diaphragm 10 on both sides and plates without the diaphragm 10 were laminated alternately, but this is assumed to have diaphragms on both sides of all the plates (one edge is on one side). Good too. (Effects of the Invention) As described above, according to the present invention, excessive dehydration is initially performed only by the self-pressure of the stock solution, and after a certain period of time, in parallel with the excessive dehydration, the pressure is regulated to be slightly lower than the overpressure. Pressure dehydration is performed using pressurized fluid.
Since the differential pressure between the overpressure and the squeezing pressure can be adjusted appropriately, the stock solution can be processed efficiently in a short time, and the pressure difference between the overpressure and the squeezing pressure can be adjusted during cake formation indoors. Therefore, the cake can be formed dynamically, and by continuously supplying the raw solution during this period, it is possible to appropriately promote lowering of the moisture content and thickening of the cake, and the peelability when discharging the cake is improved. It is industrially beneficial because it improves the efficiency of the process, increases the throughput of the stock solution, shortens the cycle time, and fully exhibits the energy saving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は、この発明の実施例を示
すもので、第1図は圧搾用流体に液体を使用する
場合の系統図。第2図は圧搾用流体にガスを使用
する場合の系統図。第3図はフイルタープレス内
の室回りを説明する断面図。 図中、1……原液供給ポンプ、2……第1圧力
供給槽、3……第2圧力供給槽、4……フイルタ
ープレス、5……減圧弁、6……ブロー弁、10
……可動隔壁、13……圧力流体導入部、16…
…室、P2……ガス連通管、P3……圧力流体配
管、V2……給泥弁、V4……ガス連通弁、A……
原液、B……ガス、C……水、E……ケーキ。
1 to 3 show embodiments of the present invention, and FIG. 1 is a system diagram when a liquid is used as the squeezing fluid. FIG. 2 is a system diagram when gas is used as the squeezing fluid. FIG. 3 is a sectional view illustrating the chamber inside the filter press. In the figure, 1... Raw solution supply pump, 2... First pressure supply tank, 3... Second pressure supply tank, 4... Filter press, 5... Pressure reducing valve, 6... Blow valve, 10
...Movable bulkhead, 13...Pressure fluid introduction section, 16...
...Chamber, P 2 ... Gas communication pipe, P 3 ... Pressure fluid piping, V 2 ... Sludge supply valve, V 4 ... Gas communication valve, A...
Stock solution, B...gas, C...water, E...cake.

Claims (1)

【特許請求の範囲】 1 フイルタプレスに原液を圧入して過を行な
い、次いで外部より圧搾圧を加圧して圧搾するよ
うにした汚泥等の処理方法において、前記過工
程中に積層状態の多数の板により形成される
室内に原液を圧入して、布により過脱水し、
その一定時間後に、板と可動隔壁との間に過
圧より低く調圧された圧力流体を送給し、上記
過脱水に併せて原液を圧搾脱水し、次いで圧搾脱
水のみを行うようにしたことを特徴とする汚泥等
の処理方法。 2 上記過工程において行う圧搾工程を断続的
に行うようにしたことを特徴とする特許請求の範
囲第1項記載の汚泥等の処理方法。 3 室を形成する板の少なくとも1側に可動
隔壁を設けて多数積層し、板と可動隔壁との間
には圧力流体導入部を設け、隣接板で形成され
る室にはポンプに連らなる原液供給管を接続
し、該原液供給管の途中には圧気供給手段に連ら
なる第1圧力供給槽を接続し、上記圧力流体導入
部に加圧流体を圧送する配管には上記第1圧力供
給槽に連通する第2圧力供給槽を接続すると共に
該第2圧力供給槽と上記加圧流体導入部との間に
減圧弁を配設し、かつ加圧流体配管には加圧流体
を放圧するブロー弁を設けたことを特徴とする汚
泥等の処理装置。
[Scope of Claims] 1. In a method for treating sludge, etc., in which a raw solution is forced into a filter press and filtered, and then squeezed by applying pressure from the outside, a large number of layers in a stacked state are removed during the filtering step. The undiluted solution is pressurized into the chamber formed by the board, super-dehydrated with cloth,
After a certain period of time, a pressure fluid whose pressure is regulated to be lower than the overpressure is fed between the plate and the movable partition wall, and the raw solution is compressed and dehydrated in conjunction with the above-mentioned excessive dehydration, and then only compression dehydration is performed. A method for treating sludge, etc., characterized by: 2. The method for treating sludge, etc. according to claim 1, characterized in that the squeezing step performed in the overstep is performed intermittently. 3 A movable partition wall is provided on at least one side of the plates forming the chamber, and a large number of them are stacked, a pressure fluid introduction part is provided between the plate and the movable partition wall, and the chamber formed by the adjacent plate is connected to a pump. A stock solution supply pipe is connected, a first pressure supply tank connected to a pressurized air supply means is connected in the middle of the stock solution supply pipe, and the pipe for feeding the pressurized fluid to the pressure fluid introduction part is supplied with the first pressure. A second pressure supply tank communicating with the supply tank is connected, a pressure reducing valve is disposed between the second pressure supply tank and the pressurized fluid introduction part, and pressurized fluid is released into the pressurized fluid piping. A treatment device for sludge, etc., characterized by being equipped with a blow valve.
JP60258496A 1985-11-20 1985-11-20 Operating method and apparatus of single type filter press Granted JPS62121612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60258496A JPS62121612A (en) 1985-11-20 1985-11-20 Operating method and apparatus of single type filter press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60258496A JPS62121612A (en) 1985-11-20 1985-11-20 Operating method and apparatus of single type filter press

Publications (2)

Publication Number Publication Date
JPS62121612A JPS62121612A (en) 1987-06-02
JPS643523B2 true JPS643523B2 (en) 1989-01-23

Family

ID=17321014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60258496A Granted JPS62121612A (en) 1985-11-20 1985-11-20 Operating method and apparatus of single type filter press

Country Status (1)

Country Link
JP (1) JPS62121612A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203008A (en) * 1988-02-10 1989-08-15 Tsukishima Kikai Co Ltd Treatment process and device for sludge or the like
JPH0634882B2 (en) * 1989-02-04 1994-05-11 株式会社伊藤製作所 ▲ Ro ▼ Plate type ▲ Ro ▼ Fluid supply control device in compression process of press machine
JP5327000B2 (en) * 2009-11-04 2013-10-30 株式会社石垣 Pressure dehydration apparatus and pressure dehydration method

Also Published As

Publication number Publication date
JPS62121612A (en) 1987-06-02

Similar Documents

Publication Publication Date Title
EP0126655A2 (en) Vacuum expressor device for rotary drum filter
JPS643523B2 (en)
WO2021253504A1 (en) Method for dewatering of sludge fed from dynamic feeding channel, and plate-and-frame (box-type) dewatering machine
CN219239492U (en) Self-suction type filter pressing dehydration equipment and solid-liquid separator
US4774009A (en) Method for dewatering corn wet milling products
US5279718A (en) Method of electroosmotically dehydrating sludge
JP2006223946A (en) Filter press apparatus and slurry pressing method of slurry in the same
JPH01203008A (en) Treatment process and device for sludge or the like
CN105967485B (en) Sewage sludge aoxidizes electro-osmosis mechanism filter-pressing and cooperates with dewatering
US5112502A (en) Homogeneous substitution method and apparatus for cake using filter press
CN211486680U (en) Novel energy-saving efficient fine material dewatering unit
CN211486683U (en) Ceramic slurry dewatering equipment
JPH0852307A (en) Filter press
CN111514625A (en) Filtering and washing process of membrane plate-and-frame filter press
JPS56144712A (en) Filter apparatus
JPS57150410A (en) Pressurized dehydrating method
EP0448897A1 (en) Homogeneous substitution method and apparatus for cake using filter press
CN205549712U (en) High pressure combination squeezer
JPS5823159B2 (en) Sludge dewatering method
CN219595952U (en) Automatic mud discharging device of diaphragm filter plate frame machine
JPH0224566B2 (en)
JP3773193B2 (en) Filter press apparatus and sludge dewatering method
CN111203030B (en) High-efficiency recyclable solid-liquid separation method for industrial wastewater
CN208641900U (en) A kind of novel deckle board filter press
JPS6041351Y2 (en) Sludge dewatering equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees