JPS6396908A - Device for laser-beam irradiation - Google Patents

Device for laser-beam irradiation

Info

Publication number
JPS6396908A
JPS6396908A JP24342986A JP24342986A JPS6396908A JP S6396908 A JPS6396908 A JP S6396908A JP 24342986 A JP24342986 A JP 24342986A JP 24342986 A JP24342986 A JP 24342986A JP S6396908 A JPS6396908 A JP S6396908A
Authority
JP
Japan
Prior art keywords
layer
magnet
semiconductor
holder
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24342986A
Other languages
Japanese (ja)
Inventor
Shigenobu Akiyama
秋山 重信
Genichi Yamazaki
山崎 弦一
Shinichi Ogawa
真一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24342986A priority Critical patent/JPS6396908A/en
Publication of JPS6396908A publication Critical patent/JPS6396908A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-quality crystal layer of a semiconductor by a melting- and-recrystallization process of an Si layer on an amorphous insulating substrate in such a way that, while the thermal convection of a molten semiconductor is prevented by a magnetic field during an irradiation-and-recrystallization process, stable crystal growth is achieved. CONSTITUTION:A plate-like magnet 2A composed of, e.g., graphite is mounted on a specimen holder 1. A specimen, e.g. a semiconductor layer 6 of Si or the like formed on an amorphous substrate 5, is mounted on the magnet 2A at the holder 1. In addition, another plate-like magnet 2B is mounted on a holder 7 which is located at a spatially separated position. A laser beam source, e.g. a beam of argon ion laser 4, which is adjusted to a suitable beam-energy state with a power of several watts, irradiates the Si layer of the amorphous insulating substrate of the specimen, i.e. the SOI semiconductor layer 6, through the upper magnet 2B while it is scanned in the X direction as shown by an arrow. After the layer 6 has been melted, it is then solidified to form a recrystallized layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、試料に磁場をかけなからレーザ光を照射する
レーザ光照射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laser beam irradiation device that irradiates a sample with laser light without applying a magnetic field to the sample.

従来の技術 従来、レーザ光照射装置は、たとえば非晶質絶縁基板上
のシリjン層即ち80 I (Semiconduct
orOn In5ulator )の溶融再結晶化技術
に用いられている。このようなSOI再結晶化層を高品
質に形成するために試料構造として島構造、反射防止膜
構造、シード構造等多くの改良がなされるとともに、デ
ュアルレーザビーム法やスプリットビーム法等レーザビ
ームのエネルギー分布の改良も精力的になされている〔
古川靜二部9日経マイクロデバイス、創刊号、P、P、
175−192 。
2. Description of the Related Art Conventionally, a laser beam irradiation device has been used to irradiate a silicon layer on an amorphous insulating substrate, that is, an 80 I (semiconductor)
orOn In5ulator) is used in the melt recrystallization technology. In order to form such a high-quality SOI recrystallized layer, many improvements have been made to the sample structure, such as an island structure, an anti-reflection film structure, and a seed structure. Efforts are also being made to improve energy distribution [
Seiji Furukawa 9 Nikkei Microdevices, first issue, P, P,
175-192.

1986年7月〕りこの結果、最近では、かなシ高品質
のSOIのシリコン結晶が得られるようになってきてい
る。
July 1986] As a result of this process, recently it has become possible to obtain SOI silicon crystals of very high quality.

発明が解決しようとする問題点 しかしながら、第2図に示すようにレーザ照射により再
結晶化したSOI層には、第2図すに示すように、結晶
粒界8ムや不純物の偏析8Bさらに表面の凹凸8C等の
結晶欠陥が未だ多く存在する。4はレーザ光、6は非晶
質基板、6ムは非晶質半導体層、6Bはレーザ光の照射
部、6Cは再結晶化された半導体層である。このような
結晶欠陥を含んだ80I半導体層に形成されたトランジ
スタ等のデバイスでは、リーク電流の増大や、移動度、
閾値電圧等のバラツキの増大をきたし、高性能のL8I
t得るためには問題となる。したがって、高晶質のSO
I半導体を得るための新たな工夫が必要である。
Problems to be Solved by the Invention However, as shown in Figure 2, the SOI layer recrystallized by laser irradiation has crystal grain boundaries, impurity segregation, and the surface of the SOI layer. There are still many crystal defects such as unevenness 8C. 4 is a laser beam, 6 is an amorphous substrate, 6mm is an amorphous semiconductor layer, 6B is a laser beam irradiation part, and 6C is a recrystallized semiconductor layer. Devices such as transistors formed in 80I semiconductor layers containing such crystal defects may suffer from increased leakage current, mobility,
This results in increased variations in threshold voltage, etc., and high performance L8I
It becomes a problem to obtain t. Therefore, highly crystalline SO
New ideas are needed to obtain I semiconductors.

前記問題点の原因の主な要因の一つとして、レーザ光照
射により溶融したSOIの半導体層は、熱の不均一分布
のために対流をおこし、複雑な状態になっていると考え
られ、レーザ光照射が終了し、固化するとき、溶融状態
がそのまま凍結されその結果、SOI再結晶化層には種
々の結照欠陥が導入されてしまうものと思われる。この
ような熱による融液の対流の防止のために、チョクラル
スキー法(C2法)による結晶成長において磁場をかけ
る方法が既に提案されており成果を上げていることは公
知である〔星金治他9日経エレクトロニクス、1980
年9月16日号、 P、P、154−177)。しかし
、CZ法は準平衡状態での結晶成長であり、レーザ照射
再結晶化のようなきわめて短時間の非平衡の結晶化とは
、大きなちがいが考えられる。
One of the main causes of the above problem is that the SOI semiconductor layer melted by laser beam irradiation causes convection due to uneven distribution of heat, creating a complicated state. When the light irradiation ends and solidifies, the molten state is frozen as it is, and as a result, various glazing defects are thought to be introduced into the SOI recrystallized layer. In order to prevent convection of the melt due to heat, a method of applying a magnetic field during crystal growth using the Czochralski method (C2 method) has already been proposed and is known to have been successful. Osamu et al. 9 Nikkei Electronics, 1980
(September 16, issue, P, P, 154-177). However, the CZ method involves crystal growth in a quasi-equilibrium state, which is considered to be significantly different from very short-time non-equilibrium crystallization such as laser irradiation recrystallization.

問題点を解決するための手段 本発明は、前記問題点を解決するため゛に、磁場をかけ
なからレーザ照射して再結晶化するためのレーザ光照射
装置を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a laser beam irradiation device for recrystallization by laser irradiation without applying a magnetic field.

作用 レーザ照射再結晶化において、磁場により、溶融してい
る半導体の熱対流を防止して、安定な結晶成長を達成す
ることが可能となシ、結果として高品質のSOI半導体
結晶層を得ることができる。
In working laser irradiation recrystallization, it is possible to prevent thermal convection of the molten semiconductor by a magnetic field and achieve stable crystal growth, resulting in a high quality SOI semiconductor crystal layer. Can be done.

実施例 以下に本発明の一実施例について第1図とともに説明す
る。
EXAMPLE An example of the present invention will be described below with reference to FIG.

第1図は、本発明の一実施例に用いるレーザ光照射装置
の概念断面図である。試例ホルダー1はたとえば2次元
平面で可動のXYステージである。
FIG. 1 is a conceptual cross-sectional view of a laser beam irradiation device used in an embodiment of the present invention. The sample holder 1 is, for example, an XY stage movable on a two-dimensional plane.

試料ホルダー1の上面にたとえばグラファイト系ででき
ている板状の磁石2人が設置されている。
Two plate-shaped magnets made of graphite, for example, are installed on the top surface of the sample holder 1.

この試料ホルダー上の磁石2ム上に試料たとえば非晶質
基板S上に形成されているシリコン等の半導体層6が設
置され、さらにこの上に空間的に分離されて、もう一方
の板状磁石2Bがホルダー7にて設置されている。レー
ザ光源たとえばアルゴンイオンレーザの光4がたとえば
、数Wのパワーで適当にビームエネルギー形状で調整さ
れて、上部の磁石2Bを介して試料のSOIの半導体層
6に矢印X方向に走査されて照射され、半導体層6は溶
融固化し再結晶化層となる。このとき上部磁石2Bはレ
ーザ光4が通過して試料6に照射されなくてはならない
ので、たとえば、メツシュ状につくられていればよい。
A sample, for example, a semiconductor layer 6 made of silicon or the like formed on an amorphous substrate S is placed on the magnet 2 on the sample holder, and on top of this is placed another plate-shaped magnet that is spatially separated. 2B is installed with a holder 7. Light 4 from a laser light source, for example, an argon ion laser, has a power of several W and is appropriately adjusted in beam energy shape, and is scanned and irradiated onto the SOI semiconductor layer 6 of the sample in the direction of the arrow X through the upper magnet 2B. Then, the semiconductor layer 6 is melted and solidified to become a recrystallized layer. At this time, since the laser beam 4 must pass through the upper magnet 2B and be irradiated onto the sample 6, the upper magnet 2B may be formed into a mesh shape, for example.

もちろん、メツシュに限らず、レーザ光4が通過できれ
ばよいことは言うまでもない。さらに、上部磁石2Bと
試料ホルダー1上の磁石2人の間で形成される磁場の強
さは、たとえば、半導体層6が溶融して融液となったと
きの熱による撹乱を抑制するだけであれば、数100ガ
ウス程度であればよいが、願わくば、融液の層流も抑え
るためには数1 ’OOOガウス程度あることが望まし
い。
Of course, it goes without saying that the mesh is not limited to the mesh, and it is sufficient if the laser beam 4 can pass therethrough. Furthermore, the strength of the magnetic field formed between the upper magnet 2B and the two magnets on the sample holder 1 is sufficient to suppress the disturbance caused by heat when the semiconductor layer 6 melts into a melt, for example. If so, it may be on the order of several 100 Gauss, but preferably on the order of several 1'OOO Gauss in order to suppress the laminar flow of the melt.

発明の効果 以上のように本発明のレーザ光照射装置により形成した
SOI構造の再結晶化半導体層は、レーザ照射により溶
融状態になった半導体層の熱による対流が抑制され、静
かな固化を生ぜしめることが可能となり、きわめて高品
質となるものであり、LSIレベルの高密度集積素子の
ためのSOI基板形成にきわめて有益である。
Effects of the Invention As described above, in the recrystallized semiconductor layer of the SOI structure formed by the laser beam irradiation apparatus of the present invention, convection due to the heat of the semiconductor layer melted by laser irradiation is suppressed, and quiet solidification occurs. This makes it possible to achieve extremely high quality, and is extremely useful for forming SOI substrates for high-density integrated devices at the LSI level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のレーザ光照射装置の原理を
説明するための断面図、第2図は従来のレーザ照射再結
晶化において再結晶化層に発生する結晶欠陥の導入のさ
れ方を説明する断面図である。 1・・・・・・試料ホルダー、2人、2B・・・・・・
磁石、4・・・・・・レーザ光、6・・・・・・SOI
半導体層。
FIG. 1 is a cross-sectional view for explaining the principle of a laser beam irradiation device according to an embodiment of the present invention, and FIG. 2 is a diagram showing how crystal defects are introduced into a recrystallized layer in conventional laser irradiation recrystallization. FIG. 1...Sample holder, 2 people, 2B...
Magnet, 4... Laser light, 6... SOI
semiconductor layer.

Claims (1)

【特許請求の範囲】[Claims] 試料を設置支持するための支持手段と、前記試料に照射
せしめるレーザ光照射手段と、前記試料に磁場をかける
ための磁器発生手段を備えてなるレーザ光照射装置。
A laser beam irradiation device comprising a support means for installing and supporting a sample, a laser beam irradiation means for irradiating the sample, and a porcelain generating means for applying a magnetic field to the sample.
JP24342986A 1986-10-14 1986-10-14 Device for laser-beam irradiation Pending JPS6396908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24342986A JPS6396908A (en) 1986-10-14 1986-10-14 Device for laser-beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24342986A JPS6396908A (en) 1986-10-14 1986-10-14 Device for laser-beam irradiation

Publications (1)

Publication Number Publication Date
JPS6396908A true JPS6396908A (en) 1988-04-27

Family

ID=17103739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24342986A Pending JPS6396908A (en) 1986-10-14 1986-10-14 Device for laser-beam irradiation

Country Status (1)

Country Link
JP (1) JPS6396908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153232A (en) * 2002-10-30 2004-05-27 Sharp Corp Method for manufacturing semiconductor element and semiconductor element manufactured by the method
US7067403B2 (en) * 2002-11-08 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device that includes adding noble gas to a semiconductor film and then irradiating the semiconductor film with laser light in the presence of a magnetic field
US7160762B2 (en) 2002-11-08 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
US8105445B2 (en) 2003-10-23 2012-01-31 International Business Machines Corporation Method and apparatus for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
CN103769752A (en) * 2012-10-22 2014-05-07 三星泰科威株式会社 Workbench used for laser drilling treatment and method for laser drilling

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153232A (en) * 2002-10-30 2004-05-27 Sharp Corp Method for manufacturing semiconductor element and semiconductor element manufactured by the method
US7067403B2 (en) * 2002-11-08 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device that includes adding noble gas to a semiconductor film and then irradiating the semiconductor film with laser light in the presence of a magnetic field
US7160762B2 (en) 2002-11-08 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
US7585714B2 (en) 2002-11-08 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
US7629235B2 (en) 2002-11-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device that includes adding noble gas to a semiconductor film and then irradiating the semiconductor film with laser light in the presence of a magnetic field
US7842589B2 (en) 2002-11-08 2010-11-30 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus with means for applying magnetic field
US8105445B2 (en) 2003-10-23 2012-01-31 International Business Machines Corporation Method and apparatus for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
US8470092B2 (en) * 2003-10-23 2013-06-25 International Business Machines Corporation Method and apparatus for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
CN103769752A (en) * 2012-10-22 2014-05-07 三星泰科威株式会社 Workbench used for laser drilling treatment and method for laser drilling
JP2014083595A (en) * 2012-10-22 2014-05-12 Samsung Techwin Co Ltd Table for laser processing and laser processing method
KR20140068276A (en) * 2012-10-22 2014-06-09 주식회사 엠디에스 Support table for laser drilling process and method for laser drilling
CN103769752B (en) * 2012-10-22 2016-12-28 海成帝爱斯株式会社 The workbench processed for laser drill and method for drilling holes

Similar Documents

Publication Publication Date Title
JPS59205711A (en) Manufacture of semiconductor device
JPS6396908A (en) Device for laser-beam irradiation
JP2000294793A (en) Manufacture of thin-film transistor
JP4959876B2 (en) apparatus
JPH02112227A (en) Manufacture of semiconductor crystal layer
JPS5850951B2 (en) Crystal growth method and crystal growth equipment used for this method
JPS6163018A (en) Manufacture of semiconductor thin film crystal layer
JPS6325933A (en) Straining method for silicon substrate
JPH04286318A (en) Polycrystalline semiconductor thin film and method and device for manufacture thereof
JPH0556315B2 (en)
JPH0113209B2 (en)
JPH02226718A (en) Production of unsingle crystal semiconductor
Hayama et al. A New Recrystallization Technique for Large Area Thin Film Silicon on Glass Structure
JPS5897835A (en) Semiconductor substrate and manufacture thereof
JPS58114435A (en) Laser annealiing method
Liu et al. Electron irradiation induced crystallization of amorphous Al2O3 films on silicon substrates
RU2072584C1 (en) Method of local liquid epitaxy
JP2834801B2 (en) Semiconductor thin film manufacturing method
JPH03173417A (en) Manufacture of semiconductor thin film
JPH0371767B2 (en)
JPS60257123A (en) Apparatus for growing crystal by fusing surface zone
JPS6235511A (en) Manufacture of semiconductor thin film crystal layer
JPH01131092A (en) Formation of semiconductor single crystal
JPH01162322A (en) Manufacture of semiconductor single crystal layer
JPS61160925A (en) Soi crystal growth method