JPS6396974A - Ferromagnetic magnetoresistance element - Google Patents

Ferromagnetic magnetoresistance element

Info

Publication number
JPS6396974A
JPS6396974A JP61242767A JP24276786A JPS6396974A JP S6396974 A JPS6396974 A JP S6396974A JP 61242767 A JP61242767 A JP 61242767A JP 24276786 A JP24276786 A JP 24276786A JP S6396974 A JPS6396974 A JP S6396974A
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
magnetoresistive
ferromagnetic
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61242767A
Other languages
Japanese (ja)
Inventor
Yoshifumi Ogiso
美文 小木曽
Atsuo Senda
厚生 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP61242767A priority Critical patent/JPS6396974A/en
Publication of JPS6396974A publication Critical patent/JPS6396974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain an element which has small saturated magnetic field and a large magnetoresistance effect by laminating specific material thin films. CONSTITUTION:An Ni-Co thin film and an Ni-Fe thin film are laminated. Thus, the characteristic defect of the Ni-Co thin film is eliminated to obtain a ferromagnetic magnetoresistance element having small whole saturated magnetic field, large magnetoresistance effect and an improved sensitivity in a low magnetic field. This element is effective for an MR magnetic head, a sensor for an encoder, a magnetic bubble memory, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気抵抗効果の大伊い強磁性磁気抵抗素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ferromagnetic magnetoresistive element with a large magnetoresistive effect.

(従来の技術と問題点) 磁気抵抗素子を構成する材料としては、たとえば、Ni
−Co系、Ni−Fe系のものが知られている。
(Prior art and problems) Materials constituting the magnetoresistive element include, for example, Ni.
-Co-based and Ni-Fe-based materials are known.

しかしながら、前者のものは、磁気抵抗効果が5〜6%
゛と大゛きいものの、飽和磁界が大芳いため、低磁界に
おける感度に開運があフた。また、後者のものは、飽和
磁界は小さいものの、磁気抵抗効果が3〜4%と小きい
ため、磁気抵抗効果に基づく出力が小きかった。
However, the former has a magnetoresistive effect of 5-6%
Although it was very large, the saturation magnetic field was large, so the sensitivity at low magnetic fields was unlucky. Furthermore, although the saturation magnetic field was small in the latter case, the magnetoresistive effect was as small as 3 to 4%, so the output based on the magnetoresistive effect was small.

このほかに、軟磁性薄膜の保磁力、異方性磁界を低下さ
せるために、回転磁界中あるいは交番磁界中での成膜や
熱処理、または磁気抵抗に近接きせて軟磁性膜を作るな
どの方法がある。しかしながら、これらの方法は工程、
装置などが複雑となり、特性の制譚の困難性、コスト貰
などの点で問題がある。
In addition, in order to reduce the coercive force and anisotropy magnetic field of a soft magnetic thin film, methods such as film formation or heat treatment in a rotating magnetic field or alternating magnetic field, or making a soft magnetic film close to a magnetic resistance are available. There is. However, these methods require steps,
The equipment becomes complicated, and there are problems in terms of difficulty in establishing the characteristics, cost, etc.

(発明の目的) したがフて、この発明は飽和磁界が小きく、従来のNi
−Fe系のみの磁気抵抗素子にくらべて磁気抵抗効果の
大きい強磁性磁気抵抗効果素子を提供することを目的と
する。
(Purpose of the invention) Therefore, this invention has a small saturation magnetic field, and the conventional Ni
An object of the present invention is to provide a ferromagnetic magnetoresistive element having a larger magnetoresistive effect than a -Fe-based magnetoresistive element.

(発明め構成) この発明にかかる磁気抵抗抵抗効果素子は、Ni−Co
系薄膜とNi−Fe系薄膜とを積層し、全体の保磁力を
低下きせるとともに、低磁界における感度を向上きせた
ものである。
(Inventive configuration) The magnetoresistive element according to the present invention is made of Ni-Co
By laminating a Ni--Fe based thin film and a Ni--Fe based thin film, the overall coercive force is lowered and the sensitivity in low magnetic fields is improved.

(発明の効果) この発明により得られる強磁性磁気抵抗効果素子は、N
i−Co系薄膜とNi−Fe系薄膜との積層構造よりな
るため、磁気抵抗効果が大きく、また飽和磁界も太きた
め、低磁界における感度の悪いというNi−Co系薄膜
の欠点を解消で伊ることになり、全体の飽和磁界を低下
させて低磁界における感度を向上させることができる。
(Effect of the invention) The ferromagnetic magnetoresistive element obtained by this invention has N
Since it has a laminated structure of an i-Co thin film and a Ni-Fe thin film, it has a large magnetoresistive effect and a large saturation magnetic field, which eliminates the drawback of Ni-Co thin films such as poor sensitivity in low magnetic fields. Therefore, the overall saturation magnetic field can be lowered and the sensitivity in low magnetic fields can be improved.

この発明にかかる強磁性磁気抵抗効果素子はMR磁気ヘ
ッド、エンコーダ用センサ、磁気バブルメモリなどに有
効なものである。
The ferromagnetic magnetoresistive element according to the present invention is effective for MR magnetic heads, encoder sensors, magnetic bubble memories, and the like.

(実施例) 以下、この発明を実施例に従って詳細に説明する。(Example) Hereinafter, this invention will be explained in detail according to examples.

実施例1 ガラス基板を280℃に加熱し、真空槽2×1O−6T
orr以下に排気し、下記に示す条件で磁気抵抗層を電
子ビーム蒸着法で形成した。
Example 1 A glass substrate was heated to 280°C and placed in a vacuum chamber of 2×1O-6T.
The magnetoresistive layer was formed by electron beam evaporation under the following conditions.

(1)第1層の形成 蒸発源  :Ni92wt%−Fe8wt%のベレット
、純度99.9% 加速電圧 = 8Kv 入力電流 :400mA 蒸着時間 :30秒 膜厚   : 300A (2)第2層の形成 蒸発源  :Ni92wt%−Co30wt%のベレッ
ト、純度99.9% 加速電圧 : 8Kv 入力電流 :500mA 蒸着時間 =7分間 膜厚   : 2000A 上記した条件で形成して得られた磁気抵抗薄膜を第1図
に示すように、両端部を残して110mmX40uの線
形状にエツチング処理した。
(1) Formation of the first layer Evaporation source: Ni92wt%-Fe8wt% pellet, purity 99.9% Accelerating voltage = 8Kv Input current: 400mA Evaporation time: 30 seconds Film thickness: 300A (2) Formation of the second layer Evaporation Source: Ni92wt%-Co30wt% pellet, purity 99.9% Acceleration voltage: 8Kv Input current: 500mA Vapor deposition time = 7 minutes Film thickness: 2000A The magnetoresistive thin film formed under the above conditions is shown in Figure 1. As shown, it was etched into a linear shape of 110 mm x 40 u, leaving both ends intact.

得られた試料の磁気抵抗効果および飽和磁界を1000
eの交流磁界中において2.OmAの定電流で測定した
ところ、以下に示す結果が得られた。
The magnetoresistance effect and saturation magnetic field of the obtained sample were adjusted to 1000
2. In an alternating magnetic field of e. When measured at a constant current of OmA, the following results were obtained.

磁気抵抗効果ΔR/R=4.97% 飽和磁界Hs=500e 実施例2 ガラス基板を300℃に加熱し、真空槽2×10 ””
Torr以下に排気し、下記に示す条件で第1層の磁気
抵抗層を電子ビーム蒸着法で形成した。
Magnetoresistive effect ΔR/R=4.97% Saturation magnetic field Hs=500e Example 2 A glass substrate was heated to 300°C and placed in a vacuum chamber of 2×10
The atmosphere was evacuated to below Torr, and a first magnetoresistive layer was formed by electron beam evaporation under the conditions shown below.

(1)第1FWの形成 蒸発源  :Ni 75wt%−Co25wt%のベレ
ット、°純度99.9% 加速電圧 : 8Kv 入力電流 :400mA 蒸着時間 :4分間 膜厚   : 100OA 第1層を形成したのち、基板を100℃に冷却し、その
のち次の条−件で磁気抵抗層を電子ビーム蒸着法で形成
した。
(1) Formation of the first FW Evaporation source: Ni 75wt%-Co25wt% pellet, purity 99.9% Accelerating voltage: 8Kv Input current: 400mA Evaporation time: 4 minutes Film thickness: 100OA After forming the first layer, The substrate was cooled to 100°C, and then a magnetoresistive layer was formed by electron beam evaporation under the following conditions.

(2)第2層の形成 蒸発源  : N i 85 w t%−Fe15wt
%のベレット、純度99.9% 加速電圧 : 8Kv 入力電流 :400mA  − 蒸着時間 =20秒 膜厚   : 200A 上記した条件で形成して得られた磁気抵抗薄膜を実施例
1と同様にエツチング処理し、両端部を残して10mm
X20μmの線形状とした。
(2) Formation of second layer Evaporation source: Ni 85 wt%-Fe15wt
% pellet, purity 99.9% Acceleration voltage: 8 Kv Input current: 400 mA - Vapor deposition time = 20 seconds Film thickness: 200 A The magnetoresistive thin film obtained by forming under the above conditions was etched in the same manner as in Example 1. , 10mm leaving both ends
It was made into a linear shape of x20 μm.

得られた試料の磁気抵抗効果および飽和磁界をLOOO
eの交流磁界中において2.OmAの電流値で測定した
ところ、以下に示す結果が得られた。
The magnetoresistance effect and saturation magnetic field of the obtained sample are LOOO
2. In an alternating magnetic field of e. When measured at a current value of OmA, the following results were obtained.

磁気抵抗効果ΔR/R=5.07% 飽和磁界Hs=600eMagnetoresistive effect ΔR/R=5.07% Saturation magnetic field Hs=600e

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる強磁性磁気抵抗素子の特性を
測定するための試料の平面図である。
FIG. 1 is a plan view of a sample for measuring the characteristics of a ferromagnetic magnetoresistive element according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] Ni−Co系薄膜とNi−Fe系薄膜の積層構造からな
ることを特徴とする強磁性磁気抵抗素子。
A ferromagnetic magnetoresistive element characterized by having a laminated structure of a Ni--Co thin film and a Ni--Fe thin film.
JP61242767A 1986-10-13 1986-10-13 Ferromagnetic magnetoresistance element Pending JPS6396974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61242767A JPS6396974A (en) 1986-10-13 1986-10-13 Ferromagnetic magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61242767A JPS6396974A (en) 1986-10-13 1986-10-13 Ferromagnetic magnetoresistance element

Publications (1)

Publication Number Publication Date
JPS6396974A true JPS6396974A (en) 1988-04-27

Family

ID=17093972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61242767A Pending JPS6396974A (en) 1986-10-13 1986-10-13 Ferromagnetic magnetoresistance element

Country Status (1)

Country Link
JP (1) JPS6396974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740010A (en) * 2020-06-18 2020-10-02 电子科技大学 Anisotropic magneto-resistance based on multilayer magnetic composite structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740010A (en) * 2020-06-18 2020-10-02 电子科技大学 Anisotropic magneto-resistance based on multilayer magnetic composite structure

Similar Documents

Publication Publication Date Title
JP5731873B2 (en) Metrology assembly having magnetoresistive magnetic field sensor and electronic processing circuit
JP4316806B2 (en) Magnetic multilayer sensor
JPS60251682A (en) Magnetoresistance effect type element
JPH0870149A (en) Magnetoresistance element
JPS6396974A (en) Ferromagnetic magnetoresistance element
KR20050051655A (en) Magnetoresistance effect element and production method and application method therefor
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
Zhou et al. Tunneling magnetoresistance (TMR) materials and devices for magnetic sensors
JP2545935B2 (en) Magnetoresistive thin film and method of manufacturing the same
US12044755B2 (en) Magnetic sensor chip and magnetic sensor device
JPH08316548A (en) Magnetoresistive element
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JPH01152677A (en) Magnetoresistance effect device and its manufacture
JP2806549B2 (en) Magnetoresistance effect element
JP3028585B2 (en) Magnetoresistive element
KR0180590B1 (en) Granular magnetroresistane element and its manufacture
JPH1116726A (en) Ferromagnetic metal compound film
JPH0372949B2 (en)
JPH042185A (en) Magnetoresistance effect thin film
JPH02130880A (en) Magnetoresistance element and manufacture thereof
JPS62128109A (en) Manufacture of high-permeability laminating film
JPH0499005A (en) Magnetostriction film
JPH0499006A (en) Magnetostriction film for magnetostriction
JPS6074589A (en) Ferromagnetic magnetoresistance element
JPS62206891A (en) Magnetoresistance effect element