JPS6396494A - Spacer for supporting heat transfer tube of heat exchanger - Google Patents

Spacer for supporting heat transfer tube of heat exchanger

Info

Publication number
JPS6396494A
JPS6396494A JP24145886A JP24145886A JPS6396494A JP S6396494 A JPS6396494 A JP S6396494A JP 24145886 A JP24145886 A JP 24145886A JP 24145886 A JP24145886 A JP 24145886A JP S6396494 A JPS6396494 A JP S6396494A
Authority
JP
Japan
Prior art keywords
heat exchanger
exchanger tube
heat transfer
spacer
tube holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24145886A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takeda
竹田 信之
Yukio Watabe
幸夫 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24145886A priority Critical patent/JPS6396494A/en
Publication of JPS6396494A publication Critical patent/JPS6396494A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0135Auxiliary supports for elements for tubes or tube-assemblies formed by grids having only one tube per closed grid opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce the pressure loss of the flow of metallic sodium and restrict the damage of the surface of heat transfer tubes, by a method wherein tubular heat transfer tube holders are stored in a multitude of unit cells, divided by a lattice frame, and the heat transfer tubes are held in the holders through shock-absorbing material. CONSTITUTION:Respective heat transfer tubes 2 are penetrated through tubular heat transfer tube holders 15, stored in the unit cells 13 of a lattice frame 12, and the held therein through shock absorbing materials 16. Accordingly, the mutual radial displacement of the heat transfer tubes 2, which may generate upon earthquake, are restricted strongly. The damage of the heat transfer tube 2, due to the mutual contact between the heat transfer tube holder 15 and the heat transfer tube 2, is seldom caused by the effect of a shock absorbing material provided on the inner surface of the heat transfer tube holder 15. Spaces excluding a space provided with the shock absorbing material 16 among the annular spaces, formed between neighboring heat transfer tube holders 15 and between respective heat transfer tube holders 15 and the heat transfer tubes 2, become the flow paths of the metallic sodium, therefore, the area of flow path is increased and the pressure loss of the flow of metallic sodium is reduced compared with the spacers of conventional structure.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は熱交換器の伝熱管支持用スベー4ノに係り、特
に高速増殖炉に付設される蒸気発生器等の大型熱交換2
の伝熱管支持用スペーサ(以下、スペーサと略記する)
の構造に関する。
Detailed Description of the Invention (Objective of the Invention) (Industrial Field of Application) The present invention relates to a heat exchanger tube support tube 4, particularly for large-scale steam generators attached to fast breeder reactors. heat exchange 2
spacer for supporting heat exchanger tubes (hereinafter abbreviated as spacer)
Regarding the structure of

(従来の技術) 高速増殖炉に付設される大型熱交換器としては種々の型
式が開発されているが、一般的には第6図に例示するよ
うな一体員流式直管型の蒸気発生器が採用されている。
(Prior art) Various types of large-scale heat exchangers have been developed to be attached to fast breeder reactors, but generally speaking, a one-piece flow type straight pipe type steam generator as illustrated in Fig. 6 is used. equipment is used.

すなわら、筒状の蒸気発生器用体1の軸方向に数千本に
及ぶ伝熱管2が配設されており、伝熱管2の両端は管板
3,4によっ°Cそれぞれ支持され、胴体1に一体的に
固定される。また、伝熱管2は、管板間に所定間隔をお
いて配設されたスベー+j 5により支持されて半径方
向の変位が拘束される。
That is, several thousand heat exchanger tubes 2 are arranged in the axial direction of a cylindrical steam generator body 1, and both ends of the heat exchanger tubes 2 are supported by tube plates 3 and 4, respectively. It is integrally fixed to the body 1. Further, the heat exchanger tubes 2 are supported by the tubes 5 disposed at a predetermined interval between the tube sheets, so that displacement in the radial direction is restrained.

蒸気発生器胴体1の側部には、蒸気発生器内のジャケッ
ト側を流通する加熱媒体である金属ナトリウムの流入口
6および流出[17が設けられ、一方、伝熱管側を流れ
る被加熱媒体である水が流入する水入[18と、水が金
属ナトリウムと向流接触して熱交換し、蒸気となって流
出する蒸気出口9が1シ4休1の両端部に設りられてい
る。
The side of the steam generator body 1 is provided with an inlet 6 and an outlet [17] for metallic sodium, which is a heating medium flowing through the jacket side in the steam generator, while an inlet 6 and an outlet 17 are provided for the heated medium flowing through the heat transfer tube side. A water inlet [18] into which a certain amount of water flows, and a steam outlet 9 through which water comes into countercurrent contact with metallic sodium to exchange heat and flow out as steam are provided at both ends of the 1st and 4th part.

従来のスペーサ5の構造は、第7図および第8図に例示
するように、伝熱管2を挿通する伝熱管孔10と、金属
ナトリウムが流通づるlトリウム70−ホール11を多
数穿設した平板状の部材として構成されている。なお、
スペーサ5は蒸気発生:≦内部における組立工程を簡素
化7るために、例えば半径方向に複数に分割した構造で
製作される。
The structure of the conventional spacer 5 is, as illustrated in FIGS. 7 and 8, a flat plate in which a heat exchanger tube hole 10 through which the heat exchanger tube 2 is inserted and a large number of thorium holes 11 through which metallic sodium flows are bored. It is constructed as a shaped member. In addition,
In order to simplify the internal assembly process, the spacer 5 is manufactured, for example, in a structure divided into a plurality of parts in the radial direction.

(発明が解決しようとする問題点) 前記スペーサ5の設計に際しては、スベー9−5が地震
発生時においても伝熱管2を所定位置に保持1゛る強度
部材としての剛性を右づることと、伝熱管2外壁を流れ
る金属ナトリウムの流通に障害とならないように流通面
積を充分広く確保することが基本的な設計指針である。
(Problems to be Solved by the Invention) When designing the spacer 5, the rigidity of the base 9-5 as a strength member that can hold the heat exchanger tube 2 in a predetermined position even in the event of an earthquake is determined; The basic design guideline is to ensure a sufficiently wide flow area so that the flow of metallic sodium flowing through the outer wall of the heat exchanger tube 2 is not obstructed.

しかしながら、金属ナトリウムの流動抵抗を低減するた
めにナトリウムフ[1−ホール11の口径と配置数を増
大させることは、スペーサ5自体の剛性の低下を招来し
、耐震性を損うことにつながる。
However, increasing the diameter and number of sodium holes 11 in order to reduce the flow resistance of metallic sodium leads to a decrease in the rigidity of the spacer 5 itself, which impairs earthquake resistance.

一方、金属ナトリウムの流路面積を増大させるために、
伝熱管2を挿通する伝熱管孔10の口径を伝熱管2の外
径より所定以上に大きく設定すると、伝熱管2の半径方
向の変位に対する拘束力が低下し好ましくない。
On the other hand, in order to increase the flow path area of metallic sodium,
If the diameter of the heat exchanger tube hole 10 through which the heat exchanger tube 2 is inserted is set to be larger than the outer diameter of the heat exchanger tube 2 by more than a predetermined value, the restraining force against the radial displacement of the heat exchanger tube 2 will decrease, which is not preferable.

したがって、スペーサ5の設計においては、まず所定数
の伝熱管孔を設けた後に、スペーサ5に最小限必要とさ
れる耐震強度を確保するための断面積を残し、ナトリウ
ムフローホール11の断面積が最大となるようにナトリ
ウム70−ホール11の口径と配置が設定されている。
Therefore, in designing the spacer 5, after first providing a predetermined number of heat transfer tube holes, a cross-sectional area for ensuring the minimum seismic strength required for the spacer 5 is left, and the cross-sectional area of the sodium flow hole 11 is The diameter and arrangement of the sodium 70-hole 11 are set to maximize the sodium 70-hole 11.

しかし、上記の基準によって設計されたスペーサ5を蒸
気発生器に採用した場合、一般に蒸気発生器胴体1の径
方向の総断面積に占めるナトリウムフロ−ホール11の
流路面積の合計の割合は非常に小さい。そのため、金属
ナトリウムが胴体内を流れる際の圧力損失が大きく金属
ナトリウム循環ポンプの11荷を増大化する原因となっ
ていた。
However, when a spacer 5 designed according to the above criteria is adopted in a steam generator, the ratio of the total flow area of the sodium flow holes 11 to the total radial cross-sectional area of the steam generator body 1 is generally very small. small. Therefore, the pressure loss when metallic sodium flows through the fuselage is large, causing an increase in the load of the metallic sodium circulation pump.

一方、蒸気発生器胴体1の中位所面積当りのスペー1y
5〕の重Frlは非常に大きいため、多大な製作費を要
し、また取付ける周辺部材の強度も大きく設定Jる必要
があった。
On the other hand, the space per area of the middle part of the steam generator body 1 is 1y.
Since the weight Frl of item 5] is very large, it requires a large manufacturing cost, and it is also necessary to set the strength of the surrounding members to be attached to be large.

さらに、従来のスペー+15においては、伝熱管2外径
J、りわずかに大きい内径を右する伝熱管孔10に伝熱
管2を沖通しでいたため、伝熱管2の不均一な熱膨張ま
たは地震による振動が作用した場合、伝熱管2と伝熱管
孔10とが接触する二面間において繰り返して微小滑り
を生じて摩耗を生起し、いわゆるフレッティングコロ−
ジョンにJ、って伝熱管2が損傷するおそれがあった。
Furthermore, in the conventional Space+15, the heat exchanger tube 2 was passed through the heat exchanger tube hole 10 with a slightly larger inner diameter than the heat exchanger tube 2 outer diameter J, which caused uneven thermal expansion of the heat exchanger tube 2 or earthquakes. When the vibrations caused by the heat exchanger tube 2 and the heat exchanger tube hole 10 are in contact with each other, repeated micro-slips occur between the two surfaces, causing wear, resulting in so-called fretting rollers.
There was a risk that the heat exchanger tube 2 would be damaged.

本発明は、上記の問題点をM’d”Iするために発案さ
れたものであり、伝熱管相Uの半径方向の変位を充分拘
束ぐきる耐震強度を維持しながら伝熱管支持用スペーサ
の軽ω化を図り、かつ金属ノトリウム流の圧力損失を低
減し、さらに伝熱管表面にJNノる摩耗、フレッフイン
グ]ローシコンによる損傷をfIT及的に抑制し1tZ
る熱交筒器の伝熱管支持用スペーサを提供することを目
的とJ−る。
The present invention was devised to solve the above-mentioned problems, and it is possible to improve the spacer for supporting heat exchanger tubes while maintaining seismic strength that sufficiently restrains the displacement of the heat exchanger tube phase U in the radial direction. Aiming to reduce the weight of ω, reduce the pressure loss of the metal notorium flow, and further suppress the damage caused by JN wear and fretting on the surface of the heat exchanger tube.
The object of the present invention is to provide a spacer for supporting heat exchanger tubes in a heat exchanger cylinder.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この発明に係る熱交換器の伝熱管支持用スペーサ゛は、
格子枠木材を縦横に交差させて組み立てた格子枠と、格
子枠によって区画形成され、多角形の開口形状を有する
多数の単位セルと、前記単位セル内に軸方向を揃えて装
填した複数の筒状の伝熱管ホルダとを備え、前記伝熱管
ホルダに挿通した伝熱管を保持し、かつ伝熱管ホルダと
伝熱管との相互接触を防止する緩衝材を伝熱管ホルダの
内周部に設()たことを特徴とする。
(Means for solving the problem) A spacer for supporting heat exchanger tubes of a heat exchanger according to the present invention includes:
Lattice frame A lattice frame assembled by crisscrossing pieces of wood, a large number of unit cells partitioned by the lattice frame and having polygonal opening shapes, and a plurality of cylinders loaded into the unit cells with their axes aligned. a heat exchanger tube holder having a shape, and a buffer material is provided on the inner circumference of the heat exchanger tube holder to hold the heat exchanger tube inserted into the heat exchanger tube holder and prevent mutual contact between the heat exchanger tube holder and the heat exchanger tube. It is characterized by:

(作用) 上記構成の伝熱管支持用スベー1すによれば、各伝熱管
は格子枠の単位セル内に装填された筒状の伝熱管ホルダ
に挿通され、また緩衝材を介して保持される。したがっ
て、地震時において発生づる伝熱管相tiの2r径方向
の変位は強固に拘束される。また、伝熱管ホルダ内面に
設けた緩衝材の作用により、伝熱管ホルダと伝熱管とが
相互に接触lノで損傷することが少ない。
(Function) According to the heat exchanger tube support base 1 having the above configuration, each heat exchanger tube is inserted into the cylindrical heat exchanger tube holder loaded in the unit cell of the lattice frame, and is also held through the buffer material. . Therefore, the displacement of the heat transfer tube phase ti in the 2r radial direction that occurs during an earthquake is firmly restrained. Furthermore, due to the effect of the buffer material provided on the inner surface of the heat exchanger tube holder, damage to the heat exchanger tube holder and the heat exchanger tubes due to mutual contact is less likely.

また隣接する伝熱管ホルダ相互の間隙部分および各伝熱
管ホルダと伝熱管どの間に形成される環状空間のうち緩
衝材を設置」た空間を除いた空間は、金属ノ]・リウム
の流路となるため、従来の構造のスペーサと比較して流
路面積が増大し、金属ナトリウム流の圧力損失が少ない
In addition, the space between adjacent heat exchanger tube holders and the annular space formed between each heat exchanger tube holder and the heat exchanger tube, excluding the space in which the buffer material is installed, is the flow path of metallium. Therefore, compared to a spacer with a conventional structure, the flow path area is increased and the pressure loss of the metal sodium flow is reduced.

ざらに、格子枠および伝熱管ホルダは−・般に薄&材料
にJ、って形成されるため、厚板を穿孔して形成した従
来のスペーサと比較して部材組tl)を大幅に低減する
ことができる。
In general, the lattice frame and heat exchanger tube holder are generally thin and made of material, so the number of parts required for assembly is significantly reduced compared to conventional spacers formed by drilling holes in thick plates. can do.

(実施例) 以下、本発明の一実施例について第1図〜第5図の図面
を参照して説明ηる。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings of FIGS. 1 to 5.

第1図は本発明に係る伝熱管支持用スペー475のル−
ムとなる格子枠12を示す平面図である。
FIG. 1 shows the rules of the heat exchanger tube support space 475 according to the present invention.
FIG.

格子枠12は、例えば帯状の格子枠ん(イ14を縦横方
向または斜め方向に組み上げて形成11”る。
The lattice frame 12 is formed, for example, by assembling strip-shaped lattice frames (11) in the vertical and horizontal directions or diagonally.

また、格子枠12には、格子枠索材14によって区画さ
れ、多角形の開口形状を右づる単位セル13が多数形成
される。
Further, in the lattice frame 12, a large number of unit cells 13 are formed, which are partitioned by the lattice frame cords 14 and have a polygonal opening shape.

li位セル13の形状は格子枠索材14の組み上げ方に
よっては第3図(A)、(B)に例示1゛るように正四
角形または正六角形などの多角形が採用されるが、一般
的にn造強度が優れた正三角形が望ましい。
Depending on how the lattice frame cables 14 are assembled, the shape of the li-cell 13 may be a polygon such as a regular square or a regular hexagon, as shown in FIGS. 3(A) and 3(B). An equilateral triangle with excellent structural strength is desirable.

また、単位セル13の配設数は、伝熱管総数に応じて数
10〜数100に分割づるように設定する。
Further, the number of unit cells 13 is set to be divided into several tens to several hundreds depending on the total number of heat exchanger tubes.

各中位セル13には第2図に例示するように、伝熱管2
を1本ずつ挿通した筒状の伝熱管ホルダ15が軸方向4
−揃えて稠密に束ねられ、配設される。この1云熱管ホ
ルダ15の束は例えば溶接により相qに接合され、さら
に単位セル13の側壁に一体的に固定される。
Each intermediate cell 13 has a heat exchanger tube 2 as illustrated in FIG.
The cylindrical heat exchanger tube holder 15, into which the heat exchanger tubes are inserted one by one, is axially
-Aligned and densely bundled and arranged. This bundle of one heat tube holder 15 is joined to the phase q by welding, for example, and further fixed integrally to the side wall of the unit cell 13.

伝熱管ホルダ15の詳細構造は、例えば第4図および第
5図(A)に示すように、円筒形に形成した伝熱管ホル
ダ本体15aの内側に緩由材16を設けて構成する。緩
衝材16は、伝熱管ホルダ本体15aの側壁の一部を切
り込むことにより切片を形成し、その切片を伝熱管ホル
ダ本体i 5 aの中心方向に膨出させ、湾曲形成した
板ばね16aと、板ばね16aと対向した伝熱管ホルダ
本体15)aの側壁の一部を同様に中心方向に凹陥uし
めて湾曲状に形成した突起16bとから構成する。
The detailed structure of the heat exchanger tube holder 15 is, for example, as shown in FIGS. 4 and 5(A), by providing a loosening member 16 inside a cylindrical heat exchanger tube holder main body 15a. The cushioning material 16 includes a plate spring 16a formed by cutting a part of the side wall of the heat exchanger tube holder body 15a to form a section, and bulging the section toward the center of the heat exchanger tube holder body i5a to form a curve. A portion of the side wall of the heat exchanger tube holder body 15)a facing the plate spring 16a is similarly recessed toward the center to form a curved protrusion 16b.

また、緩衝材16の他の態様としては、第5図(13)
に例示づ−るように伝熱管ホルダ本体15aの内面に設
けた板ばね16aと、この板ばね16aに対向した位置
に湾曲成形した曲面板16cを固ン1してもよい。また
、第5図(C)、(D)に示すように伝熱管ホルダ本体
15aの内周に仮ばね16aを適数配設した緩衝材16
としてもよい。
Further, as another aspect of the cushioning material 16, FIG. 5 (13)
As illustrated in FIG. 1, a plate spring 16a provided on the inner surface of the heat exchanger tube holder main body 15a and a curved plate 16c formed in a curved manner at a position opposite to the plate spring 16a may be fixed 1. In addition, as shown in FIGS. 5(C) and 5(D), a buffer material 16 in which an appropriate number of temporary springs 16a are arranged on the inner periphery of the heat exchanger tube holder body 15a.
You can also use it as

上記実施例の構成による伝熱管支持用スベー1Jによれ
ば、伝熱管は1木毎に緩衝材を介して伝熱管ホルダによ
り支持固定され、さらに伝熱管ホルダは数10〜数10
0本づつ結束されて格子枠内の6甲(</セルに装填さ
れるため、伝熱管の半径I)向の変位は、強固に拘束さ
れる。
According to the heat exchanger tube supporting base 1J having the structure of the above embodiment, each heat exchanger tube is supported and fixed by a heat exchanger tube holder through a buffer material, and the number of heat exchanger tube holders is several tens to several ten.
Since the heat transfer tubes are bundled one by one and loaded into the lattice frame, the displacement in the direction of the radius I of the heat transfer tubes is firmly restrained.

また伝熱管は、板ばね、突起、または曲面板によって構
成された緩衝材を介して伝熱管ホルダに接触しているた
め、相7jの接触面積が小さい。したがって、IYi 
J〔による8 (Oを(I(滅することができる。特に
板ばねを採用し/、:場合は、ばね力によって伝熱管が
伝熱管ホルダの中心部に常時押圧されることとなり弾力
的で安定した固定が可能である。
Moreover, since the heat exchanger tube is in contact with the heat exchanger tube holder via a buffer material constituted by a leaf spring, a protrusion, or a curved plate, the contact area of the phase 7j is small. Therefore, IYi
8 (O by (I) can be eliminated. In particular, if a leaf spring is used, the heat exchanger tube is constantly pressed against the center of the heat exchanger tube holder by the spring force, making it elastic and stable. It is possible to fix the

地震による振動または不均一な熱膨張作用が動いた場合
においても伝熱管と伝熱管ホルダとは直接接触すること
がないため、伝熱管の損傷、フレッティングコロ−ジョ
ン等による摩耗の問題を解消づることができる。
Even in the event of vibrations caused by earthquakes or uneven thermal expansion, the heat transfer tubes and heat transfer tube holder do not come into direct contact, which eliminates problems of wear caused by damage to the heat transfer tubes, fretting corrosion, etc. be able to.

さらに、隣接する伝熱管ホルダ間の空間、および各伝熱
管ホルダと伝熱管との間に形成される環状空間のうち、
緩VfJ材を除いた空間部分は金属ナトリウムの流路と
なり、この流路面積は従来のスペーサと比較して大幅に
増加するため、運転u4に63 G’Jる金属す1〜リ
ウム流の圧力損失は大幅に低減づる。したがって、金属
ノ1−リウム循環ポンプに対する(1荷を低減すること
ができる。
Furthermore, among the spaces between adjacent heat exchanger tube holders and the annular space formed between each heat exchanger tube holder and the heat exchanger tubes,
The space excluding the slow VfJ material becomes a flow path for metal sodium, and this flow path area is significantly increased compared to conventional spacers, so the pressure of the metal sodium flow of 63 G'J during operation u4 is increased. Losses are significantly reduced. Therefore, the load on the metal nitride circulation pump can be reduced.

また、格子枠および伝熱管ホルダは一般に薄板材料で調
製されるため、従来の厚板で・形成したスペーサと比較
して部材重量が軽減され、蒸気発生器の加工製作費を低
減することができる。
In addition, since the lattice frame and heat exchanger tube holder are generally made of thin plate material, the weight of the components is reduced compared to conventional spacers made of thick plates, and the processing and manufacturing costs of the steam generator can be reduced. .

/jお、本実施例では、^速増殖炉に付設される蒸気発
生器を例にとり説明したが、本発明は、上記の特定の実
施例に限定されるものではな(、加圧水QIp原了炉に
付設される蒸気発生器さらに汎用される熱交換器に対し
ても広< iel用することができる。
/j In this example, a steam generator attached to a fast breeder reactor was explained as an example, but the present invention is not limited to the above-mentioned specific example. It can be widely used for steam generators attached to furnaces and also for general-purpose heat exchangers.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り、本発明に係る熱交換器の伝熱管支持用
スペーサによれば、各伝熱管は緩衝材を介して伝熱管ホ
ルダによって保持され、さらに伝熱管ホルダは格子枠内
の単位セルに装填されて固定されているため、伝熱管と
伝熱管ホルダとがめ接接触して損傷することが少なく、
また伝PI管の半径方向における振動または熱膨張によ
る変位は、強固に拘束される。
As explained above, according to the spacer for supporting heat exchanger tubes of a heat exchanger according to the present invention, each heat exchanger tube is held by a heat exchanger tube holder via a buffer material, and the heat exchanger tube holder is further attached to a unit cell within a lattice frame. Because it is loaded and fixed, there is less chance of damage due to contact between the heat exchanger tube and the heat exchanger tube holder.
Further, displacement due to vibration or thermal expansion in the radial direction of the PI pipe is firmly restrained.

;Lだ、隣接する伝熱管ホルダ間の空間おにび伝熱管ホ
ルダと伝熱管との間に形成される1フ状空間は、ジレケ
ット側を流れる流体の流路となる。この流路面積は従来
のスペーサーと比較して大幅に増加するため、流体の圧
力損失は大幅に低減され、流体循環用ポンプの負荷を低
減することができる。
L, the space between adjacent heat exchanger tube holders and the one-flap space formed between the heat exchanger tube holder and the heat exchanger tube become a flow path for the fluid flowing on the side of the gillet. Since this flow path area is significantly increased compared to a conventional spacer, the pressure loss of the fluid is significantly reduced, and the load on the fluid circulation pump can be reduced.

ざらに、格子枠J3よび伝熱管ホルダは一般に薄肉の構
造材料で形成されるためにスペーサ全体の車量を低減す
ることができるなど、熱交換器の叶全性紺持および特性
改善に大ぎく寄与することができる。
In general, since the lattice frame J3 and the heat exchanger tube holder are generally made of thin-walled structural materials, the overall volume of the spacer can be reduced, which greatly improves the integrity and characteristics of the heat exchanger. can contribute.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱交換器の伝熱管支持用スペーサ
の格子枠構造の一実施例を示す平面図、第2図は第1図
における■部の拡大詳mtn、第3図(Δ)、([3)
は本発明に係るスペーサの格子枠構造の他の実施例を示
す平面図、第4図は本発明に係るスベーVの伝熱管ホル
ダの一実施例を示す斜視図、第5図は伝熱管ホルダの緩
衝材の形状を例示する断面図、第6図は従来の蒸気発生
器のlFf略構造を示す断面図、第7図は従来の伝熱管
支持用スペーサの一例を示す第6図のVW −Vl矢視
平面図、第8図は第7図における■−■矢視断面図であ
る。 1・・・蒸気発生器胴体、2・・・伝熱管、3,4・・
・管板、5・・・スペーサ、6・・・流入口、7・・・
流出口、8・・・水入口、9・・・蒸気出口、10・・
・伝熱管孔、11・・・ノートリラムノ【]−ホール、
12・・・格子枠、13・・・中位セル、14・・・格
子枠素材、15・・・伝熱管ホルダ、15a・・・伝熱
管ホルダ本体、16・・・II祠、16a・・・板ばね
、16b・・・突起、16C・・・曲面板。 第1図   第2図 第3図 第4図 (A)      (B) 第5図 水 第6図 第7図 第8図
Fig. 1 is a plan view showing an embodiment of the lattice frame structure of the heat exchanger tube support spacer of the heat exchanger according to the present invention, Fig. 2 is an enlarged detail mtn of the part ■ in Fig. 1, and Fig. 3 (Δ ), ([3)
4 is a plan view showing another embodiment of the lattice frame structure of the spacer according to the present invention, FIG. 4 is a perspective view showing an embodiment of the flat V heat exchanger tube holder according to the present invention, and FIG. 5 is a diagram showing the heat exchanger tube holder. 6 is a sectional view showing the schematic structure of a conventional steam generator, and FIG. 7 is an example of a conventional spacer for supporting heat exchanger tubes. FIG. 8 is a sectional view taken along the line ■--■ in FIG. 7. 1... Steam generator body, 2... Heat exchanger tube, 3, 4...
・Tube plate, 5... Spacer, 6... Inlet, 7...
Outlet, 8...Water inlet, 9...Steam outlet, 10...
・Heat transfer tube hole, 11...Notrilamno []-hole,
12... Lattice frame, 13... Medium cell, 14... Lattice frame material, 15... Heat exchanger tube holder, 15a... Heat exchanger tube holder body, 16... II shrine, 16a... - Leaf spring, 16b... protrusion, 16C... curved plate. Figure 1 Figure 2 Figure 3 Figure 4 (A) (B) Figure 5 Water Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、格子枠素材を縦横に交差させて組み立てた格子枠と
、格子枠によって区画形成され、多角形の開口形状を有
する多数の単位セルと、前記単位セル内に軸方向を揃え
て装填した複数の筒状の伝熱管ホルダとを備え、前記伝
熱管ホルダに挿通した伝熱管を保持し、かつ伝熱管ホル
ダと伝熱管との相互接触を防止する緩衝材を伝熱管ホル
ダの内周面に設けたことを特徴とする熱交換器の伝熱管
支持用スペーサ。 2、単位セルの断面形状は、正三角形もしくは正四角形
または正六角形である特許請求の範囲第1項記載の熱交
換器の伝熱管支持用スペーサ。 3、緩衝材は、伝熱管ホルダの中心方向に湾曲成形した
曲面板を伝熱管ホルダの内周面に固着してなる特許請求
の範囲第1項記載の熱交換器の伝熱管支持用スペーサ。 4、緩衝材は、筒状の伝熱管ホルダの側壁の一部を切り
込むことにより切片を形成し、その切片を中心方向に膨
出させ湾曲形成した板ばねから成る特許請求の範囲第1
項記載の熱交換器の伝熱管支持用スペーサ。 5、緩衝材は、筒状の伝熱管ホルダの側壁の一部を中心
方向に凹陥せしめて湾曲形状に形成した突起である特許
請求の範囲第1項記載の熱交換器の伝熱管支持用スペー
サ。 6、緩衝材は、伝熱管ホルダの内周面に設けた板ばねと
、この板ばねに対向して伝熱管ホルダの内周面に形成さ
れた突起から成る特許請求の範囲第1項記載の熱交換器
の伝熱管支持用スペーサ。
[Scope of Claims] 1. A lattice frame assembled by crossing lattice frame materials vertically and horizontally, a large number of unit cells defined by the lattice frame and having polygonal opening shapes, and an axial direction inside the unit cells. a plurality of cylindrical heat exchanger tube holders arranged and loaded, the heat exchanger tube holder includes a buffer material that holds the heat exchanger tubes inserted into the heat exchanger tube holders and prevents mutual contact between the heat exchanger tube holders and the heat exchanger tubes. A spacer for supporting heat exchanger tubes of a heat exchanger, characterized in that the spacer is provided on the inner peripheral surface of the heat exchanger. 2. The spacer for supporting heat exchanger tubes of a heat exchanger according to claim 1, wherein the cross-sectional shape of the unit cell is a regular triangle, a regular square, or a regular hexagon. 3. A spacer for supporting heat exchanger tubes in a heat exchanger according to claim 1, wherein the cushioning material is formed by fixing a curved plate curved toward the center of the heat exchanger tube holder to the inner peripheral surface of the heat exchanger tube holder. 4. The cushioning material is a plate spring formed by cutting a part of the side wall of a cylindrical heat exchanger tube holder to form a section, and bulging the section toward the center to form a curve.
A spacer for supporting heat exchanger tubes of the heat exchanger described in Section 1. 5. A spacer for supporting heat exchanger tubes of a heat exchanger according to claim 1, wherein the cushioning material is a protrusion formed into a curved shape by recessing a part of the side wall of the cylindrical heat exchanger tube holder toward the center. . 6. The cushioning material is comprised of a leaf spring provided on the inner peripheral surface of the heat exchanger tube holder and a protrusion formed on the inner peripheral surface of the heat exchanger tube holder opposite to the leaf spring. Spacer for supporting heat exchanger tubes in heat exchangers.
JP24145886A 1986-10-13 1986-10-13 Spacer for supporting heat transfer tube of heat exchanger Pending JPS6396494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24145886A JPS6396494A (en) 1986-10-13 1986-10-13 Spacer for supporting heat transfer tube of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24145886A JPS6396494A (en) 1986-10-13 1986-10-13 Spacer for supporting heat transfer tube of heat exchanger

Publications (1)

Publication Number Publication Date
JPS6396494A true JPS6396494A (en) 1988-04-27

Family

ID=17074611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24145886A Pending JPS6396494A (en) 1986-10-13 1986-10-13 Spacer for supporting heat transfer tube of heat exchanger

Country Status (1)

Country Link
JP (1) JPS6396494A (en)

Similar Documents

Publication Publication Date Title
EP0237064B1 (en) Mixing grid for a nuclear reactor fuel assembly
US4359088A (en) Steam generator tube supports
JPH0752637Y2 (en) Fuel assembly
JP4625844B2 (en) Tube bundle device with reduced vibration
US20070089856A1 (en) Anti-vibration tube support for tube bundles having U-shaped bends
US5642778A (en) Rod baffle heat exchangers
CA2643156C (en) Heat transfer tube support structure
CA2164744C (en) Rod baffle heat exchangers utilizing dual support strip
CA2425728C (en) Heat exchanger tube support bar
RU2532461C2 (en) Support of heat-exchanging tubes and fastening assembly for tubular heat-exchanger
EP2076728B1 (en) Reduced vibration tube bundle device having slotted baffles
US6997141B2 (en) Anti-vibration support for steam generator heat transfer tubes and method for making same
CN112710170A (en) Shell and tube heat exchanger
JP2011515648A (en) Low vibration tube bundle support device
US4245694A (en) Supports for closely spaced tubes
JPS6396494A (en) Spacer for supporting heat transfer tube of heat exchanger
US8243872B2 (en) Spacer grid for close-spaced nuclear fuel rods
CS202599B2 (en) Lamellar heat exchanger
JPS63183394A (en) Spacer to hold heat transfer pipe of heat exchanger
EP0038543B1 (en) Heat exchanger
JP3251626B2 (en) Heat transfer tube support
GB2082750A (en) Thermal Shield Plate Construction for Heat Exchanger
US10935232B2 (en) Vibration damping structure for heat-transfer tube bundle
JPH0674874U (en) Heat exchanger
CA1162116A (en) Steam generator tube supports