JPS6397207A - Filtration separator - Google Patents

Filtration separator

Info

Publication number
JPS6397207A
JPS6397207A JP24251986A JP24251986A JPS6397207A JP S6397207 A JPS6397207 A JP S6397207A JP 24251986 A JP24251986 A JP 24251986A JP 24251986 A JP24251986 A JP 24251986A JP S6397207 A JPS6397207 A JP S6397207A
Authority
JP
Japan
Prior art keywords
filtration
filtrate
tubular body
passage
porous tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24251986A
Other languages
Japanese (ja)
Inventor
Hiroaki Oe
大江 宏明
Tatsuo Suzuki
鈴木 龍夫
Keinosuke Isono
啓之介 磯野
Masaaki Kono
雅昭 河野
Takeshi Sato
健 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINSOZAI SOGO KENKYUSHO KK
Nihon Cement Co Ltd
Original Assignee
SHINSOZAI SOGO KENKYUSHO KK
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINSOZAI SOGO KENKYUSHO KK, Nihon Cement Co Ltd filed Critical SHINSOZAI SOGO KENKYUSHO KK
Priority to JP24251986A priority Critical patent/JPS6397207A/en
Publication of JPS6397207A publication Critical patent/JPS6397207A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title separator capable of being stably used over a long period by fixing the thickness of a raw liq. passage formed between a housing and a porous tubular body. CONSTITUTION:The filtration separator 1 is formed with the housing 2 and the porous tubular body 3 made of a ceramic. The housing 2 is provided with a raw liq. inlet 4, a raw liq. outlet 5, and filtrate outlets 6 and 6'. The porous tubular body 3 made of a ceramic is held in the housing 2, and a raw liq. passage 7 and a filtrate passage 8 are formed. The raw liq. passage 7 is communicated to the raw liq. inlet 4 and the raw liq. outlet 5. The filtrate passage 8 communicates with the filtrate outlets 6 and 6'. The raw liq. passage 7 and the filtrate passage 8 are separated from each other by the porous tubular body 3 made of a ceramic. Besides, the thickness of the raw liq. passage 7 is controlled to 0.1-1mm. As a result, the filter surface is hardly clogged, and a filtration separator capable of being stably used over a long period can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は濾過分離装置に関する。さらに詳しくは、各種
高分子量物質を溶質として含み、微生物、細胞その他の
微粒子を含む懸濁液よりこれらの懸濁成分の分離を必要
とする食品、医薬品工業をはじめとする各種産業分野で
長期に互って安定して使用できる濾過分離装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a filtration separation device. More specifically, it has been used for a long time in various industrial fields including the food and pharmaceutical industries, which contain various high molecular weight substances as solutes and require the separation of these suspended components from suspensions containing microorganisms, cells, and other fine particles. The present invention relates to a filtration separation device that can be used stably.

〔従来の技術〕[Conventional technology]

食品、医薬品工業等に於いては発酵槽や培養槽等の反応
槽の中で生産された低分子量物質と微生物や培養細胞、
未反応固形物や異物といった有形成分との分離が行われ
ている。逆に生産物としての微生物細胞を得る場合にも
培地との分離、成育を阻害する老廃物除去の目的で分離
が行われている。このような懸濁液すなわち分子量10
00〜2.000,000の高分子量物質を溶質として
含み、さらに1〜1000μmの大きさの粒子を含む懸
濁液よりの各成分の分離方法としては、遠心分離、深層
濾過、精密濾過、限外濾過法等が主として用いられてい
る。
In the food and pharmaceutical industries, low molecular weight substances produced in reaction tanks such as fermenters and culture tanks, as well as microorganisms and cultured cells,
Formed components such as unreacted solids and foreign matter are separated. Conversely, when obtaining microbial cells as a product, separation is performed for the purpose of separating them from the culture medium and removing waste products that inhibit growth. Such a suspension i.e. molecular weight 10
Centrifugation, depth filtration, precision filtration, limited External filtration method etc. are mainly used.

遠心分離法は、このような懸濁液の清澄化にはよく用い
られる方法であるが、大量処理には機器が大がかりにな
ること、連続処理システムへの組込みがやっかいであり
、分離中に汚染を受けやすいといった問題点があった。
Centrifugation is a commonly used method for clarifying such suspensions, but it requires large-scale equipment for large-scale processing, is cumbersome to incorporate into a continuous processing system, and is prone to contamination during separation. The problem was that it was easy to receive.

深層濾過法はアスベストや濾紙、ガラス繊維等から作ら
れる繊維状シートあるいはマントを厚みを持たせた濾材
とし、懸濁液中の懸濁成分を濾材内に捕捉することによ
って分離を行うものである。
The depth filtration method uses a thick fibrous sheet or mantle made of asbestos, filter paper, glass fiber, etc. as a filter medium, and separates suspended components in a suspended liquid by capturing them within the filter medium. .

このため比較的口づまりが起こりにクク、大量処理に向
いているが、濾過分離精度があまり良くなかった。
For this reason, it is relatively prone to clogging and is suitable for large-scale processing, but the accuracy of filtration and separation is not very good.

これに対して、精密濾過法、限外濾過法は主として膜表
面で除去が行われる表層濾過法であり、深層濾過法に比
べてより正確な分離ができる。
On the other hand, precision filtration and ultrafiltration are surface filtration methods in which removal is mainly performed on the membrane surface, allowing for more accurate separation than depth filtration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

精密濾過法、限外濾過法の場合、懸濁液中の懸濁成分に
より濾過膜面がすくに目づまりをおこすと言う欠点があ
った。そのため長時間に互って濾過を行うときには、逆
洗浄等の洗浄を行って目づまりを除去するという工程が
常に必要であった。
In the case of microfiltration and ultrafiltration, there is a drawback that the filter membrane surface easily becomes clogged by suspended components in the suspension. Therefore, when filtration is carried out over a long period of time, it is always necessary to carry out cleaning such as backwashing to remove clogging.

特に、醗酵槽や培養槽等の反応槽の中の溶液中の生産物
や基質の濃度変化のモニターを行う場合、精密濾過装置
等によって微生物、微粒子等を除いているが、従来の装
置ではすくに目づまりを起こし、数日間以上逆洗浄を行
わずに精密濾過を行う事は不可能であった。
In particular, when monitoring changes in the concentration of products and substrates in solutions in reaction tanks such as fermentation tanks and culture tanks, microorganisms and particulates are removed using microfiltration equipment, but conventional equipment is unable to do so. It was impossible to carry out precision filtration without backwashing for more than a few days.

さらに、濾材に有機高分子材料を用いると、耐熱性、耐
薬品性、耐久性が低く、使用できる分野が限られていた
。特に、耐久性の面では、長時間の使用でピンホールの
発生の危険性があり、また目づまりしたときの逆洗浄の
ときにもピンホールの発生の危険性が高く、濾過装置の
信頼性に欠ける面があった。
Furthermore, when an organic polymer material is used as a filter medium, its heat resistance, chemical resistance, and durability are low, and the fields in which it can be used are limited. In particular, in terms of durability, there is a risk of pinholes occurring after long-term use, and there is also a high risk of pinholes occurring during backwashing when clogged. There were some aspects that were lacking.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、無機質製多孔質管状体と原液流入口、原液流
出口および濾液流出口を有する函体で構成される濾過分
離装置に於て、前記函体と前記多孔質管状体の外表面と
の間に前記原液流入口と前記原液流出口に連通ずる原液
の流体流路を形成し、前記原液流体流路の厚みを0.1
〜111とし、前記多孔質管状体の内側に前記濾液流出
口に連通ずる濾液流体流路を形成する濾過分離装置を提
供することにより、上記問題点を解決した。
The present invention provides a filtration separation device comprising an inorganic porous tubular body and a box having a stock solution inlet, a stock solution outlet, and a filtrate outlet. A fluid flow path for the stock solution communicating with the stock solution inlet and the stock solution outlet is formed between the stock solution inlet and the stock solution outlet, and the thickness of the stock solution fluid flow channel is set to 0.1.
The above problems were solved by providing a filtration and separation device in which a filtrate fluid flow path communicating with the filtrate outlet was formed inside the porous tubular body.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図A、Bに示すように、本発明の濾過分離装置1は
函体2とセラミックス製多孔質管状体3により構成され
ている。函体2は、原液流入口4、原液流出口5、濾液
流出口6.6″を有している。
As shown in FIGS. 1A and 1B, the filtration and separation device 1 of the present invention is comprised of a box 2 and a porous tubular body 3 made of ceramics. The box 2 has a stock solution inlet 4, a stock solution outlet 5, and a filtrate outlet 6.6''.

セラミックス製多孔質管状体3は、函体2の内部に保持
され、原液流体流路7と濾液流体流路8を形成している
。原液流体流路7ば、原液流入口4と原液流出口5に連
通している。濾液流体流路8は濾液流出口6.6゛に連
通している。原液流体流路7と濾液流体流路8は、それ
ぞれセラミックス製多孔質管状体3によって隔離されて
いる。セラミックス製多孔質管状体3の目づまりを起こ
しにくくするためには、後に実験結果に暴づいて説明す
るように、原液流体流路の厚みを0.1〜1鶴にする必
要がある。厚みカ月龍以上になると、聖典断速度が小さ
くなり、目づまりが起こりやすくなる。また、厚みをQ
、14i以下にすると、原液側の圧力損失が大きくなり
、効率の良い濾過をすることができないからである。
The ceramic porous tubular body 3 is held inside the box 2 and forms a undiluted solution fluid channel 7 and a filtrate fluid channel 8 . The undiluted solution fluid flow path 7 communicates with the undiluted solution inlet 4 and the undiluted solution outlet 5. The filtrate fluid flow path 8 communicates with the filtrate outlet 6.6'. The raw solution fluid flow path 7 and the filtrate fluid flow path 8 are separated from each other by a ceramic porous tubular body 3. In order to prevent clogging of the ceramic porous tubular body 3, it is necessary to set the thickness of the stock fluid flow path to 0.1 to 1 mm, as will be explained later based on experimental results. When the thickness exceeds Kagetsuryu, the scripture cutting speed decreases and clogging becomes more likely. Also, the thickness is Q
, 14i or less, the pressure loss on the undiluted solution side becomes large and efficient filtration cannot be performed.

原液の懸濁液は原液流入口4より導入され、原液流体流
路7に流入し、原液流出口5より流れ出る。原液は、原
液流体流路7を通過する際、原液の一部がセラミックス
製多孔質管状体3によって濾過され、濾液は濾液流体流
路8に流れ出し、濾液流出口6.6゛より取り出される
。取り出された濾液は、分析装置に運ばれ、連続的に分
析することができる。
A suspension of the stock solution is introduced through the stock solution inlet 4 , flows into the stock solution fluid channel 7 , and flows out from the stock solution outlet 5 . When the stock solution passes through the stock fluid flow channel 7, a portion of the stock solution is filtered by the ceramic porous tubular body 3, and the filtrate flows into the filtrate fluid flow channel 8 and is taken out from the filtrate outlet 6.6''. The removed filtrate is transported to an analyzer and can be continuously analyzed.

第1図A、Bの例では、濾液流体流路8の中に。In the example of FIGS. 1A, B, in the filtrate fluid channel 8.

構造体9が設置されている。セラミックス製多孔質管状
体3は、現在の技術では、細いものを作製することは困
難であり、そのために濾液流体流路8の容積が大きくな
る。それゆえ濾過した濾液を取り出すまでに時間のずれ
が発生する。そこで構造体9を設置して濾液流体流路8
の容積を小さくすることにより、この時間のずれを小さ
くすることができ、濾液を適確にモニターすることが可
能となる。
A structure 9 is installed. With the current technology, it is difficult to manufacture a thin ceramic porous tubular body 3, which increases the volume of the filtrate fluid channel 8. Therefore, a time lag occurs before the filtered filtrate is taken out. Therefore, the structure 9 is installed and the filtrate fluid flow path 8 is
By reducing the volume of the filtrate, this time lag can be reduced, making it possible to accurately monitor the filtrate.

〔作用〕[Effect]

高分子量物質を溶質として含む懸濁液を、濾過面に垂直
に濾過を行う全濾過法により濾過分離するとFJ濁粒子
によって濾過面が急速に目づまりを起こす。一方、濾過
面に平行に懸濁液の流れを形成しつつ濾過を行うクロス
フロー濾過法は、濾過面にそって流れを形成するので、
懸濁粒子の堆積が軽減され目づまりが起こりにくい。そ
して、濾過面に対する流速が速いほど、即ち聖典断速度
が大きいほどこの懸濁粒子の堆積を軽減する効果が高く
なる。
When a suspension containing a high molecular weight substance as a solute is filtered and separated by a total filtration method in which filtration is performed perpendicular to the filter surface, the filter surface is rapidly clogged by FJ turbid particles. On the other hand, in the cross-flow filtration method, which performs filtration while forming a flow of suspension parallel to the filtration surface, the flow is formed along the filtration surface, so
Accumulation of suspended particles is reduced and clogging is less likely to occur. The faster the flow velocity relative to the filter surface, that is, the greater the rupture velocity, the greater the effect of reducing the accumulation of suspended particles.

この聖典断速度を大きくするためには、原液流体流路の
厚みを小さくすることが有効である。本発明者らは、種
々検討をおこなった結果、この原液流体流路の厚みを0
.1〜lll11さらに好ましくは0.2〜0.8鶴に
設定することにより、濾過面の目づまりが起こりにくく
なることを見出した。
In order to increase this scripture breaking speed, it is effective to reduce the thickness of the undiluted fluid flow path. As a result of various studies, the inventors of the present invention have determined that the thickness of this undiluted fluid flow path is 0.
.. It has been found that clogging of the filter surface becomes less likely to occur by setting the value to 1 to lll11, more preferably 0.2 to 0.8.

また、濾材として、無機質製多孔質管状体を用いること
により、従来の有機高分子材料よりも、耐熱性、耐薬品
性、耐久性に優れた濾過分離装置を作製することができ
る。特にセラミックス製多孔質管状体は耐熱製、耐薬品
性、耐久性に優れているので好ましい。
Further, by using an inorganic porous tubular body as a filter medium, it is possible to produce a filtration separation device that has better heat resistance, chemical resistance, and durability than conventional organic polymer materials. In particular, a porous tubular body made of ceramics is preferable because it is heat resistant, has excellent chemical resistance, and is durable.

また、目づまりを起こしにくくするには、濾過面積をで
きる限り大きくすることが有効である。
Furthermore, in order to prevent clogging from occurring, it is effective to make the filtration area as large as possible.

無機質製多孔質管状体はその強度と製造上の問題から、
管状体の壁の厚みはある程度大きくならざるを得ないの
で、管状体の外表面積は内表面積よりかなり大きくなっ
てしまう。そのため原液は管状体の外表面に流す方が表
面積が大きくなるので目づまりが生じにくくなる。
Due to its strength and manufacturing issues, inorganic porous tubular bodies
Since the wall thickness of the tubular body must be increased to some extent, the outer surface area of the tubular body is considerably larger than the inner surface area. Therefore, when the stock solution is poured onto the outer surface of the tubular body, the surface area becomes larger and clogging becomes less likely to occur.

〔実施例〕〔Example〕

実施例1 外径22龍、内径19 m++、長さ300龍のセラミ
ックス製多孔質管状体3を用いて第1図A、Bに示す濾
過分離装置を組み立てた。このとき函体2として内径が
22.18 van、22.3mm 、 22.8mm
 、 23.6m+*、24.21mの5種類のものを
用意した。各々の場合の原液流体流路7の厚みはそれぞ
れ0.09m1.0.15mm、0.4■、0.81.
1 、1 mとなる。この装置を用いて、第2図に示し
た実験回路を組み、循環濾過実験を行った。原液として
生菌数が5.6 XlO7〜7.8 X 10′1個の
大腸菌の培養液を用いた。培地はソーヤペプトン15g
r、カゼインペプトン45gr、NaC115gr 、
グルコース25gr、、KzHPO42,5grを11
の水に溶かしたものを用いた。
Example 1 A filtration and separation apparatus shown in FIGS. 1A and 1B was assembled using a ceramic porous tubular body 3 having an outer diameter of 22 mm, an inner diameter of 19 m++, and a length of 300 mm. At this time, the inner diameter of the box 2 is 22.18 van, 22.3 mm, 22.8 mm.
Five types were prepared: , 23.6m+*, and 24.21m. The thickness of the stock fluid flow path 7 in each case is 0.09 mm, 0.15 mm, 0.4 mm, and 0.81 mm, respectively.
1.1 m. Using this device, the experimental circuit shown in FIG. 2 was constructed and a circulating filtration experiment was conducted. A culture solution of Escherichia coli having a viable cell count of 5.6 XlO7 to 7.8 X 10'1 was used as the stock solution. Medium: Soya peptone 15g
r, casein peptone 45gr, NaC115gr,
Glucose 25gr, KzHPO42,5gr 11
A solution dissolved in water was used.

この原液を貯留槽10より循環ポンプ11により濾過分
離装置に毎分112+iAの流量で導入し、濾液ポンプ
12により毎分l +Ilの濾過量で濾過を行った。
This stock solution was introduced from the storage tank 10 into the filtration and separation device using the circulation pump 11 at a flow rate of 112+iA per minute, and was filtered using the filtrate pump 12 at a filtration rate of 1+Il per minute.

濾過分離装置14の入り口、出口及び濾液側には各々圧
力計13が設置されており濾過中の各々の圧力、すなわ
ち入り口圧(PI)、出口圧(PO)及び濾液圧(PF
)を測定し、濾過に関与する圧力、すなわち式(PI 
+PO)/2−PFで表される隔膜圧着(TMP)と式
(PO−PF)で表される圧ノコ損失(DP)の変化を
調べた。TMPの上昇は多孔質管状体の微細孔の目づま
りを、叶の上昇は原液流体流路のつまりを意味する。
Pressure gauges 13 are installed at the inlet, outlet, and filtrate sides of the filtration separation device 14, and the pressure gauges 13 measure the respective pressures during filtration, that is, inlet pressure (PI), outlet pressure (PO), and filtrate pressure (PF).
) and measure the pressure involved in filtration, i.e. the formula (PI
Changes in diaphragm pressure (TMP) expressed by +PO)/2-PF and pressure saw loss (DP) expressed by the formula (PO-PF) were investigated. An increase in TMP means that the micropores of the porous tubular body are clogged, and an increase in TMP means that the raw fluid flow path is clogged.

第3図は実験結果を示したもので、aばTMPのbはD
Pの変化を示している。流路厚Q 、4 inのものは
10日目でもTMPの変化が全くなく、又叶も低い値で
変化がなく極めて良好に濾過が行われている事を示して
いる。0.15mm、0.81では開始時よりはTMP
は上昇しているものの安定した状態であり、問題となる
目づまりは生じていない。流路厚1 、1 mのものは
DPは極めて低く、安定しているがTMPはしだいに上
昇しており、目づまりが生じていることがわかる。流路
厚0.09mmのものは、叶が非常に高く、又TMPも
高めであり、値がハラついて安定した濾過が行えていな
いことがわかる。
Figure 3 shows the experimental results, where a and b of TMP are D.
It shows the change in P. In the channel thickness Q of 4 inches, there was no change in TMP at all even on the 10th day, and there was no change in leaf value at a low value, indicating that filtration was being performed extremely well. At 0.15mm and 0.81, TMP is higher than at the start.
Although it is rising, it is in a stable condition, and there is no problem of clogging. In the channel thickness of 1.1 m, the DP is extremely low and stable, but the TMP gradually increases, indicating that clogging has occurred. It can be seen that the filter having a channel thickness of 0.09 mm has a very high leaf and a high TMP, and the values are inconsistent, indicating that stable filtration cannot be performed.

この実験結果から、原液流体流路の厚みを0.1〜11
さらに好ましくは0.2〜0.8mmに設定することに
より目づまりが起こりにくくなる事が判る。
From this experimental result, the thickness of the stock fluid flow path was determined to be between 0.1 and 11 mm.
It can be seen that clogging is less likely to occur by setting the thickness more preferably to 0.2 to 0.8 mm.

実施例2 外径221m、内径19111、長さ300nのセラミ
ックス製多孔質管状体3を用い、第1図に示した濾過分
離装置1を組立てた。函体2として22.8mmの内径
のものを用いて第2図に示した実験回路により循環濾過
実験を行った。原液として酒精酵母の培養液(培養濃度
20g/ 1 )を用いた。培地はグルコース200g
、酵母エキス10gr、麦芽エキス2gr。
Example 2 The filtration and separation apparatus 1 shown in FIG. 1 was assembled using a ceramic porous tubular body 3 having an outer diameter of 221 m, an inner diameter of 19111 m, and a length of 300 n. A circulation filtration experiment was conducted using the experimental circuit shown in FIG. 2 using a box 2 with an inner diameter of 22.8 mm. A culture solution of alcoholic yeast (culture concentration 20 g/1) was used as the stock solution. Medium is glucose 200g
, yeast extract 10gr, malt extract 2gr.

ペプトン20gr、アスパラギン0.5grを水1βに
溶かしたものを用いた。濾過条件は、循環流量100T
A17分、濾液M1.8献/分で定量濾過を行いTMP
、 DPの変化をみた。循環濾過を約2ケ月(60日間
)連続して実施したが、TMPはl Q s* II 
gから20srs Hgと約2倍になったものの大きな
変動はなく安定しており又DPの上昇等も全くな(濾過
に関して何らの問題も生じていない事力弾す明した。
A solution containing 20 gr of peptone and 0.5 gr of asparagine dissolved in 1 β of water was used. Filtration conditions are circulation flow rate 100T
Perform quantitative filtration at A17 min, filtrate M1.8/min, and TMP
, I looked at the changes in DP. Circulating filtration was performed continuously for about 2 months (60 days), but TMP was l Q s * II
Although it has doubled from g to 20 srs Hg, it has remained stable with no major fluctuations, and there has been no increase in DP (I can confirm that there have been no problems with filtration).

実施例3 外径2211、内径19龍、長さ300酊のセラミック
ス製多孔質管状体3を用い第1図A、Bに示す濾過分離
装置1を作製した。このとき函体2には22.8龍の内
径のものを用いた(原液流体流路厚0.41m)。又構
造体9として外径18.51ffiの棒を用いた。第2
図に示した実験回路を用いて循環流量毎分112−1濾
液流量毎分1社で濾過を行った。
Example 3 A filtration and separation device 1 shown in FIGS. 1A and 1B was manufactured using a ceramic porous tubular body 3 having an outer diameter of 2211 mm, an inner diameter of 19 mm, and a length of 300 mm. At this time, the box 2 used had an inner diameter of 22.8 mm (undiluted fluid flow path thickness: 0.41 m). Further, as the structure 9, a rod having an outer diameter of 18.51ffi was used. Second
Using the experimental circuit shown in the figure, filtration was carried out at a circulation flow rate of 112-1 per minute and a filtrate flow rate of 1 per minute.

原液として、まず水を用いて濾過を行い次で1%グルコ
ース溶液に切り換えて、濾液のグルコース濃度の変化を
測定した。グルコース濃度はソモギ法によって測定した
。比較例として構造体9を設置しない同様の濾過分離装
置を用いた。
As a stock solution, water was first used for filtration, then switched to a 1% glucose solution, and changes in the glucose concentration of the filtrate were measured. Glucose concentration was measured by Somogi method. As a comparative example, a similar filtration separation device without the structure 9 was used.

結果を第4図に示した。実施例では原液をグルコース溶
液に変更後10分で濾過液は原液と同様のグルコース濃
度に達したが、比較例に於いては2時間近くもかかり、
原液の変化に対する応答がきわめて悪いことがわかる。
The results are shown in Figure 4. In the example, the filtrate reached the same glucose concentration as the stock solution in 10 minutes after changing the stock solution to a glucose solution, but in the comparative example, it took nearly 2 hours.
It can be seen that the response to changes in the stock solution is extremely poor.

従って構造体9を函体2に設置することによって、原液
が変化した際の濾過液の応答を瞬時に把握する事ができ
る。
Therefore, by installing the structure 9 in the box 2, it is possible to instantly grasp the response of the filtrate when the stock solution changes.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の濾過分離装置によれば、以
下の様な効果が期待できる。
As described above, according to the filtration separation device of the present invention, the following effects can be expected.

■原液流体流路の厚みを0.1〜l mmに設定し、多
孔質管状体の外表面を濾過面としたので、目づまりが起
こりにくく、その結果2ケ月もの長期に亙って安定して
効率の良い精密濾過を行うことが出来る。
■The thickness of the stock solution fluid channel is set to 0.1 to 1 mm, and the outer surface of the porous tubular body is used as the filtration surface, so clogging is unlikely to occur, and as a result, it remains stable for as long as two months. Efficient precision filtration can be performed.

■濾液流体流路に構造体を設置し、濾液の流体流路の面
積を小さくしているので、濾過した液を取り出すまでの
時間のずれを小さくすることができ、原液中の成分を瞬
時にして適確にモニターすることができる。
■Since a structure is installed in the filtrate fluid flow path to reduce the area of the filtrate fluid flow path, it is possible to reduce the time lag until the filtrate is taken out, and the components in the undiluted solution can be instantly separated. can be accurately monitored.

■濾材として無機質製多孔質管状体を用いているので耐
熱性、耐薬品性、耐久性に優れている。
■Since an inorganic porous tubular body is used as the filter medium, it has excellent heat resistance, chemical resistance, and durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明の実施例の断面図を、第1図Bはその
部分拡大図を、第2図は実験回路を示したもので、第3
図は実験例1の結果を、第4図は実験例2の結果を示し
たものである。 ■・・・濾過分離装置    2・・・函体3・・・多
孔質管状体    4・・・原液流入口5・・・原液流
出口     6.6”・・・濾液流出ロア・・・原液
流体流路    8・・・濾液流体流路9・・・構造体
       10・・・貯留槽11・・・循環ポンプ
     12・・・濾液ポンプ13・・・圧力計  
     14・・・濾過分離装置特許出願人 株式会
社新素材総合研究所外1名 代理人弁理士 石角完爾 外1名 第2図 第3図 ロ 第4図
FIG. 1A is a sectional view of an embodiment of the present invention, FIG. 1B is a partially enlarged view thereof, FIG. 2 is an experimental circuit, and FIG.
The figure shows the results of Experimental Example 1, and FIG. 4 shows the results of Experimental Example 2. ■...Filtration separation device 2...Box 3...Porous tubular body 4...Dot solution inlet 5...Dot solution outlet 6.6"...Filtrate outflow lower...Dot solution fluid Channel 8...Filtrate fluid channel 9...Structure 10...Storage tank 11...Circulation pump 12...Filtrate pump 13...Pressure gauge
14...Patent applicant for filtration separation device: New Materials Research Institute Co., Ltd. (1 person) Representative patent attorney: Kanji Ishizumi (1 person and others) Figure 2, Figure 3, and Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)原液流入口、原液流出口および濾液流出口を有す
る函体と、その函体の内部に設置された無機質製多孔質
管状体からなる濾過分離装置に於いて、前記函体と前記
多孔質管状体との間に前記原液流入口と前記原液流出口
に連通する原液流体流路を形成し、前記原液の流体流路
の厚みを0.1〜1mmとしたことを特徴とする濾過分
離装置。
(1) In a filtration separation device comprising a box having a stock solution inlet, a stock solution outlet, and a filtrate outlet, and an inorganic porous tubular body installed inside the box, the box and the porous A filtration separation method characterized in that a undiluted solution fluid flow path communicating with the undiluted solution inlet and the undiluted solution outlet is formed between the undiluted solution tube-like body, and the thickness of the undiluted solution fluid flow path is 0.1 to 1 mm. Device.
(2)前記多孔質管状体の内側に構造体を設置し、濾液
流体流路の容積を制限したことを特徴とする特許請求の
範囲第1項記載の濾過分離装置。
(2) The filtration separation device according to claim 1, characterized in that a structure is installed inside the porous tubular body to limit the volume of the filtrate fluid flow path.
JP24251986A 1986-10-13 1986-10-13 Filtration separator Pending JPS6397207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24251986A JPS6397207A (en) 1986-10-13 1986-10-13 Filtration separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24251986A JPS6397207A (en) 1986-10-13 1986-10-13 Filtration separator

Publications (1)

Publication Number Publication Date
JPS6397207A true JPS6397207A (en) 1988-04-27

Family

ID=17090312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24251986A Pending JPS6397207A (en) 1986-10-13 1986-10-13 Filtration separator

Country Status (1)

Country Link
JP (1) JPS6397207A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325994A (en) * 2006-06-06 2007-12-20 Kurita Water Ind Ltd Filtering device
US7691266B2 (en) 1999-01-29 2010-04-06 Pall Corporation Separation devices and processes
US8043512B2 (en) 2008-04-11 2011-10-25 Pall Corporation Fluid treatment arrangements and methods
US8048315B2 (en) 2008-07-28 2011-11-01 Pall Corporation Fluid treatment arrangements and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867312A (en) * 1981-09-30 1983-04-21 コンパニイ・ジエネラル・デレクトリシテ Liquid filtering apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867312A (en) * 1981-09-30 1983-04-21 コンパニイ・ジエネラル・デレクトリシテ Liquid filtering apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691266B2 (en) 1999-01-29 2010-04-06 Pall Corporation Separation devices and processes
JP2007325994A (en) * 2006-06-06 2007-12-20 Kurita Water Ind Ltd Filtering device
US8043512B2 (en) 2008-04-11 2011-10-25 Pall Corporation Fluid treatment arrangements and methods
US8048315B2 (en) 2008-07-28 2011-11-01 Pall Corporation Fluid treatment arrangements and methods

Similar Documents

Publication Publication Date Title
US5221479A (en) Filtration system
CN101269298B (en) Membrane filtration method and device for polarization of concentration biomacromolecule with concentration
TWI675696B (en) Tangential flow filtration device for perfusion applications
KR102567418B1 (en) Cell culture system and cell culture method
JP3253961B2 (en) Inorganic filtration unit
Riesmeier et al. Tangential filtration of microbial suspensions: filtration resistances and model development
EP0364173A1 (en) Microfilter device
JP2018076291A (en) Method of recovering useful substances from continuous culture
JPH08173771A (en) Porous monolithic support body for filteration film
JPS62140609A (en) Filtration separator
JPS6397207A (en) Filtration separator
Ripperger Microfiltration
AU779345B2 (en) Method for the removal of particulate matter from aqueous suspension
Schneider et al. The concentration of suspensions by means of crossflow-microfiltration
Caridis et al. Pressure effects in cross-flow microfiltration of suspensions of whole bacterial cells
Taddei et al. Yeast cell harvesting from cider using microfiltration
Mercier-Bonin et al. Air-sparged microfiltration of enzyme/yeast mixtures: determination of optimal conditions for enzyme recovery
JP2852957B2 (en) External pressure type hollow fiber membrane module
JP2014024824A (en) Method for filtering culture broth containing useful protein under perfusion culture
Riesmeier et al. Harvest of microbial suspensions by microfiltration
Wang et al. Study of unsteady-state flux prediction in cross-flow microfiltration
JPS6234388B2 (en)
JPS62160103A (en) Filter separation device
JPH05329339A (en) Filtering apparatus
JP2000070683A (en) Hollow fiber membrane type permeation membrane module