JPS642142B2 - - Google Patents

Info

Publication number
JPS642142B2
JPS642142B2 JP16770781A JP16770781A JPS642142B2 JP S642142 B2 JPS642142 B2 JP S642142B2 JP 16770781 A JP16770781 A JP 16770781A JP 16770781 A JP16770781 A JP 16770781A JP S642142 B2 JPS642142 B2 JP S642142B2
Authority
JP
Japan
Prior art keywords
weight
polyarylate
parts
polyamide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16770781A
Other languages
Japanese (ja)
Other versions
JPS5867749A (en
Inventor
Taro Tokusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP16770781A priority Critical patent/JPS5867749A/en
Publication of JPS5867749A publication Critical patent/JPS5867749A/en
Publication of JPS642142B2 publication Critical patent/JPS642142B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な樹脂組成物に関するものであ
り、さらに詳しくはテレフタル酸とイソフタル酸
又はこれらの機能誘導体と2,2―ビス(4′―ヒ
ドロキシフエニル)プロパン(以下ビスフエノー
ルAと称する。)とから得られる芳香族ポリエス
テル共重合体(以下ポリアリレートと称する。)
と、通常のポリアミドすなわち水素原子が置換さ
れていないアミド基をもつポリアミド(以下、単
にポリアミドと称する。)と、水素原子が炭化水
素基によつて置換されているアミド基をもつ重合
体(以下、単にN置換アミド含有重合体と称す
る。)とからなる樹脂組成物に関するものである。 芳香族ジカルボン酸又はこれらの機能誘導体と
ビスフエノール類又はこれらの機能誘導体とより
製造したポリアリレートについては古くより周知
である。かかるポリアリレートの製造方法として
は界面重合法、溶液重合法、溶融重合法などの方
法が知られている。かような方法で得られたポリ
アリレートが多くの秀れた性質をもつことも周知
である。すなわち引張強度、曲げ強度、曲げ回復
率、衝撃強度などの機械的性質、熱変形温度や熱
分解温度のごとき熱的性質、固有抵抗値、絶縁破
壊、耐アーク、誘電率及び誘電損失などの電気的
性質、燃焼性及び寸法安定性などに秀れた性質を
保持し、このため射出成形、押出成形、プレス成
形又はその他の各種の成形方法で造られた一般成
形物、フイルム、繊維及びコート材料は広い用途
が期待されるものである。 以上のようにポリアリレートは多くの秀れた性
質をもち、その利用価値も大きいが、その大きい
欠点は成形性が悪いことである。ポリマーとくに
プラスチツクにあつては成形性はそのものの評価
において重要な位置を占め、たとえ、そのものの
本質的に秀れた性質を有していても成形性が悪い
と、製品を経済的に製造することができないばか
りでなく、その秀れた性質が製品において十分発
揮されない。例えば軟化温度が高く、溶融粘度が
高いポリマーを用いて射出成形法により製品を作
るとき、高い可塑化温度、高い射出圧、高い金型
温度などが必要であり、それはコスト高の原因と
なるばかりでなく、高い可塑化温度はポリマーの
分解を誘発し、高い射出圧は製品中における歪の
原因となり、また、かかる厳しい条件より背違す
るとき、シヨートシヨツト、ひけ、フローマーク
などの外観上の致命的欠陥を生じ機械的性質も著
しく低下する。ポリアリレートもこのような高い
軟化温度、高い溶融粘度などを有し成形性が悪
く、その用途も限定されていた。そのためそれの
成形性の改良は古くより望まれていた。 本出願人は、先に、かかるポリアリレートの成
形性を改良するためポリアミドを混合した樹脂組
成物を提案した(特公昭56―14699号)。かかる樹
脂組成物にあつてはポリアリレートの成形性の改
良がなされているばかりか、耐薬品性、耐油性、
耐摩耗性などの向上が認められている。 しかし、ポリアリレートとポリアミドは周知の
ごとく、その溶解指数がかなり異なるので実際に
混合させた場合、十分な相溶状態が達成されがた
いという問題があつた。そのため成形物の機械的
性質、特に耐衝撃性が劣るという欠点があつた。
また、引張強度、曲げ強度等の機械的性質につい
ても製造のロツトによつてバラツキが生じる等再
現性に満足な結果が得られないという欠点があつ
た。 本発明者は、ポリアリレートとポリアミドとか
らなる樹脂組成物の優れた特性を保持しつつ、そ
のものが有する上記のごとき欠点を改良すべく鋭
意研究した結果、本発明に到達したものである。 すなわち本発明は、(a)テレレフタル酸とイソフ
タル酸又はこれらの誘導体の混合物(ただし、テ
レフタル酸基とイソフタル酸基のモル比9:1な
いし1:9)とビスフエノールAとから得られる
ポリアリレート100重量部と、(b)ポリアミド10重
量部〜150重量部と、(c)N置換アミド含有重合体
3重量部〜50重量部とからなる樹脂組成物であ
る。 このように相溶性の悪いポリアリレートとポリ
アミドの組合せに対してN置換アミド含有重合体
を加えることにより、ポリアリレートの利点をか
かなり保持したまま、さらにポリアリレートとポ
リアミドとからなる樹脂組成物の持つ優れた成形
性、耐薬品性、耐油性、耐摩耗性などの長所を生
かし、その機械的性質が向上せしめられたことは
驚くべきことである。 本発明において用いられるポリアリレートは、
テレフタル酸とイソフタル酸又はこれらの機能誘
導体の混合物(テレフタル酸基とイソフタル酸基
のモル比は9:1ないし1:9)とビスフエノー
ルAとから得られるものである。かかるポリアリ
レートとしては、製造方法として界面重合、溶液
重合、溶融重合のいずれを採用したものであつて
もよい。また、ビスフエノールの一部を(4・
4′―ジヒドロキシジフエニル)エーテル、(4・
4′―ジヒドロキシジフエニル)チオエーテル、
2・2―(4・4′―ジヒドロキシ―3・5・3′・
5′―テトラブロモジフエニル)プロパンのごとき
他のビスフエノール類に置き換えたものであつて
もよい。本発明において用いられるポリアリレー
トとしては、フエノール/テトラクロルエタン混
合溶媒(6:4、重量比)中、濃度1g/dl、25
℃にて測定した溶液粘度から求めた対数粘度が
0.3〜1.0のものが好ましい。 本発明において用いられるポリアミドとして
は、例えば1級ジアミンと二塩基酸の縮合反応に
より形成された重合体、アミノ酸の自己縮合反応
により形成された重縮合体、ラクタムの重合反応
により形成された重合体があげられるが、本発明
に好適に用いられるポリアミドは170℃以上の温
度、より好ましくは190℃ないし280℃の温度で溶
融するポリアミドである。特に好ましいポリアミ
ドとしてはポリヘキサメチレン―アジパミド、ポ
リカプロラクタム、ポリヘキサメチレン―セバカ
ミド及びその共重合体があげられる。本発明にお
いて用いられるポリアミドとしては、96%硫酸
中、濃度1g/dl、25℃にて測定した溶液粘度か
ら求めた相対粘度が2.4〜3.4のものが好ましい。 本発明において用いられるN置換アミド含有重
合体とは、少なくとも一方が2級アミンであるジ
アミンと二塩基酸(酸ハライド誘導体を含む。)
の縮合反応により形成された重合体、2級アミン
をもつアミノ酸の自己縮合反応により形成された
重合体、N―アルキル置換ラクタムの開環重合に
より形成された重合体、2―置換環状イミノエー
テル類のカチオン開環重合により形成された重合
体をいう。置換基としては炭素数が10以下の炭化
水素基が好ましい。また、この置換基は環を形成
していてもよい。具体的なN置換アミド含有重合
体としては、ピペラジン(ピペラジン環に各種置
換基を有するものを含む。)、sym―ジアルキルア
ルキレンジアミン、例えばsym―ジメチルエチレ
ンジアミン等のジアミンと二塩基酸の反応重合
体、N―アルキル―ε―カプロラクタムの開環反
応体、2―アルキルオキサゾリンや2―アリール
オキサゾリン、2―アルキルオキサジン、2―ア
リールオキサジンの開環重合体及びその共重合体
が例示される。本発明において用いられるN置換
アミド含有重合体としては、重合度が10〜200量
体のものが好ましい。重合度は中和滴定法による
末端基定量法あるいは蒸気圧平衡法によつて求め
られる。 本発明の樹脂組成物におけるポリアリレートと
ポリアミドとN置換アミド含有重合体の配合割合
は、ポリアリレート100重量部に対してポリアミ
ド10重量部〜150重量部、N置換アミド含有重合
体3重量部〜50重量部である。ポリアミドが10重
量部未満では成形性の向上が認めがたく、一方
150重量部をこえると機械的性質が低下する。N
置換アミド含有重合体が3重量部未満では、機械
的性質向上の効果が乏しく、一方50重量部をこえ
ると、機械的性質の低下、熱による黄変、吸湿性
の増大等が認められ、好ましくない。 本発明の樹脂組成物を調製するには、例えばポ
リアリレートとポリアミドとN置換アミド含有重
合体三者の粒状物又は粉末をV型ブレンダー、ス
ーパーミキサーやコニーダーなどで混合するかあ
るいは押出機、コニーダー、インテンシブルミキ
サーなどで溶融状態で混合してチツプ化すればよ
い。その他、塩化メチレンなどにポリアリレート
及びN置換アミド含有重合体を溶かした溶液にポ
リアミドの粉末を混合し、ついで溶媒を除去する
方法も採用できる。 本発明の樹脂組成物の耐熱性や耐光性や耐酸化
性や耐燃性を改良するため熱分解防止剤、酸化防
止剤、紫外線吸収剤、難燃剤などを樹脂組成物中
に存在させてもよい。その場合、ベンゾトリアゾ
ール化合物、リン化合物、フエノール化合物、ベ
ンゾフエノン誘導体、芳香族ハロゲン化合物など
が好ましく用いられる。これらは混合前の各ポリ
マー中に存在させておいてもよく、ポリマーの混
合時に添加してもよい。その他、可塑剤、顔料、
潤滑剤なども本発明の樹脂組成物と共用すること
ができる。 本発明の樹脂組成物は、ポリアリレートとポリ
アミドとからなる樹脂組成物が有する優れた成形
性、耐薬品性、耐寒性、耐油性、耐摩耗性を保持
するとともに、優れた機械的性質、特に耐衝撃性
を有する。また、本発明の樹脂組成物はくり返し
安定して調製することができ、ロツト間のバラツ
キが少ないという特長をも有している。したがつ
て、本発明の樹脂組成物は、粉末又はチツプその
他の形状のものを用いてプレス成形、射出成形、
押出成形など一般に知られているプラスチツクの
成形法により各種の有用な製品とすることができ
る。そのような製品の例としてはギヤー、軸受、
電気部品、容器その他広くあげられ、エンジニア
リングプラスチツクとして高い性能が要求される
製品として広範囲の用途に用いられる。 以下本発明の理解をさらに容易にするため、テ
レフタル酸とイソフタル酸とビスフエノールAと
から得られたポリアリレートと、ポリアミドとN
置換アミド含有重合体とよりなる代表的な組合せ
を用いて本発明を実施例により説明する。 まず実施例で用いたN置換アミド含有重合体の
調製例を参考例として示す。 参考例 1 テレフタル酸ジクロリドとイソフタル酸ジクロ
リドのモル比が1:1の混合酸クロリドの塩化メ
チレン溶液と、ピペラジンのアルカリ水溶液より
界面重合法により共重合ピペラジンアラミド(以
下PPT/Iと称す。)を製造した。これの対数粘
度〔フエノール/テトラクロロエタン(6:4重
量比)中、1g/dl、25℃〕は0.51であつた。 参考例 2 ピペラジンの代りにsym―ジメチルエチレンジ
アミンを用いたほかは参考例1と同様にして共重
合sym―ジメチルエチルジアミンアラミド(以下
DMAT/Iと称する。)を製造した。参考例1と
同様にして測定したこれの対数粘度は0.31であつ
た。 参考例 3 2―エチル―2―オキサゾリンを窒素ガス雰囲
気下でパラトルエンスルホン酸メチルを触媒に用
いてカチオン開環重合させてポリ―N―プロピオ
ニルエチレンイミン(以下PEIと称す。)を製造
した。これのクロロホルム溶媒を用いた蒸気圧平
衡法による分子量は9500であつた。 参考例 4 2―エチル―2―オキサゾリンの代りに2―フ
エニル―2―オキサゾリンを用いたほかは参考例
3と同様にしてポリ―N―ベンゾイルエチレンイ
ミン(以下BEIと称す。)を製造した。参考例3
と同様にして測定したこれの分子量は12000であ
つた。 実施例 1〜4 テレフタル酸ジクロリドとイソフタル酸ジクロ
リドのモル比が1:1の混合酸クロリドの塩化メ
チレン溶液とビスフエノールAのアルカリ水溶液
とより界面重合法によりポリアリレートを製造し
た。これの対数粘度〔フエノール/テトラクロロ
エタン混合溶媒(6:4重量比)中、1g/dl、
25℃〕は、0.65であつた。 このポリアリレート粉末80重量部と、ポリカプ
ロラクタム(相対粘度2.6)を粉末化したもの20
重量部と、表―1に示す各種N置換アミド含有重
合体の粉末5重量部とをV型ブレンダーにより2
時間混合した。これを40mmφ、L/D=18のエク
ストルーダーを用いて押出し、切断してチツプを
得た。このチツプを用いて表―1に示す条件によ
り射出成形を行つた。 比較のためポリアリレート単独(比較例1)
と、ポリアリレート80重量部とポリカプロラクタ
ム20重量部とからなるもの(比較例2)について
も同様にして射出成形を行つた。 射出成形の条件は通常のエンジニアリングプラ
スチツクの成形条件の範囲内にあるが、実施例に
おいては得られた成形品の外観は均一な乳白色で
あり、ひけやフローマークなどのトラブルは全く
なかつた。比較例2の場合は、実施例と同様の良
好な成形性を示したが、比較例1の場合は実施例
と同じ成形条件では満足な試料片が得られないの
で表―1に示すように厳しい成形条件を必要とし
た。また、成形品の性質は表―1に示すとおりで
あり、比較例のものに比べ実施例のものは機械的
性質、特に衝撃強度において優れた性能を示し
た。
The present invention relates to a novel resin composition, and more specifically, terephthalic acid, isophthalic acid, or functional derivatives thereof, and 2,2-bis(4'-hydroxyphenyl)propane (hereinafter referred to as bisphenol A). Aromatic polyester copolymer obtained from (hereinafter referred to as polyarylate)
, ordinary polyamides, that is, polyamides with amide groups in which hydrogen atoms are not substituted (hereinafter simply referred to as polyamides), and polymers with amide groups in which hydrogen atoms are substituted with hydrocarbon groups (hereinafter simply referred to as polyamides). , simply referred to as N-substituted amide-containing polymer). Polyarylates produced from aromatic dicarboxylic acids or functional derivatives thereof and bisphenols or functional derivatives thereof have been well known for a long time. Known methods for producing such polyarylates include interfacial polymerization, solution polymerization, and melt polymerization. It is also well known that polyarylates obtained by such methods have many excellent properties. In other words, mechanical properties such as tensile strength, bending strength, bending recovery rate, and impact strength, thermal properties such as heat distortion temperature and thermal decomposition temperature, and electrical properties such as specific resistance, dielectric breakdown, arc resistance, dielectric constant, and dielectric loss. General molded products, films, fibers, and coating materials that have excellent properties such as physical properties, flammability, and dimensional stability, and are made by injection molding, extrusion molding, press molding, or various other molding methods. is expected to have a wide range of uses. As mentioned above, polyarylate has many excellent properties and is of great utility value, but its major drawback is poor moldability. When it comes to polymers, especially plastics, moldability plays an important role in the evaluation of the polymer, and even if the material has inherently excellent properties, if the moldability is poor, it will be difficult to manufacture the product economically. Not only is it impossible to do so, but its excellent properties are not fully demonstrated in the product. For example, when making a product by injection molding using a polymer with a high softening temperature and high melt viscosity, a high plasticizing temperature, high injection pressure, and high mold temperature are required, which only causes high costs. In addition, high plasticization temperature induces polymer decomposition, high injection pressure causes distortion in the product, and when such severe conditions are violated, there may be fatal appearance defects such as shot shots, sink marks, and flow marks. This causes mechanical defects and the mechanical properties are significantly deteriorated. Polyarylates also have such high softening temperatures and high melt viscosity, have poor moldability, and have limited uses. Therefore, improvement of its moldability has been desired for a long time. The present applicant previously proposed a resin composition mixed with polyamide in order to improve the moldability of such polyarylate (Japanese Patent Publication No. 14699/1983). Such resin compositions not only have improved moldability of polyarylate, but also have chemical resistance, oil resistance,
Improvements in wear resistance, etc. have been recognized. However, as is well known, polyarylate and polyamide have considerably different solubility indices, so when they are actually mixed, it is difficult to achieve a sufficiently compatible state. Therefore, the mechanical properties of the molded product, especially the impact resistance, were poor.
In addition, mechanical properties such as tensile strength and bending strength vary depending on the manufacturing lot, and results with satisfactory reproducibility cannot be obtained. The present inventor has arrived at the present invention as a result of intensive research aimed at improving the above-mentioned drawbacks of a resin composition composed of polyarylate and polyamide while maintaining its excellent properties. That is, the present invention provides polyarylates obtained from (a) a mixture of terephthalic acid and isophthalic acid or derivatives thereof (provided that the molar ratio of terephthalic acid groups to isophthalic acid groups is 9:1 to 1:9) and bisphenol A; (b) 10 to 150 parts by weight of polyamide, and (c) 3 to 50 parts by weight of N-substituted amide-containing polymer. In this way, by adding an N-substituted amide-containing polymer to a combination of polyarylate and polyamide, which have poor compatibility, it is possible to improve the composition of a resin composition consisting of polyarylate and polyamide while retaining the advantages of polyarylate to a large extent. It is surprising that its mechanical properties have been improved by taking advantage of its excellent moldability, chemical resistance, oil resistance, and abrasion resistance. The polyarylate used in the present invention is
It is obtained from a mixture of terephthalic acid and isophthalic acid or their functional derivatives (the molar ratio of terephthalic acid groups to isophthalic acid groups is 9:1 to 1:9) and bisphenol A. Such polyarylate may be produced by any of interfacial polymerization, solution polymerization, and melt polymerization. In addition, some of the bisphenols (4.
4'-dihydroxydiphenyl)ether, (4.
4′-dihydroxydiphenyl)thioether,
2,2-(4,4'-dihydroxy-3,5,3',
Other bisphenols such as 5'-tetrabromodiphenyl)propane may be substituted. The polyarylate used in the present invention has a concentration of 1 g/dl in a mixed solvent of phenol/tetrachloroethane (6:4, weight ratio), 25
The logarithmic viscosity determined from the solution viscosity measured at °C is
A value of 0.3 to 1.0 is preferred. Examples of the polyamide used in the present invention include a polymer formed by a condensation reaction of a primary diamine and a dibasic acid, a polycondensate formed by a self-condensation reaction of amino acids, and a polymer formed by a polymerization reaction of a lactam. However, the polyamide preferably used in the present invention is a polyamide that melts at a temperature of 170°C or higher, more preferably a temperature of 190°C to 280°C. Particularly preferred polyamides include polyhexamethylene-adipamide, polycaprolactam, polyhexamethylene-sebamide and copolymers thereof. The polyamide used in the present invention preferably has a relative viscosity of 2.4 to 3.4 as determined from the solution viscosity measured in 96% sulfuric acid at a concentration of 1 g/dl at 25°C. The N-substituted amide-containing polymer used in the present invention includes diamines in which at least one of them is a secondary amine and dibasic acids (including acid halide derivatives).
polymers formed by the condensation reaction of amino acids with secondary amines, polymers formed by the ring-opening polymerization of N-alkyl substituted lactams, 2-substituted cyclic imino ethers. A polymer formed by cationic ring-opening polymerization. The substituent is preferably a hydrocarbon group having 10 or less carbon atoms. Moreover, this substituent may form a ring. Specific N-substituted amide-containing polymers include piperazine (including those with various substituents on the piperazine ring), sym-dialkylalkylene diamines, and reaction polymers of diamines and dibasic acids such as sym-dimethylethylenediamine. , ring-opening reactants of N-alkyl-ε-caprolactam, ring-opening polymers of 2-alkyloxazolines, 2-aryloxazolines, 2-alkyloxazines, 2-aryloxazines, and copolymers thereof. The N-substituted amide-containing polymer used in the present invention preferably has a degree of polymerization of 10 to 200 mer. The degree of polymerization is determined by the terminal group determination method using neutralization titration method or the vapor pressure equilibrium method. The blending ratio of polyarylate, polyamide, and N-substituted amide-containing polymer in the resin composition of the present invention is 10 to 150 parts by weight of polyamide and 3 to 3 parts by weight of N-substituted amide-containing polymer per 100 parts by weight of polyarylate. 50 parts by weight. If the polyamide content is less than 10 parts by weight, it is difficult to notice an improvement in moldability;
If it exceeds 150 parts by weight, mechanical properties will deteriorate. N
If the amount of the substituted amide-containing polymer is less than 3 parts by weight, the effect of improving mechanical properties will be poor, while if it exceeds 50 parts by weight, a decrease in mechanical properties, yellowing due to heat, increased hygroscopicity, etc. will be observed, so it is preferable. do not have. In order to prepare the resin composition of the present invention, for example, granules or powders of polyarylate, polyamide, and N-substituted amide-containing polymer are mixed in a V-type blender, super mixer, co-kneader, etc., or by mixing them in an extruder, co-kneader, etc. They may be mixed in a molten state using an intensive mixer or the like to form chips. Alternatively, a method may be adopted in which polyamide powder is mixed with a solution of a polyarylate and an N-substituted amide-containing polymer dissolved in methylene chloride or the like, and then the solvent is removed. In order to improve the heat resistance, light resistance, oxidation resistance, and flame resistance of the resin composition of the present invention, thermal decomposition inhibitors, antioxidants, ultraviolet absorbers, flame retardants, etc. may be present in the resin composition. . In that case, benzotriazole compounds, phosphorus compounds, phenol compounds, benzophenone derivatives, aromatic halogen compounds, and the like are preferably used. These may be present in each polymer before mixing, or may be added at the time of mixing the polymers. Others: plasticizers, pigments,
Lubricants and the like can also be used in conjunction with the resin composition of the present invention. The resin composition of the present invention maintains the excellent moldability, chemical resistance, cold resistance, oil resistance, and abrasion resistance that a resin composition composed of polyarylate and polyamide has, and also has excellent mechanical properties, especially Has impact resistance. Further, the resin composition of the present invention has the advantage that it can be repeatedly and stably prepared and has little variation between lots. Therefore, the resin composition of the present invention can be processed by press molding, injection molding, etc. using powder, chips, or other shapes.
It can be made into various useful products by commonly known plastic molding methods such as extrusion molding. Examples of such products are gears, bearings,
It is used in a wide range of applications, including electrical parts, containers, and other products that require high performance as engineering plastics. In order to further facilitate understanding of the present invention, polyarylate obtained from terephthalic acid, isophthalic acid and bisphenol A, polyamide and N
The present invention will be illustrated by examples using representative combinations of substituted amide-containing polymers. First, a preparation example of the N-substituted amide-containing polymer used in Examples will be shown as a reference example. Reference Example 1 Copolymerized piperazine aramid (hereinafter referred to as PPT/I) using a methylene chloride solution of mixed acid chloride with a molar ratio of terephthalic acid dichloride and isophthalic acid dichloride of 1:1 and an alkaline aqueous solution of piperazine by an interfacial polymerization method. Manufactured. The logarithmic viscosity of this product [1 g/dl in phenol/tetrachloroethane (6:4 weight ratio) at 25°C] was 0.51. Reference Example 2 Copolymerized sym-dimethylethyldiamine aramid (hereinafter referred to as
It is called DMAT/I. ) was manufactured. The logarithmic viscosity of this was measured in the same manner as in Reference Example 1 and was 0.31. Reference Example 3 Poly-N-propionylethyleneimine (hereinafter referred to as PEI) was produced by cationic ring-opening polymerization of 2-ethyl-2-oxazoline in a nitrogen gas atmosphere using methyl p-toluenesulfonate as a catalyst. The molecular weight of this compound was determined to be 9500 by vapor pressure equilibrium method using chloroform solvent. Reference Example 4 Poly-N-benzoylethyleneimine (hereinafter referred to as BEI) was produced in the same manner as Reference Example 3 except that 2-phenyl-2-oxazoline was used instead of 2-ethyl-2-oxazoline. Reference example 3
The molecular weight of this product, measured in the same manner as above, was 12,000. Examples 1 to 4 Polyarylates were produced by an interfacial polymerization method using a methylene chloride solution of a mixed acid chloride with a molar ratio of terephthalic acid dichloride and isophthalic acid dichloride of 1:1 and an alkaline aqueous solution of bisphenol A. Logarithmic viscosity of this [1 g/dl in phenol/tetrachloroethane mixed solvent (6:4 weight ratio),
25℃] was 0.65. 20 parts by weight of this polyarylate powder and polycaprolactam (relative viscosity 2.6)
2 parts by weight and 5 parts by weight of powder of various N-substituted amide-containing polymers shown in Table 1 in a V-type blender.
Mixed for an hour. This was extruded using an extruder of 40 mmφ and L/D=18 and cut to obtain chips. Injection molding was performed using this chip under the conditions shown in Table 1. Polyarylate alone for comparison (Comparative Example 1)
Injection molding was also carried out in the same manner for a material (Comparative Example 2) consisting of 80 parts by weight of polyarylate and 20 parts by weight of polycaprolactam. The injection molding conditions were within the range of normal engineering plastic molding conditions, but in the examples the molded products obtained had a uniform milky white appearance and had no problems such as sink marks or flow marks. In the case of Comparative Example 2, good moldability similar to that in the Examples was shown, but in the case of Comparative Example 1, satisfactory specimens could not be obtained under the same molding conditions as in the Examples, so as shown in Table 1. Strict molding conditions were required. In addition, the properties of the molded products are shown in Table 1, and compared to the comparative examples, the examples showed superior mechanical properties, particularly impact strength.

【表】 実施例 5 テレフタル酸ジクロリドとイソフタル酸ジクロ
リドのモル比が6:4の混合酸クロリドの塩化メ
チレン溶液とビスフエノールAのアルカリ水溶液
とより実施例1と同様の界面重合法により対数粘
度が0.73のポリアリレートを製造した。このポリ
アリレートの塩化メチレン溶液に、ポリヘキサメ
チレン―アジバミド(相対粘度2.6)と、参考例
1のPPT/Iを粉砕して得た20メツシユの粉末
を加え、混合スラリー状とし、ついで70〜80℃に
加熱されたニーダー中で塩化メチレンを蒸発させ
つつ、析出するポリマー塊を粉砕し、三者の粉末
混合物を得た。この場合、ポリアリレートと、ポ
リヘキサメチレン―アジパミドとPPT/Iの混
合割合は重量比で6:3:1であつた。 得られた粉末を用いて表―2に示す条件で射出
成形を行い、成形品の性質を測定した。比較のた
めポリアリレートとポリヘキサメチレン―アジパ
ミドの6:4の重量比の混合物についても同様の
試験を行つた。表―2に示すうに、三者ともに成
形性は良好であつたが機械的性質は本発明の方が
優れていた。
[Table] Example 5 Logarithmic viscosity was determined by the same interfacial polymerization method as in Example 1 using a methylene chloride solution of mixed acid chloride with a molar ratio of terephthalic acid dichloride and isophthalic acid dichloride of 6:4 and an alkaline aqueous solution of bisphenol A. 0.73 polyarylate was produced. To this methylene chloride solution of polyarylate, polyhexamethylene-azibamide (relative viscosity 2.6) and 20 mesh powder obtained by crushing PPT/I of Reference Example 1 were added to form a mixed slurry, and then While methylene chloride was evaporated in a kneader heated to 0.degree. C., the precipitated polymer mass was ground to obtain a three-part powder mixture. In this case, the mixing ratio of polyarylate, polyhexamethylene-adipamide, and PPT/I was 6:3:1 by weight. Injection molding was performed using the obtained powder under the conditions shown in Table 2, and the properties of the molded products were measured. For comparison, a similar test was conducted on a mixture of polyarylate and polyhexamethylene-adipamide in a weight ratio of 6:4. As shown in Table 2, all three had good moldability, but the present invention had better mechanical properties.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (a) テレフタル酸とイソフタル酸又はこれら
の機能誘導体の混合物(ただし、テレフタル酸
基とイソフタル酸基のモル比は9:1ないし
1:9)と2・2―ビス(4′―ヒドロキシフエ
ニル)プロパンとから得られる芳香族ポリエス
テル共重合体100重量部と、 (b) 水素原子が置換されていないアミド基をもつ
ポリアミド10重量部〜150重量部と、 (c) 水素原子が炭化水素基によつて置換されてい
るアミド基をもつ重合体3重量部〜50重量部と
からなる樹脂組成物。
[Claims] 1 (a) A mixture of terephthalic acid and isophthalic acid or functional derivatives thereof (provided that the molar ratio of terephthalic acid groups to isophthalic acid groups is 9:1 to 1:9) and 2,2-bis 100 parts by weight of an aromatic polyester copolymer obtained from (4′-hydroxyphenyl)propane, (b) 10 to 150 parts by weight of a polyamide having an amide group in which hydrogen atoms are not substituted, and (c ) A resin composition comprising 3 to 50 parts by weight of a polymer having an amide group in which hydrogen atoms are substituted with hydrocarbon groups.
JP16770781A 1981-10-19 1981-10-19 Resin composition Granted JPS5867749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16770781A JPS5867749A (en) 1981-10-19 1981-10-19 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16770781A JPS5867749A (en) 1981-10-19 1981-10-19 Resin composition

Publications (2)

Publication Number Publication Date
JPS5867749A JPS5867749A (en) 1983-04-22
JPS642142B2 true JPS642142B2 (en) 1989-01-13

Family

ID=15854716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16770781A Granted JPS5867749A (en) 1981-10-19 1981-10-19 Resin composition

Country Status (1)

Country Link
JP (1) JPS5867749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128554U (en) * 1989-03-28 1990-10-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128554U (en) * 1989-03-28 1990-10-23

Also Published As

Publication number Publication date
JPS5867749A (en) 1983-04-22

Similar Documents

Publication Publication Date Title
US5962628A (en) Partially aromatic polyamides having improved thermal stability
AU671991B2 (en) Miscible thermoplastic compositions containing polyamide/amorphous polyamide blends
US4218549A (en) Thermoplastic molding compositions having improved _flexibility and cold impact strength based upon polyamides from _omega-aminocarboxylic acids and/or lactams having at least 10 carbon atoms
KR100355649B1 (en) Process for preparing polyamide and said polyamide and composition containing said polyamide
US3729527A (en) Thermoplastic polymer blends of polyamides and polyarylsulfones
JP2001510216A (en) Thermoplastic copolyamide and composition based thereon
CZ298957B6 (en) Process for condensing polyamides
US4579914A (en) Blends of polyesteramides and polyamides
JPH01193320A (en) Amide-ether amide copolymer and its production
JPS642142B2 (en)
US5089600A (en) Amide-urea copolymer and process for the preparation thereof
JPH051304B2 (en)
JPS62947B2 (en)
JPS6353227B2 (en)
US3855350A (en) Polyamides and polyoxamides copolymerized in the presence of a glycol
JPH0827378A (en) Production of polyamide molding
JP2514785B2 (en) Polyester or polyamide composition comprising lactamyl phosphites as chain extenders
JPH08502083A (en) Polyamide body and method for producing the same
JPS59197429A (en) Manufacture of polyester-polyamide block polymers
JPS63268763A (en) Polyamide resin composition
KR100246491B1 (en) Process for preparing polyamide polymer increased flexibility
EP0450753A2 (en) Poly (arylene sulfide) resin composition
KR20210052323A (en) Polyamide resin composition, method for preparing the polyamide resin composition and molded product produced therefrom
JPS5911354A (en) Resin composition
JPH02123158A (en) Flame retardant polyamide composition