JPS6410503B2 - - Google Patents

Info

Publication number
JPS6410503B2
JPS6410503B2 JP58248450A JP24845083A JPS6410503B2 JP S6410503 B2 JPS6410503 B2 JP S6410503B2 JP 58248450 A JP58248450 A JP 58248450A JP 24845083 A JP24845083 A JP 24845083A JP S6410503 B2 JPS6410503 B2 JP S6410503B2
Authority
JP
Japan
Prior art keywords
reaction
ipmba
weight
ipap
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58248450A
Other languages
Japanese (ja)
Other versions
JPS60136526A (en
Inventor
Haruhisa Harada
Hiroshi Maki
Shigeru Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58248450A priority Critical patent/JPS60136526A/en
Publication of JPS60136526A publication Critical patent/JPS60136526A/en
Publication of JPS6410503B2 publication Critical patent/JPS6410503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、イソプロピルスチレン(以下IpST
と略す)の製造原料となる1−(イソプロピルフ
エニル)−エチルアルコール(以下IpMBAと略
す)の工業的に有利な製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to isopropylstyrene (hereinafter referred to as IpST).
The present invention relates to an industrially advantageous method for producing 1-(isopropylphenyl)-ethyl alcohol (hereinafter abbreviated as IpMBA), which is a raw material for producing IpMBA.

最近、プラスチツク、合成ゴム等の分野に於い
ては、より高機能性を有する材料の要求が強く、
特に、スチレン代替用途として、IpSTをはじめ
とする核アルキル置換スチレン類の工業的安価な
製造方法が望まれている。IpSTの製造原料とな
るIpMBAは、従来実験室的には、 (i) クメンとエチレンオキサイドを塩化アルミの
存在下で反応して合成。
Recently, in fields such as plastics and synthetic rubber, there has been a strong demand for materials with higher functionality.
In particular, an inexpensive industrial method for producing nuclear alkyl-substituted styrenes such as IpST is desired as a substitute for styrene. IpMBA, the raw material for producing IpST, has traditionally been synthesized in the laboratory by (i) reacting cumene and ethylene oxide in the presence of aluminum chloride;

(ii) クメンと塩化アセチルを塩化アルミの存在下
で反応し、次いで水素還元して合成。
(ii) Synthesized by reacting cumene and acetyl chloride in the presence of aluminum chloride, followed by hydrogen reduction.

等の合成方法が知られていたが、工業的な観点か
らは、安価な製造方法とはいいがたかつた。
However, from an industrial standpoint, it was difficult to say that it was an inexpensive manufacturing method.

本発明者らは、この様な現状に鑑み、IpST製
造原料となるIpMBAの工業的安価な製造方法に
ついて鋭意検討した結果、本発明を見い出すに至
つた。
In view of the current situation, the inventors of the present invention have conducted intensive studies on an industrially inexpensive method for producing IpMBA, which is a raw material for producing IpST, and as a result, have discovered the present invention.

即ち本発明は、(2−ヒドロキシ−2−プロピ
ル)−キユメンヒドロペルオキシド及び/又は、
ジイソプロピルベンゼンモノヒドロペルオキシド
を不活性ガスの雰囲気下、鉄塩と銅塩及び酸を含
む水層の存在下で分解し、(2−ヒドロキシ−2
−プロピル)−アセトフエノン及び/又は、イソ
プロピルアセトフエノンを得、油層から(2−ヒ
ドロキシ−2−プロピル)−アセトフエノン及
び/又はイソプロピルアセトフエノンを分離回収
することをなしに、引続いて酸触媒存在下の脱水
反応に供し、次いで水添触媒の存在下に水素還元
して、1−(イソプロピルフエニル)−エチルアル
コールを製造することを特徴とする1−(イソプ
ロピルフエニル)−エチルアルコールの製造方法
である。
That is, the present invention provides (2-hydroxy-2-propyl)-kyumene hydroperoxide and/or
Diisopropylbenzene monohydroperoxide is decomposed under an inert gas atmosphere in the presence of an aqueous layer containing iron salts, copper salts, and an acid.
-Propyl)-acetophenone and/or isopropylacetophenone are obtained, without separating and recovering (2-hydroxy-2-propyl)-acetophenone and/or isopropylacetophenone from the oil layer, followed by an acid catalyst. 1-(isopropylphenyl)-ethyl alcohol is subjected to dehydration reaction in the presence of a hydrogenation catalyst, and then subjected to hydrogen reduction in the presence of a hydrogenation catalyst to produce 1-(isopropylphenyl)-ethyl alcohol. This is the manufacturing method.

本発明の出発原料である(2−ヒドロキシ−2
−プロピル)−キユメンヒドロペルオキシド(以
下、CHPOと略す)及び/又は、ジイソプロピル
ベンゼンモノヒドロペルーオキシド(以下
MHPOと略す)の製造法は、特に限定されない
が、工業的には、ジイソプロピルベンゼン(以下
DCと略す)の液相空気酸化によつて得られるジ
イソプロピルベンゼンジイソプロピル−ヒドロペ
ルオキシド(以下DHPOと略す)を、亜硫酸ナ
トリウム、亜硫酸カリウム等を用いて部分還元す
ることによつて容易にCHPOを得ることができ、
又、DHPO製造の際にCHPOが副生して得るこ
ともできる。MHPOはDCの液相酸化反応で容易
に得ることが可能である。近年、レゾルシン、ハ
イドロキノンのパーオキサイド法プロセスの商業
的稼動により、CHPO、MHPOが極めて安価に
入手可能となつた。
(2-hydroxy-2
-propyl)-kyumene hydroperoxide (hereinafter abbreviated as CHPO) and/or diisopropylbenzene monohydroperoxide (hereinafter abbreviated as CHPO)
The manufacturing method of diisopropylbenzene (hereinafter referred to as MHPO) is not particularly limited, but industrially, diisopropylbenzene (hereinafter referred to as
To easily obtain CHPO by partially reducing diisopropylbenzenediisopropyl hydroperoxide (hereinafter abbreviated as DHPO) obtained by liquid phase air oxidation of diisopropylbenzene diisopropyl hydroperoxide (abbreviated as DC) using sodium sulfite, potassium sulfite, etc. is possible,
Furthermore, CHPO can also be obtained as a by-product during the production of DHPO. MHPO can be easily obtained by liquid phase oxidation reaction of DC. In recent years, with the commercial operation of resorcinol and hydroquinone peroxide processes, CHPO and MHPO have become available at extremely low prices.

以下にCHPO及び/又はMHPOを出発原料と
するIpMBA製造方法に関する本発明の特徴につ
いて詳細にのべる。
The features of the present invention regarding the method for producing IpMBA using CHPO and/or MHPO as starting materials will be described in detail below.

先ず特徴の第一点はCHPO及び/又はMHPO
を不活性ガスの雰囲気下、鉄塩と銅塩及び酸を含
む水層の存在下で分解し高収率で(2−ヒドロキ
シ−2−プロピル)−アセトフエノン(以下
ApCAと略す)、及び/又はイソプロピルアセト
フエノン(以下、IpApと略す)を得ることにあ
る。
First of all, the first characteristic is CHPO and/or MHPO
was decomposed in an inert gas atmosphere in the presence of an aqueous layer containing iron salts, copper salts, and acid to produce (2-hydroxy-2-propyl)-acetophenone (hereinafter referred to as
The purpose of the present invention is to obtain ApCA) and/or isopropylacetophenone (hereinafter abbreviated as IpAp).

従来の、ヒドロペルオキシドを、アルカリ水溶
液存在下、又は、コバルト、マンガン等の金属イ
オンの存在下、さらに硫酸第一鉄等の第一鉄塩の
水溶液存在下に分解する方法でも、アセトフエノ
ン化合物を得ることができる。しかしながらこの
様な方法では、同時に多量のアルコール化合物が
生成し、アセトフエノン化合物の収率は著るしく
低い。さらにアルキルベンゼン(例えばDCなど)
を金属塩の存在下又は非存在下に液相酸化しても
アセトフエノン化合物が得られるが同様に満足す
る収率は得られない。
An acetophenone compound can also be obtained by a conventional method of decomposing a hydroperoxide in the presence of an alkaline aqueous solution, or in the presence of a metal ion such as cobalt or manganese, or further in the presence of an aqueous solution of a ferrous salt such as ferrous sulfate. be able to. However, in such a method, a large amount of alcohol compound is simultaneously produced, and the yield of the acetophenone compound is extremely low. Additionally alkylbenzenes (e.g. DC, etc.)
An acetophenone compound can be obtained by liquid phase oxidation in the presence or absence of a metal salt, but a satisfactory yield cannot be obtained.

この様な現状から本発明者らは本発明の方法で
CHPO及び/又はMHPOの分解を行なえば著る
しく高収率で目的のApCA及び/又はIpApを得
ることが可能であることを見い出した。
In view of this current situation, the present inventors have developed the method of the present invention.
It has been found that by decomposing CHPO and/or MHPO, it is possible to obtain the target ApCA and/or IpAp in a significantly high yield.

本発明のCHPO及び/又はMHPOの分解は不
活性ガス例えば窒素、ヘリウムなどの雰囲気下で
行なわれる。空気又は、酸素雰囲気下では、金属
塩が酸化され、反応速度が低下し、又、ApCA及
び/又はIpApの収率が低下するので好ましくな
い。
The decomposition of CHPO and/or MHPO in the present invention is carried out under an atmosphere of an inert gas such as nitrogen or helium. Air or oxygen atmosphere is not preferable because the metal salt is oxidized, the reaction rate decreases, and the yield of ApCA and/or IpAp decreases.

さらに本発明のCHPO及び/又はMHPOの分
解は鉄塩と銅塩の共存が必須である。鉄塩のみで
は、ApCA及び/又はIpApの収率は低く、又、
反応の初期に於いては、CHPO及び/又は
MHPOの分解は非常に速いが、CHPO及び/又
はMHPOの分解率を上げるためには、長時間の
反応を要し、あるいは、鉄塩の使用量が多くなる
欠点がある。
Furthermore, the coexistence of iron salt and copper salt is essential for the decomposition of CHPO and/or MHPO in the present invention. With iron salt alone, the yield of ApCA and/or IpAp is low, and
At the beginning of the reaction, CHPO and/or
Although MHPO decomposes very quickly, increasing the decomposition rate of CHPO and/or MHPO requires a long reaction time or requires a large amount of iron salt.

このようなことから本発明者らは特定の条件下
で、鉄塩と共に銅塩を存在させると著しく反応速
度が向上し、その結果、鉄塩の使用量が著しく削
減でき、かつApCA及び/又はIpApの収率も著
しく向上することを見い出した。
Based on these findings, the present inventors found that, under specific conditions, the presence of copper salt together with iron salt significantly improves the reaction rate, and as a result, the amount of iron salt used can be significantly reduced, and ApCA and/or It was found that the yield of IpAp was also significantly improved.

鉄塩及び銅塩の量は該ヒドロペルオキシドのヒ
ドロペルオキシド基1モル当たり、0.001〜1モ
ル、好ましくは0.005〜0.5モルの鉄塩及び鉄塩1
モル当たり0.01〜4モル、好ましくは0.05〜3モ
ルの銅塩が用いられる。
The amount of iron salt and copper salt is 0.001 to 1 mol, preferably 0.005 to 0.5 mol of iron salt and 1 mol of iron salt per mol of hydroperoxide group of the hydroperoxide.
0.01 to 4 mol, preferably 0.05 to 3 mol, of copper salt is used per mole.

鉄塩の使用量がヒドロペルオキシド基の1モル
当たり0.001モル未満では反応速度が遅く、又、
副反応によりアルコール類の生成を多く伴い不利
であり、1モルより多く使用すると反応速度は速
くなるが、副反応によりフエノール類の生成、あ
るいは、重質分の生成が多くなり得策ではない。
銅塩の使用量は、鉄塩1モル当たり、0.01モル未
満であると共存効果がなく、ApCA及び/又は
IpApの収率向上はならず、4モルより多いとあ
る程度収率の向上は認められるが触媒コストが高
くなり、結局は、不利となるので好ましくない。
If the amount of iron salt used is less than 0.001 mol per 1 mol of hydroperoxide group, the reaction rate is slow;
This is disadvantageous because a large amount of alcohols are produced due to side reactions, and although the reaction rate becomes faster when more than 1 mole is used, side reactions result in the production of phenols or heavy components, which is not a good idea.
If the amount of copper salt used is less than 0.01 mol per mol of iron salt, there will be no coexistence effect, and ApCA and/or
The yield of IpAp does not improve, and if the amount exceeds 4 moles, the yield improves to some extent, but the catalyst cost increases, which is ultimately disadvantageous, which is not preferable.

この本発明のCHPO及び/又はMHPOの分解
に於いて、用いられる鉄塩は第1鉄塩及び/又
は、第2鉄塩、銅塩は、第1銅塩及び/又は、第
2銅塩である。
In the decomposition of CHPO and/or MHPO of the present invention, the iron salt used is ferrous salt and/or ferric salt, and the copper salt used is cuprous salt and/or cupric salt. be.

従来は第1鉄塩のみが用いられていたが、本発
明者らは銅塩の共存により第2鉄塩でも、ApCA
及び/又はIpApが収率良く得られることを見い
出した。
Conventionally, only ferrous salts were used, but the present inventors found that ApCA can be used even with ferric salts due to the coexistence of copper salts.
and/or that IpAp can be obtained in good yield.

本発明に用いられる鉄塩の具体例としては硫酸
鉄、塩酸鉄、硝酸鉄、クエン酸鉄、乳酸鉄、シユ
ウ酸鉄、酸化鉄、(例えばFe2O3など)水酸化鉄
(例えばFe(OH)3)などが例示される。
Specific examples of iron salts used in the present invention include iron sulfate, iron hydrochloride, iron nitrate, iron citrate, iron lactate, iron oxalate, iron oxide, iron hydroxide (such as Fe 2 O 3 ), iron hydroxide (such as Fe ( Examples include OH) 3 ).

銅塩の具体例としては、硫酸銅、塩化銅、硝酸
銅、酢酸銅、酸化銅(例えばCuOなど)、水酸化
銅(例えばCu(OH)2)などが例示される。特に
好ましくは鉄塩として硫酸第1鉄及び/又は、硫
酸第2鉄、銅塩としての硫酸銅の組合せで用いら
れる。
Specific examples of copper salts include copper sulfate, copper chloride, copper nitrate, copper acetate, copper oxide (such as CuO), and copper hydroxide (such as Cu(OH) 2 ). Particularly preferably, a combination of ferrous sulfate and/or ferric sulfate as the iron salt and copper sulfate as the copper salt is used.

酸は、スラツジの生成を抑制する効果があり、
鉱酸例えば硫酸、塩酸、硝酸などが用いられる
が、特に好ましくは、硫酸が用いられる。
Acid has the effect of suppressing the formation of sludge,
Mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, etc. are used, and sulfuric acid is particularly preferably used.

本発明のCHPO及び/又はMHPOの分解にお
いて、CHPO及び/又はMHPOは、そのまま反
応に供しても良いが反応を円滑に行なわせるため
に、適当な有機溶媒を用い、ヒドロペルオキシド
を含む有機溶媒層として供することがより好まし
い。有機溶媒として例えば、ベンゼン、トルエ
ン、キシレン、メチルイソブチルケトンあるい
は、ジイソプロピルベンゼン等が用いられる。
In the decomposition of CHPO and/or MHPO of the present invention, CHPO and/or MHPO may be subjected to the reaction as is, but in order to make the reaction proceed smoothly, an appropriate organic solvent is used and an organic solvent layer containing hydroperoxide is used. It is more preferable to serve as Examples of organic solvents used include benzene, toluene, xylene, methyl isobutyl ketone, and diisopropylbenzene.

ヒドロペルオキシドを含む有機層と鉄塩と銅塩
及び酸を含む水層の混合割合は有機層の重量100
部当たり水層が10部以上、好ましくは20部以上で
調整される。
The mixing ratio of the organic layer containing hydroperoxide and the aqueous layer containing iron salts, copper salts, and acids is 100% by weight of the organic layer.
The amount of water layer per part is adjusted to 10 parts or more, preferably 20 parts or more.

水層の割合が10部より少なくなると反応速度が
遅くなり、又、副反応によりフエノール類の生
成、あるいは重質分の生成が多くなり好ましくな
い。
If the proportion of the aqueous layer is less than 10 parts, the reaction rate will be slow, and side reactions will increase the production of phenols or heavy components, which is not preferable.

さらに本発明のCHPO及び/又はMHPOの分
解においては鉄塩と銅塩及び酸を含む水層は反応
終了後、油水分離することによつて再使用が可能
であり、従来の第1鉄塩のみとは著しく異なる点
の一つである。
Furthermore, in the decomposition of CHPO and/or MHPO of the present invention, the aqueous layer containing iron salts, copper salts, and acids can be reused by separating the oil and water after the reaction, and only conventional ferrous salts can be used. This is one point that is markedly different from the previous one.

反応温度は通常30〜100℃の範囲が選ばれる。 The reaction temperature is usually selected in the range of 30 to 100°C.

一方、反応圧力は通常大気圧下で行なわれる
か、減圧下で行なうことも可能である。反応は回
分式でも連続式でも実施可能である。
On the other hand, the reaction pressure is usually carried out at atmospheric pressure, or it is also possible to carry out the reaction under reduced pressure. The reaction can be carried out either batchwise or continuously.

分解反応終了後、生成したApCA及び/又は
IpApは、油水分離した後の油層として回収され
る。この油層は通常このまま次の酸触媒による脱
水反応に供されるが、CHPO及び/又はMHPO
の分解を有機溶媒共存下で行なつた場合、分解反
応終了後、油水分離した後のApCA及び/又は
IpApを含む油層から該有機溶媒を減圧蒸留等で
除去した後、この釜液を次の酸触媒による脱水反
応に供しても良い。
After the completion of the decomposition reaction, the produced ApCA and/or
IpAp is recovered as an oil layer after oil and water separation. This oil layer is normally subjected to the next dehydration reaction using an acid catalyst as it is, but CHPO and/or MHPO
When decomposition is carried out in the coexistence of an organic solvent, after the completion of the decomposition reaction, ApCA and/or after oil and water separation
After removing the organic solvent from the oil layer containing IpAp by vacuum distillation or the like, this pot liquid may be subjected to the next acid-catalyzed dehydration reaction.

次に、本発明の第二の特徴は、CHPO及び/又
はMHPOの分解で得られたApCA及び/又は
IpApを分離回収することなしに引続いて酸触媒
存在下の脱水反応に供することにある。
Next, the second feature of the present invention is ApCA and/or obtained by decomposing CHPO and/or MHPO.
The purpose is to subsequently subject IpAp to a dehydration reaction in the presence of an acid catalyst without separating and recovering it.

分解反応後のApCA及び/又はIpApを含む油
層中には通常不純物として(2−ヒドロキシ−2
−プロピル)−キユメン(以下、MCAと略す)、
ジ−(2−ヒドロキシ−2−プロピル)−ベンゼン
(以下DKAと略す)(2−ヒドロキシ−2−プロ
ピル)−イソプロペニルベンゼン(以下CASTと
略す)等のカルビノール類が含まれている。これ
らは分解反応原料ヒドロペルオキシド中に、存在
したり、量的には少ないが分解反応でも生成す
る。
After the decomposition reaction, the oil layer containing ApCA and/or IpAp usually contains 2-hydroxy-2 as an impurity.
- propyl) - kyumene (hereinafter abbreviated as MCA),
It contains carbinols such as di-(2-hydroxy-2-propyl)-benzene (hereinafter abbreviated as DKA) and (2-hydroxy-2-propyl)-isopropenylbenzene (hereinafter abbreviated as CAST). These may exist in the hydroperoxide starting material for the decomposition reaction, or may be produced in the decomposition reaction, although in small amounts.

ApCAを含む油層を水添触媒の存在下に水素還
元してIpMBAを得ようとした場合、IpMBAの
収率は低い。
When an attempt is made to obtain IpMBA by reducing an oil layer containing ApCA with hydrogen in the presence of a hydrogenation catalyst, the yield of IpMBA is low.

本発明者らは、ApCAのカルビノール基を一旦
酸触媒の存在下に脱水してイソプロペニル基に転
換し、イソプロペニルアセトフエノン(以下
ApSTと略す)とした後に水素還元を行なうと高
収率でIpMBAが得られることを見い出した。
The present inventors first dehydrated the carbinol group of ApCA in the presence of an acid catalyst to convert it into an isopropenyl group, and converted it to isopropenyl acetophenone (hereinafter referred to as
We have found that IpMBA can be obtained in high yield by hydrogen reduction after the formation of IpMBA (abbreviated as ApST).

又、ApCA中に含まれる他のカルビノール類、
例えば、MCA、DKAはApCAと同様脱水されて
各々、イソプロペニルキユメン(以下MSTと略
す)、ジイソプロペニルベンゼン(以下DSTと略
す)に変換され、次の水素還元で、各々DCとな
り、IpMBAとの分離が容易で、高純度のIpST製
造用IpMBAを製造することが可能となつた。さ
らにこの様な方法で行なうとカルビノール類から
得られるDCは、ヒドロペルオキシド製造用原料
として循還使用され工業的には尚有利な方向とな
る。
In addition, other carbinols contained in ApCA,
For example, MCA and DKA are dehydrated in the same way as ApCA and converted to isopropenyl kyumene (hereinafter abbreviated as MST) and diisopropenylbenzene (hereinafter abbreviated as DST), and then subjected to hydrogen reduction to become DC, respectively, and IpMBA. It is now possible to easily separate IpMBA for IpST production with high purity. Furthermore, when such a method is used, DC obtained from carbinols can be recycled and used as a raw material for producing hydroperoxides, which is an even more advantageous direction from an industrial perspective.

一方IpApを含む油層からIpApを分離回収し、
高純度のものを得ようとした場合IpApは、不純
物MCAと沸点が極めて近似し、実質的に収率良
くIpApを得ることはできない。
On the other hand, IpAp is separated and recovered from the oil layer containing IpAp,
When attempting to obtain highly pure IpAp, the boiling point of IpAp is extremely similar to that of the impurity MCA, and it is virtually impossible to obtain IpAp with a good yield.

又、IpApを含む油層を、このまま水添触媒の
存在下に水素還元を行なうと高成績でIpMBAが
得られるが、不純物のカルビノール類は、実質的
にMCA、DKAとして存在し、IpMBAとMCAは
沸点が近く、収率良く、IpMBAを分離回収する
ことは実質的に困難である。
Furthermore, if the oil layer containing IpAp is subjected to hydrogen reduction in the presence of a hydrogenation catalyst, IpMBA can be obtained with high performance, but impurity carbinols exist substantially as MCA and DKA, and IpMBA and MCA Although the boiling points of IpMBA are close to each other and the yield is good, it is practically difficult to separate and recover IpMBA.

さらにMCAを含むIpMBAを脱水してIpSTと
した後にIpSTとMSTの分離を行なつても、収率
良くIpSTを得ることはできない。この様なこと
から本発明者らは、IpApを含む油層からIpApを
分離回収することなしに油層を酸触媒による脱水
反応に供したところ、不純物カルビノール類は、
MST、DST、に変換され、引続いて水添触媒存
在下に水素還元を行なうと、IpApは収率良く
IpMBAとなり、又MST、DSTはDCに変換し、
高収率でしかも高純度のIpMBAが、得られるこ
とを見い出した。しかもDCはヒドロペルオキシ
ド製造用原料として循還使用され、工業的に非常
に有利となることがわかつた。
Furthermore, even if IpST and MST are separated after dehydrating IpMBA containing MCA to obtain IpST, IpST cannot be obtained in good yield. For this reason, the present inventors subjected the oil layer containing IpAp to an acid-catalyzed dehydration reaction without separating and recovering IpAp, and found that the impurity carbinols were
When converted to MST, DST, and then subjected to hydrogen reduction in the presence of a hydrogenation catalyst, IpAp can be obtained in good yield.
It becomes IpMBA, and MST and DST are converted to DC,
It has been found that IpMBA can be obtained in high yield and high purity. Moreover, it was found that DC can be recycled and used as a raw material for producing hydroperoxides, which is very advantageous industrially.

本発明のApCA及び/又はIpApを含む油層の
酸触媒存在下の脱水反応に於いて、使用する酸触
媒としては鉱酸、有機酸、固体酸等が可能であ
り、硫酸、塩酸、p−トルエンスルホン酸、強酸
性イオン交換樹脂、シリカ−アルミナ、γ−アル
ミナ、酸性白土等が例示される。酸触媒の使用量
は、脱水反応形態、温度条件によつても異なるが
通常、ApCA及び/又はIpApを含む油層中のカ
ルビノール類に対して0.0005〜300重量%が選ば
れるが、好ましくは0.001〜200重量%が選ばれ
る。使用量が0.0005重量%未満では、反応速度が
遅く、又300重量%より多くすると生成するイソ
プロペニル化合物の劣化が著しく不利である。
In the dehydration reaction of the oil layer containing ApCA and/or IpAp of the present invention in the presence of an acid catalyst, mineral acids, organic acids, solid acids, etc. can be used as acid catalysts, such as sulfuric acid, hydrochloric acid, p-toluene, etc. Examples include sulfonic acid, strongly acidic ion exchange resin, silica-alumina, γ-alumina, and acid clay. The amount of acid catalyst to be used varies depending on the dehydration reaction form and temperature conditions, but is usually 0.0005 to 300% by weight based on the carbinols in the oil layer containing ApCA and/or IpAp, but preferably 0.001%. ~200% by weight is chosen. If the amount used is less than 0.0005% by weight, the reaction rate will be slow, and if it is more than 300% by weight, the resulting isopropenyl compound will deteriorate significantly.

反応温度は、通常0〜350℃が選ばれるが、好
ましくは50〜300℃の範囲が選ばれる。0℃未満
では反応速度が遅く、350℃を越えるとイソプロ
ペニル化合物の劣化が著るしく不利となる。脱水
反応は、大気圧下、減圧下、又液相、気相等通常
のどの様な反応形態でも適用可能であるが、通常
タール分の除去もかねて減圧下の脱水反応蒸留法
が用いられる。脱水反応は回分式でも、連続式で
も実施可能である。
The reaction temperature is usually selected from 0 to 350°C, preferably from 50 to 300°C. If it is less than 0°C, the reaction rate is slow, and if it exceeds 350°C, the isopropenyl compound deteriorates significantly, which is disadvantageous. The dehydration reaction can be carried out in any conventional reaction form, such as atmospheric pressure, reduced pressure, liquid phase, gas phase, etc., but a dehydration reaction distillation method under reduced pressure is usually used to also remove tar. The dehydration reaction can be carried out either batchwise or continuously.

この様に脱水反応して回収された油層は、必要
に応じて、アルカリで中和、脱水等の操作を行な
つた後、水添触媒存在下の水素還元反応に供され
る。
The oil layer recovered through the dehydration reaction is subjected to operations such as neutralization with an alkali and dehydration, if necessary, and then subjected to a hydrogen reduction reaction in the presence of a hydrogenation catalyst.

水素還元反応は通常の方法で行なわれるが、核
水添、水素化分解等の副反応を生ずる条件を選択
すると生成するIpMBA、DCを純度良く得ること
はできないので注意する必要がある。
The hydrogen reduction reaction is carried out in a conventional manner, but care must be taken because if conditions that cause side reactions such as nuclear hydrogenation and hydrogenolysis are selected, it will not be possible to obtain IpMBA and DC with high purity.

還元触媒としては、通常のオレフイン、カルボ
ニル基の水添機能を有する触媒の中から選択さ
れ、例えばNi系、Pd系、Cu−Cr系、Pt系等のい
ずれも適用可能で、又、二成分以上混合使用して
も差しつかえない。又水素化分解を抑制する意味
で水酸化ナトリウムの様なアルカリを共存させて
行なつても良い。通常、反応温度は30〜300℃、
水素圧は1〜100Kg/cm2Gで選ばれ、反応方法は
回分式でも、連続式でも実施可能である。
The reduction catalyst is selected from ordinary catalysts having the function of hydrogenating olefins and carbonyl groups. For example, Ni-based, Pd-based, Cu-Cr-based, Pt-based, etc. are applicable. It is okay to use a mixture of the above. Further, in order to suppress hydrogenolysis, an alkali such as sodium hydroxide may be present in the coexistence. Usually the reaction temperature is 30~300℃,
The hydrogen pressure is selected from 1 to 100 Kg/cm 2 G, and the reaction method can be carried out either batchwise or continuously.

この様に水素還元した後、生成したIpMBA、
DCは通常は減圧蒸留で分離回収され、いずれも
高純度のものとして得ることができる。
After hydrogen reduction in this way, the generated IpMBA,
DC is usually separated and recovered by vacuum distillation, and both can be obtained as highly pure products.

以下に実施例により本発明をさらに詳細に説明
するが、本発明の範囲はこれらによつて制限をう
けるものではない。
The present invention will be explained in more detail with reference to Examples below, but the scope of the present invention is not limited thereby.

実施例 1 <ヒドロペルオキシドの分解反応> 5セパラブルフラスコに19.9wt%のm−(2
−ヒドロキシ−2−プロピル)−キユメンヒドロ
ペルオキシドを含むメチルイソブチルケトン溶液
を1000g(ヒドロペルオキシド基1.32モル含む)
を仕込み、窒素流通下80℃に昇温した。フラスコ
内温が80℃に到達後滴下ロートで硫酸第1鉄の含
水物(Fe++;0.066モル含む)18.3g、硫酸銅
(Cu++;0.066モル含む)10.5g、濃硫酸3.3gを
溶解した水溶液1000gを添加し、80℃で反応を行
なつた。3時間の反応後には、ヒドロペルオキシ
ドの残存濃度は0.1重量%以下で実質的にほとん
ど反応が完了していた。
Example 1 <Hydroperoxide decomposition reaction> 19.9 wt% m-(2
-Hydroxy-2-propyl)-1000 g of methyl isobutyl ketone solution containing kyumene hydroperoxide (contains 1.32 moles of hydroperoxide groups)
was charged and the temperature was raised to 80°C under nitrogen flow. After the internal temperature of the flask reached 80℃, add 18.3 g of hydrated ferrous sulfate (Fe ++ ; containing 0.066 mole), 10.5 g of copper sulfate (Cu ++ ; containing 0.066 mole), and 3.3 g of concentrated sulfuric acid using a dropping funnel. 1000 g of the dissolved aqueous solution was added and the reaction was carried out at 80°C. After 3 hours of reaction, the residual concentration of hydroperoxide was less than 0.1% by weight, and the reaction was substantially complete.

油層を中和して、減圧下で脱溶媒し、濃縮缶液
235gを得た。
Neutralize the oil layer, remove the solvent under reduced pressure, and concentrate the liquid.
Obtained 235g.

この缶液はm−ApCA69.5重量%、m−
IpAp2.4重量%、m−DKA7.6重量%、m−
CAST1.4重量%、m−MCA2.8重量%を含んでい
た。m−CHPOからm−ApCAへの収率は89.5%
であつた。(但し、原料中に存在していたm−
ApCAは含まない。)この濃縮缶液を、次の脱水
反応に供した。
This canned liquid contains m-ApCA69.5% by weight, m-
IpAp2.4% by weight, m-DKA7.6% by weight, m-
It contained 1.4% by weight of CAST and 2.8% by weight of m-MCA. The yield from m-CHPO to m-ApCA is 89.5%
It was hot. (However, m- present in the raw materials
Does not include ApCA. ) This concentrated bottom liquid was subjected to the next dehydration reaction.

<脱水反応> 先に得られた濃縮缶液200gを使用して、p−
トルエンスルホン酸を触媒にカルビノール化合物
の脱水反応蒸留を行なつた。濃縮缶液にp−トル
エンスルホン酸0.2gを溶解し、このうちの40g
を予め反応器に仕込んだ。30mmHg減圧、オイル
バス温度200℃、一定下に脱水反応蒸留を開始し
た。引続いて、残濃縮缶液160gを1時間かけて
連続滴下し、滴下終了後更に30分反応を継続し
た。この間継続して脱水反応により生成したイソ
プロペニル化合物他軽沸分の留出が認められ、最
終的に留出受器中には、油層162.5g、水層17.5
gが回収された。
<Dehydration reaction> Using 200g of the concentrated can liquid obtained earlier, p-
Dehydration reaction distillation of carbinol compounds was carried out using toluenesulfonic acid as a catalyst. Dissolve 0.2g of p-toluenesulfonic acid in the concentrated can liquid, and 40g of this
was charged into the reactor in advance. Dehydration reaction and distillation were started at a constant pressure of 30 mmHg and an oil bath temperature of 200°C. Subsequently, 160 g of the remaining concentrated liquid was continuously added dropwise over a period of 1 hour, and the reaction was continued for an additional 30 minutes after the addition was completed. During this period, the distillation of isopropenyl compounds and other light boiling components produced by the dehydration reaction was observed, and finally in the distillation receiver there was an oil layer of 162.5 g and an aqueous layer of 17.5 g.
g was recovered.

油層のGC分析の結果カルビノール化合物はほ
ぼ100%脱水してイソプロペニル化合物に転化し
ており、m−ApST74.6重量%、m−IpAp3.0重
量%、m−DST8.2重量%、m−MST2.8重量%
含まれていた。m−ApSTの収率は97%であつた
(対m−ApCA当たり)。
As a result of GC analysis of the oil layer, almost 100% of the carbinol compounds were dehydrated and converted into isopropenyl compounds, with m-ApST74.6% by weight, m-IpAp3.0% by weight, m-DST8.2% by weight, m-DST8.2% by weight, −MST2.8% by weight
It was included. The yield of m-ApST was 97% (per m-ApCA).

この留出液をアルカリ洗浄して水洗、脱水の
後、次の水素還元反応に供した。
This distillate was washed with alkali, water, and dehydrated, and then subjected to the next hydrogen reduction reaction.

<水素還元> 100c.c.オートクレーブを用い、先に得られた油
層の水素還元反応を行なつた。原料50g、触媒5
%Pd−C(日本エンゲルハルド社製)1g、180
℃、20Kg/cm2GH2圧の条件下、所定量のH2吸収
が認められた。還元反応終了後触媒をロ過により
分離除去し、得られた油層を分析した結果、m−
ApST及びm−IpApは98%の収率でm−IpMBA
へ、m−DST、及びm−MSTは99%の収率でm
−DCへ転化していた。
<Hydrogen reduction> Using a 100 c.c. autoclave, the previously obtained oil layer was subjected to a hydrogen reduction reaction. Raw material 50g, catalyst 5
%Pd-C (manufactured by Engelhard Japan) 1g, 180
Under the conditions of ℃, 20Kg/cm 2 GH 2 pressure, a certain amount of H 2 absorption was observed. After the reduction reaction was completed, the catalyst was separated and removed by filtration, and the resulting oil layer was analyzed, and it was found that m-
ApST and m-IpAp are m-IpMBA in 98% yield
to, m-DST, and m-MST in 99% yield.
- It was converted to DC.

<m−IpMBAの回収> 前述のヒドロペルオキシドの分解〜水素還元反
応と同様な操作を行つて得た水素還元反応液500
gを用いてm−IpMBAの回収を行なつた。(な
お、原料中にはm−IpMBAが、76.1重量%、m
−DCが11.0重量%含まれている。) 精留塔;オールダーシヨー塔 20段 {還留比;R/D 2〜4 圧 力;5mmHg 一定 の条件下で回分式で精留を行なつたところ、留出
温度96〜97℃の留分350gが回収された。GC分析
の結果m−IpMBAが99.0%含まれ、この回収率
は91%であつた。なお合せて純度94.0%のm−
DC48gが回収できた。
<Recovery of m-IpMBA> Hydrogen reduction reaction solution 500% obtained by performing the same operation as the above-mentioned hydroperoxide decomposition ~ hydrogen reduction reaction
m-IpMBA was recovered using g. (In addition, m-IpMBA is contained in the raw material at 76.1% by weight.
- Contains 11.0% by weight of DC. ) Rectification column: Older Schott column 20 stages {reflux ratio: R/D 2~4 Pressure: 5 mmHg When rectification was carried out batchwise under certain conditions, the distillation temperature was 96~97℃. 350 g of fraction was recovered. As a result of GC analysis, m-IpMBA was found to be 99.0% contained, and the recovery rate was 91%. In addition, m- with a purity of 94.0%
48g of DC was recovered.

実施例 2 <ヒドロペルオキシドの分解反応> m−ジイソプロピルベンゼンモノヒドロペルオ
キシド及びm−(2−ヒドロキシ−2−プロピル)
−キユメンヒドロペルオキシドを各々37.6重量
%、3.5重量%含むm−DC酸化液1000g(ヒドロ
ペルオキシド基、2.25モル含む)を窒素流通下、
85℃に昇温した硫酸第一鉄含水物(Fe++;0.11モ
ル含む)31.2g、硫酸銅(Cu++;0.11モル含む)
17.9g、濃硫酸5.5gを溶解した水溶液1000g中
に1時間かけ滴下した。3時間の反応継続後に
は、ヒドロペルオキシドの残存濃度は0.1重量%
以下で実質的にほとんど反応が完了していた。油
層を分離回収し、引続いて中和水洗を行なつて油
層946gを得た。
Example 2 <Decomposition reaction of hydroperoxide> m-diisopropylbenzene monohydroperoxide and m-(2-hydroxy-2-propyl)
- 1000 g of m-DC oxidizing solution containing 37.6% by weight and 3.5% by weight of kyumene hydroperoxide (containing 2.25 moles of hydroperoxide groups) under nitrogen flow,
31.2 g of ferrous sulfate hydrate (Fe ++ ; containing 0.11 mol) heated to 85°C, copper sulfate (Cu ++ ; containing 0.11 mol)
It was added dropwise over 1 hour to 1000 g of an aqueous solution containing 17.9 g of concentrated sulfuric acid and 5.5 g of concentrated sulfuric acid. After 3 hours of continuous reaction, the residual concentration of hydroperoxide is 0.1% by weight.
The reaction was essentially almost complete. The oil layer was separated and collected, and then neutralized and washed with water to obtain 946 g of an oil layer.

この油層は、m−IpAp30.5重量%、m−
ApCA5.7重量%、m−DKA3.6重量%、m−
MCA12.4重量%含んでいた。m−MHPOからm
−IpApへの収率は88.0%であつた。(但し原料中
に含んでいたm−IpApは含まない。)この油層を
次の脱水反応に供した。
This oil layer contained m-IpAp30.5% by weight, m-
ApCA5.7% by weight, m-DKA3.6% by weight, m-
It contained 12.4% by weight of MCA. m-MHPO to m
The yield to -IpAp was 88.0%. (However, m-IpAp contained in the raw material was not included.) This oil layer was subjected to the next dehydration reaction.

<脱水反応> 先に得られた油層200g及びp−トルエンスル
ホン酸0.1gを用い、実施例1と同様な方法でカ
ルビノール化合物の脱水反応蒸留を行なつた結
果、留出油180.0g留出水7.5g回収した。
<Dehydration reaction> Using 200 g of the oil layer obtained earlier and 0.1 g of p-toluenesulfonic acid, a dehydration reaction distillation of the carbinol compound was carried out in the same manner as in Example 1. As a result, 180.0 g of distillate oil was distilled. 7.5g of water was recovered.

油層のGC分析の結果カルビノール化合物は、
ほぼ100%脱水してイソプロペニル化合物に転化
しており、m−IpAp33.2重量%、m−ApST5.4
重量%、m−DST3.1重量%、m−MST11.8重量
%含まれていた。
As a result of GC analysis of the oil layer, carbinol compounds were found to be
Almost 100% dehydrated and converted to isopropenyl compound, m-IpAp33.2% by weight, m-ApST5.4
It contained 3.1% by weight of m-DST and 11.8% by weight of m-MST.

この留出液をアルカリ洗浄、水洗、脱水の後に
水の水素還元反応に供した。
This distillate was washed with alkali, washed with water, and dehydrated, and then subjected to a hydrogen reduction reaction of water.

<水素還元> 先に得られた油層50g、触媒5%Pd−C0.5g
を用い、実施例1と同様な方法で水素還元反応を
行なつた。得られた油層を分析した結果m−
IpAp及びm−ApSTは98%の収率でm−IpMBA
へ、m−DST及びm−MSTは99%の収率でm−
DCへ転化していた。
<Hydrogen reduction> 50 g of the oil layer obtained earlier, 0.5 g of catalyst 5% Pd-C
A hydrogen reduction reaction was carried out in the same manner as in Example 1. As a result of analyzing the obtained oil layer, m-
IpAp and m-ApST were converted into m-IpMBA with 98% yield.
m-DST and m-MST are m-DST and m-MST in 99% yield.
It was converted to DC.

<m−IpMBAの回収> 前述のヒドロペルオキシドの分解〜水素還元反
応と同様な操作を行なつて得た水素還元反応液
500gを用いて、実施例1と全く同様にしてm−
IpMBAの回収を行なつた。(なお原料中には、
m−IpMBAが38.1重量%、m−DCが59.0重量%
含まれている。)留出温度96〜97℃の留分が155.5
g回収された。GC分析の結果m−IpMBAが99.2
%含まれ、この回収率は81%であつた。なお合せ
て純度98.5%のm−DC284gが回収できた。
<Recovery of m-IpMBA> Hydrogen reduction reaction solution obtained by performing the same operation as the above-mentioned hydroperoxide decomposition ~ hydrogen reduction reaction
Using 500g, m-
IpMBA was recovered. (In addition, the raw materials include
m-IpMBA 38.1% by weight, m-DC 59.0% by weight
include. ) The fraction with a distillation temperature of 96-97℃ is 155.5
g was recovered. GC analysis result m-IpMBA is 99.2
The recovery rate was 81%. In total, 284 g of m-DC with a purity of 98.5% was recovered.

Claims (1)

【特許請求の範囲】 1 (2−ヒドロキシ−2−プロピル)−キユメ
ンヒドロペルオキシド及び/又はジイソプロピル
ベンゼンモノヒドロペルオキシドを不活性ガスの
雰囲気下、鉄塩と銅塩及び酸を含む水層の存在下
で分解し、(2−ヒドロキシ−2−プロピル)−ア
セトフエノン及び/又はイソプロピルアセトフエ
ノンを得、油層から(2−ヒドロキシ−2−プロ
ピル)−アセトフエノン及び/又は、イソプロピ
ルアセトフエノンを分離回収することなしに引続
いて酸触媒存在下の脱水反応に供し、次いで水添
触媒の存在下に、水素還元して、1−(イソプロ
ピルフエニル)−エチルアルコールを製造するこ
とを特徴とする1−(イソプロピルフエニル)−エ
チルアルコールの製造方法。 2 鉄塩と銅塩が水に可溶な硫酸塩であることを
特徴とする特許請求の範囲第1項記載の製造方
法。
[Claims] 1. (2-Hydroxy-2-propyl)-cumene hydroperoxide and/or diisopropylbenzene monohydroperoxide in the presence of an aqueous layer containing iron salt, copper salt and acid in an inert gas atmosphere. (2-hydroxy-2-propyl)-acetophenone and/or isopropylacetophenone is obtained, and (2-hydroxy-2-propyl)-acetophenone and/or isopropylacetophenone is separated and recovered from the oil layer. 1, characterized in that 1-(isopropylphenyl)-ethyl alcohol is produced by subjecting the product to a dehydration reaction in the presence of an acid catalyst and then reducing it with hydrogen in the presence of a hydrogenation catalyst. A method for producing -(isopropylphenyl)-ethyl alcohol. 2. The manufacturing method according to claim 1, wherein the iron salt and the copper salt are water-soluble sulfates.
JP58248450A 1983-12-23 1983-12-23 Production of 1-(isopropylphenyl)-ethyl alcohol Granted JPS60136526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248450A JPS60136526A (en) 1983-12-23 1983-12-23 Production of 1-(isopropylphenyl)-ethyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248450A JPS60136526A (en) 1983-12-23 1983-12-23 Production of 1-(isopropylphenyl)-ethyl alcohol

Publications (2)

Publication Number Publication Date
JPS60136526A JPS60136526A (en) 1985-07-20
JPS6410503B2 true JPS6410503B2 (en) 1989-02-22

Family

ID=17178309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248450A Granted JPS60136526A (en) 1983-12-23 1983-12-23 Production of 1-(isopropylphenyl)-ethyl alcohol

Country Status (1)

Country Link
JP (1) JPS60136526A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735699B (en) * 2021-09-17 2024-01-23 黑龙江立科新材料有限公司 Preparation method of acetophenone

Also Published As

Publication number Publication date
JPS60136526A (en) 1985-07-20

Similar Documents

Publication Publication Date Title
US6841704B2 (en) Process for preparing cumene which is used in the preparation of phenol
US3959381A (en) Phenol and cyclohexanone manufacture
AU2002217114B2 (en) Process for preparing oxirane compounds
US5859301A (en) Process for preparing alkanones and alkanols
AU2002217114A1 (en) Process for preparing oxirane compounds
AU2002216112A1 (en) Preparation of oxirane compounds
JP4090885B2 (en) Method for producing cyclohexanone oxime
JP2006509829A (en) Co-production of phenol, acetone, α-methylstyrene and propylene oxide and catalyst thereof
JP2774607B2 (en) Method for producing phenol and method for obtaining propylene from by-product acetone during production
KR101431121B1 (en) Process for purifying of acetone
EP2837616B1 (en) Method for purifying phenol
CS220799B2 (en) Method of preparation of the cyclohexanole or cyclohexanone
WO2002026680A1 (en) Hydrogenation of cleavage effluents in phenol production
JPS6410503B2 (en)
US4486605A (en) Method for producing aromatic carbonyl compounds
JPH05977A (en) Method for purifying mixture of cyclododecanol and cyclododecanone
US4282382A (en) Production of cyclohexylbenzene hydroperoxide
US4001342A (en) Production of ethylphenols
CN113651775B (en) Process for removing aldehydes
EP0053847A1 (en) Process for the preparation of cyclohexanol and/or cyclohexanone
JPH0776187B2 (en) Method for producing resorcinol by oxidizing and decomposing dihydroperoxide
JPH0672921A (en) Production of phenol and methyl ethyl ketone
JPH0776188B2 (en) Process for producing resorcinol by decomposing dihydroperoxide
US4579967A (en) Production of alkyl methacrylate
JPS6241657B2 (en)