JPS6395679A - Manufacture of gaas solar cell - Google Patents

Manufacture of gaas solar cell

Info

Publication number
JPS6395679A
JPS6395679A JP61241656A JP24165686A JPS6395679A JP S6395679 A JPS6395679 A JP S6395679A JP 61241656 A JP61241656 A JP 61241656A JP 24165686 A JP24165686 A JP 24165686A JP S6395679 A JPS6395679 A JP S6395679A
Authority
JP
Japan
Prior art keywords
type
layer
gaas
onto
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61241656A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hisamoto
好明 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61241656A priority Critical patent/JPS6395679A/en
Publication of JPS6395679A publication Critical patent/JPS6395679A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To inhibit the corrosion (oxidation) of a p-type AlGaAs layer by forming a p<+> type GaAs layer onto a p-type diffusion layer having low resistivity and shaping a first metallic electrode onto the surface of the p<+> type GaAs layer. CONSTITUTION:A resist is applied onto an antireflection film 5, opening sections are formed selectively through patterning, the antireflection films corresponding to the opening sections and p-type AlGaAs growth layers 4 as the lower sections of the antireflection films are removed continuously, and a p-type diffusion layer 3 on the lower side is exposed. A residual resist material is gotten rid of, the whole is inserted into a MOCVD furnace, and p<+> type GaAs growth layers 10 are shaped onto the exposed surfaces of the p-type diffusion layers by a reaction formula mentioned below. (C2H5)2Zn+(CH3)3Ga+AsH3 GaAs+3 CH4 Metallic films are formed onto the surfaces of the growth layers 10, and first metallic electrodes 6, 7 are shaped through patterning.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は通信衛星などの各種電源に使用されるGaA
s太陽電池の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a GaA
This invention relates to a method for manufacturing a solar cell.

〔従来の技術〕[Conventional technology]

第2図は従来のG1A3太陽電池を示す図であシ。 FIG. 2 is a diagram showing a conventional G1A3 solar cell.

同図(a)は平面図、同図(b)は同図(a)のA−A
’断面図である。この種のGILA!l太陽電池は次の
ようにして製作される。すなわち、同図に示すように例
えばキャリア濃度1018個/cm3.基板WJミ30
0 μm程度の片面ミラー仕上した低比抵抗をもっGa
As単結晶基板をn+形GaAs基板1として用い、こ
のGaAs基板1に、液相エピタキシャル成長材料であ
る金属Ga 、ポリGaAsおよび不純物源となる錫(
Sn)を炉体高温部で溶解してなるメルトを炉体内の還
元ガス雰囲気中で接触させ、炉体内温度を下降させるこ
とによシ、G a A 3基板1の主表面に高比抵抗を
もつn−形G a A B  層2が形成される。
Figure (a) is a plan view, Figure (b) is A-A in Figure (a).
'This is a cross-sectional view. This kind of GILA! A solar cell is manufactured as follows. That is, as shown in the figure, for example, the carrier concentration is 1018 pieces/cm3. Board WJ Mi30
Ga with a low specific resistance with a single-sided mirror finish of about 0 μm.
An As single crystal substrate is used as the n+ type GaAs substrate 1, and this GaAs substrate 1 is coated with metal Ga, poly GaAs, which is a liquid phase epitaxial growth material, and tin (which is an impurity source).
By bringing the melt formed by melting Sn) in the high-temperature part of the furnace body into contact with it in a reducing gas atmosphere inside the furnace body and lowering the temperature inside the furnace body, a high resistivity is imparted to the main surface of the G a A 3 substrate 1. An n-type G a AB layer 2 is formed.

次に前述したと同様の液相エピタキシャル成長法で不純
物の異なるメルトをこのGaAs層2の主表面に接触さ
せる。この場合、炉体内でメルトに含まれる例えば亜鉛
(Zn)などの不純物によってGaAs[2への拡散が
行なわれ、GaAs層2の主表面に低比抵抗をもつp形
波散層3がp形QaA8層として形成される。さらに炉
体同温度を下降させることによってこの拡散層3の主表
面に、p形AtxGa 1−xAs中のAt組成比Xが
0.85〜0.95程度のp形AtGaAg成長層4を
該100X程度析出・させる。次いでこのAlGaAs
成長層4の主表面に常圧CVD法により窒化膜などの光
透過率の良好な反射防止膜5を数100 X程度に形成
したうえ、この反射防止膜5上に図示しないレジストを
塗布し、このレジスト膜を写真製版技術でパターニング
して選択的に開孔部を形成し、この開孔部に相当する反
射防止膜をプラズマエツチング法により除去し、さらに
弗酸系のエツチング液で下部のAlGaAs成長層を除
去する。引き続き、この露出したコンタクトホール部分
の拡散層30表面にスパッタ法または蒸着法によシT 
i /A gなどからなる金属膜を形成した後、この金
属膜を写真製版技術および化学エッチ法で選択的にパタ
ーニングすることによって第1の金属電極6.7を形成
する。次いでGaAs基板1の拡散層3側を耐薬性の大
きい保護膜でコートした後、このGaAs基板1の裏面
を硝酸系のエッチ液で数十μm程度エツチングした後、
その裏面の全面にスパッタ法または蒸着法によりAu/
Ni/Au/Agなどからなるn形の第2の金属電極8
を形成し、当該基板を炉内で約400℃程度に加熱し、
シンタリングを行ない、電気的なオーミック性を良好に
させてGaAs太陽電池を製作する。
Next, melts containing different impurities are brought into contact with the main surface of the GaAs layer 2 using the same liquid phase epitaxial growth method as described above. In this case, impurities such as zinc (Zn) contained in the melt in the furnace diffuse into GaAs[2, and the p-type scattering layer 3 with low resistivity on the main surface of the GaAs layer 2 becomes p-type. It is formed as 8 layers of QaA. Further, by lowering the same temperature of the furnace body, a p-type AtGaAg growth layer 4 having an At composition ratio X of about 0.85 to 0.95 in p-type AtxGa1-xAs is formed on the main surface of this diffusion layer 3 by about 100X. Precipitate to some extent. Next, this AlGaAs
An antireflection film 5 having a good light transmittance such as a nitride film is formed on the main surface of the growth layer 4 to a thickness of about 100× by atmospheric pressure CVD, and a resist (not shown) is applied on the antireflection film 5. This resist film is patterned using photolithography to selectively form openings, the anti-reflection film corresponding to the openings is removed using plasma etching, and the lower AlGaAs is etched using a hydrofluoric acid-based etching solution. Remove the growth layer. Subsequently, T is deposited on the surface of the diffusion layer 30 in the exposed contact hole portion by sputtering or vapor deposition.
After forming a metal film made of i/Ag, etc., the first metal electrode 6.7 is formed by selectively patterning this metal film using photolithography and chemical etching. Next, after coating the diffusion layer 3 side of the GaAs substrate 1 with a protective film having high chemical resistance, the back surface of the GaAs substrate 1 was etched by several tens of μm using a nitric acid-based etchant.
Au/
N-type second metal electrode 8 made of Ni/Au/Ag, etc.
is formed, and the substrate is heated to about 400°C in a furnace,
A GaAs solar cell is manufactured by performing sintering to improve electrical ohmic properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のGaAs太陽電池の製造方法は、
p形波散層3の主表面領域に第1の金属電極6,7を形
成する際、反射防止膜5とp形AlGaAs成長層4と
が選択的にエツチング除去されるので、第1の金属電極
6.7と反射防止膜この問お゛よび第1の金属電極6,
7とAlGaAs成長層4この間に溝状の隙間9が発生
し、プロセス途中の残留酸の影qiまたは信頼性での耐
湿試験でAlGaAs成長層4が腐蝕してGaAs太陽
電池の電気的特性を低下させる。また、 AtxGal
−xAa中のAt組成比Xを多くすると、大気中の酸素
による腐蝕(酸化)が著しくなり、第1の金属電極6゜
Tを直接AtG1As成長層4上に形成してもAt組成
比Xを多くすると、AlGaAs成長層4と第1の金属
電極6,7この界面から剥離が発生するなどの問題があ
った。
However, the conventional method for manufacturing GaAs solar cells is
When forming the first metal electrodes 6 and 7 on the main surface region of the p-type wave diffusion layer 3, the anti-reflection film 5 and the p-type AlGaAs growth layer 4 are selectively etched away, so that the first metal Electrode 6.7 and anti-reflection film This question and the first metal electrode 6,
A groove-shaped gap 9 is generated between GaAs growth layer 7 and AlGaAs growth layer 4, and the AlGaAs growth layer 4 is corroded by the influence of residual acid during the process or during a moisture resistance test for reliability, reducing the electrical characteristics of the GaAs solar cell. let Also, AtxGal
-xIf the At composition ratio X in Aa is increased, corrosion (oxidation) due to oxygen in the atmosphere becomes significant, and even if the first metal electrode 6°T is formed directly on the AtG1As growth layer 4, the At composition ratio If the number is increased, there is a problem that peeling occurs from the interface between the AlGaAs growth layer 4 and the first metal electrodes 6, 7.

この発明は前述した従来の問題に鑑みてなされたもので
、その目的は金属電極とp形AtGaA3成長層この間
に形成される隙間の影響によるp形AlGaAs成長層
の腐蝕(酸化)の発生を防止することができるGaAs
太陽電池の製造方法を提供することにある。
This invention was made in view of the conventional problems mentioned above, and its purpose is to prevent corrosion (oxidation) of the p-type AlGaAs growth layer due to the effect of the gap formed between the metal electrode and the p-type AtGaA3 growth layer. GaAs that can
An object of the present invention is to provide a method for manufacturing a solar cell.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るGaAs太陽′成池の製造方法は、p形
拡散層上に形成されたp形AlGaAs層の表面に反射
防止膜を形成し、この反射防止膜およびp形AlGaA
s層に選択的に開孔部を連続して形成し、この開孔部内
に露出したp形拡散層の表面に、p+形GaAs層を形
成した後、このp形QaAa層の表面に第1の金属電極
を形成するものである。
The method for manufacturing a GaAs solar pond according to the present invention includes forming an anti-reflection film on the surface of a p-type AlGaAs layer formed on a p-type diffusion layer, and forming the anti-reflection film and the p-type AlGaAs
After selectively and continuously forming openings in the s-layer and forming a p+ type GaAs layer on the surface of the p-type diffusion layer exposed in the openings, a first layer is formed on the surface of the p-type QaAa layer. This is used to form metal electrodes.

〔作用〕[Effect]

この発明のQaA!l太陽電池の製造方法においては、
p形拡散層の表面く形成されたp+形GaAs層がp形
AlGaAs層の腐蝕(酸化)を抑制するとともにpn
接合までの距離を長くさせ、電極材料の拡散による接合
破壊を抑制する。また、このp+形GaAs層がp形A
tG a A s層の露出部に付着して横方向の腐蝕(
酸化)を抑制する。
QaA of this invention! l In the method for manufacturing solar cells,
The p + type GaAs layer formed on the surface of the p type diffusion layer suppresses corrosion (oxidation) of the p type AlGaAs layer and
The distance to the bond is increased to suppress bond breakdown due to diffusion of the electrode material. Moreover, this p + type GaAs layer is a p type A
It adheres to the exposed parts of the tG a As layer and causes lateral corrosion (
oxidation).

〔実施例〕〔Example〕

以下、図面を用いてこの発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明によるGaAs太陽電池の製造方法の
一実施例を説明する図で同図(a)は平面図、同図(b
)はそのA−A’断面図であシ、前述の図と同一部分ま
たは相当する部分には同一符号を付しである。同図にお
いて、低比抵抗のn+形GaA3基板1を用いて液相エ
ピタキシャル成長法によシ低比抵抗p形AlGaAs成
長層4の形成までは前述した製造方法と同じであるので
その説明は省略する。
FIG. 1 is a diagram illustrating an embodiment of the method for manufacturing a GaAs solar cell according to the present invention, in which (a) is a plan view and (b) is a plan view.
) is a cross-sectional view taken along the line AA', and the same or corresponding parts as in the previous figures are given the same reference numerals. In the figure, the manufacturing method up to the formation of the low resistivity p-type AlGaAs growth layer 4 using the liquid phase epitaxial growth method using the low resistivity n+ type GaA3 substrate 1 is the same as the above-mentioned manufacturing method, so the explanation thereof will be omitted. .

また、前述したと同様にこのAtGaAB成長屓4の表
面に常圧CVD法により反射防止膜5を数百芙程度の厚
さに形成したうえ、この反射防止膜5上に図示しないレ
ジストを塗布し、このにシスト膜を写真製版技術でバタ
ーニングして選択的に開孔部を形成し、この開孔部に相
当する反射防止膜およびその下部のp形ALG a A
 g成長層をプラズマエツチング法により連続して除去
し、下部側のp形拡散層を露出させる。次に残存したレ
ジスト材を有機溶剤で完全に除去した後、MOCVD炉
内に挿入し、前記開孔部内に露出したp形拡散層の表面
に、下記の反応式でもってp+形GaAs成長層10を
数1001程度の厚さに形成する。なお、このp+形G
aAs成長層10のキャリア濃度は10 個/crn3
以上が望ましい。
Further, in the same manner as described above, an antireflection film 5 is formed on the surface of the AtGaAB growth layer 4 to a thickness of about several hundred centimeters by atmospheric pressure CVD, and a resist (not shown) is coated on the antireflection film 5. Then, the cyst film is buttered by photolithography to selectively form openings, and the anti-reflection film corresponding to the openings and the p-type ALG a A below it are formed.
The g-grown layer is continuously removed by plasma etching to expose the p-type diffusion layer on the lower side. Next, after completely removing the remaining resist material with an organic solvent, the resist material is inserted into an MOCVD furnace, and a p+ type GaAs growth layer 10 is formed on the surface of the p type diffusion layer exposed in the opening using the following reaction formula. is formed to a thickness of about 1001. Furthermore, this p+ type G
The carrier concentration of the aAs growth layer 10 is 10 pieces/crn3
The above is desirable.

(C2H51Z Zn +(CH3)s Ga+AsH
34GAAs十3CH4 次にこの開孔部内に形成されたp+形GaA4成長層1
0の表面に前述したと同様にスパッタ法また蒸着法によ
りTi/Agなどからなる金属膜を形成した後、この金
属膜を写真製版技術および化学エッチ法で選択的にパタ
ーニングすることによって、第1の金属電極6.7を形
成する。次に、このp形GaAB成長層10の表面に形
成された第1の金属電極6.7を写真製版技術でマスク
し1周辺部に付着した金属電極材料および反射防止膜5
0表面部に付着している不完全結晶のp形AlGaAs
成長層を除去する。次いで、このGaAs基板1の裏面
に前述したと同様な方法によ、9n形の第2の金属電極
8を形成し、当該基板を炉内で約400℃で30分程度
に加熱してシンタリングを行ない、電気的なオーミック
性を良好にさせてGaAs太陽電池を完成する。
(C2H51Z Zn + (CH3)s Ga + AsH
34GAAs13CH4 Next, p+ type GaA4 growth layer 1 formed in this opening.
After forming a metal film made of Ti/Ag or the like on the surface of 0 by sputtering or vapor deposition in the same manner as described above, this metal film is selectively patterned by photolithography and chemical etching. A metal electrode 6.7 is formed. Next, the first metal electrode 6.7 formed on the surface of this p-type GaAB growth layer 10 is masked by photolithography, and the metal electrode material and anti-reflection film 5 attached to the periphery of the first metal electrode 6.7 are masked.
0 surface of incompletely crystalline p-type AlGaAs
Remove the growth layer. Next, a 9n-type second metal electrode 8 is formed on the back surface of this GaAs substrate 1 in the same manner as described above, and the substrate is sintered by heating it in a furnace at about 400° C. for about 30 minutes. This process improves the electrical ohmic properties and completes the GaAs solar cell.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、低比抵抗を有するp形
拡散層上にp+形GaAs層を形成し、このp形G a
 A 6層の表面に第1の金属電極を形成したので、p
形AlGaAs層の腐蝕(酸化)が抑制されるとともに
、pn接合までの距離が長くなり、電極材料の拡散によ
る接合破壊が抑制され、高品質のGaAs太陽電池が得
られるという極めて優れた効果を有する。
As explained above, the present invention forms a p + type GaAs layer on a p type diffusion layer having low resistivity, and
A: Since the first metal electrode was formed on the surface of the 6th layer, p
It has the extremely excellent effect of suppressing corrosion (oxidation) of the AlGaAs layer, increasing the distance to the pn junction, suppressing junction breakdown due to diffusion of electrode material, and obtaining a high-quality GaAs solar cell. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)はこの発明によるGaAs太
陽電池の製造方法の一実施例を説明するだめの平面図。 そのA−A’断面図、第2図(a) 、 (b)は従来
のGaAs太陽電池の製造方法を説明するための平面図
、そのA−A’断面図である。 j *””n+形GaAg基板2 II @ 1111
77−形GaAs層%3・・・・p形拡散層、4・・・
・p形AtGILA8成長層、5・拳・・反射防止膜、
6゜T・・・・第1の金属電極、8・・・・第2の金属
電極、10・・・・p 形GaAs成長層。
FIGS. 1(a) and 1(b) are plan views illustrating an embodiment of the method for manufacturing a GaAs solar cell according to the present invention. FIGS. 2(a) and 2(b) are a plan view and a sectional view taken along line AA' for explaining a conventional method of manufacturing a GaAs solar cell. j *””n+ type GaAg substrate 2 II @ 1111
77-type GaAs layer %3... p-type diffusion layer, 4...
・p-type AtGILA8 growth layer, 5・fist・anti-reflection coating,
6°T: first metal electrode, 8: second metal electrode, 10: p-type GaAs growth layer.

Claims (1)

【特許請求の範囲】[Claims] 低比抵抗をもつn形GaAs基板の一方の主表面に形成
された高比抵抗をもつn形GaAs層と、前記n形Ga
As層の主表面に順次形成されたそれぞれp形を有する
低比抵抗のp形拡散層およびp形AlGaAs層と、前
記p形AlGaAs層上の表面に選択的に形成された反
射防止膜と、前記p形AlGaAs層上の表面に前記反
射防止膜に対応した前記p形AlGaAs層の領域を除
いて形成された第1の金属電極と、前記n形GaAs基
板の裏面に形成された第2の金属電極とから構成される
GaAs太陽電池において、前記反射防止膜およびp形
AlGaAs層に選択的に開孔部を連続して形成し、こ
の開孔部内に露出したp形拡散層の表面に低比抵抗のp
形GaAs層を形成した後、このp形GaAs層の表面
に前記第1の金属電極を形成することを特徴とするGa
As太陽電池の製造方法。
an n-type GaAs layer with high specific resistance formed on one main surface of an n-type GaAs substrate with low specific resistance;
a low resistivity p-type diffusion layer and a p-type AlGaAs layer each having p-type, which are sequentially formed on the main surface of the As layer; and an antireflection film selectively formed on the surface of the p-type AlGaAs layer; A first metal electrode formed on the surface of the p-type AlGaAs layer except for a region of the p-type AlGaAs layer corresponding to the antireflection film, and a second metal electrode formed on the back surface of the n-type GaAs substrate. In a GaAs solar cell composed of a metal electrode, openings are selectively and continuously formed in the antireflection film and the p-type AlGaAs layer, and a low-temperature layer is formed on the surface of the p-type diffusion layer exposed in the openings. specific resistance p
After forming the p-type GaAs layer, the first metal electrode is formed on the surface of the p-type GaAs layer.
A method for manufacturing an As solar cell.
JP61241656A 1986-10-09 1986-10-09 Manufacture of gaas solar cell Pending JPS6395679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241656A JPS6395679A (en) 1986-10-09 1986-10-09 Manufacture of gaas solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241656A JPS6395679A (en) 1986-10-09 1986-10-09 Manufacture of gaas solar cell

Publications (1)

Publication Number Publication Date
JPS6395679A true JPS6395679A (en) 1988-04-26

Family

ID=17077563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241656A Pending JPS6395679A (en) 1986-10-09 1986-10-09 Manufacture of gaas solar cell

Country Status (1)

Country Link
JP (1) JPS6395679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163046A (en) * 2015-03-02 2016-09-05 アズール スペース ソーラー パワー ゲゼルシャフト ミット ベシュレンクテル ハフツングAZUR SPACE Solar Power GmbH Solar cell device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163046A (en) * 2015-03-02 2016-09-05 アズール スペース ソーラー パワー ゲゼルシャフト ミット ベシュレンクテル ハフツングAZUR SPACE Solar Power GmbH Solar cell device
US10763385B2 (en) 2015-03-02 2020-09-01 Azur Space Solar Power Gmbh Solar cell device

Similar Documents

Publication Publication Date Title
US4152824A (en) Manufacture of solar cells
EP0274890B1 (en) Stable ohmic contacts to thin films of p-type tellurium-containing II-VI semiconductors
US8916412B2 (en) High efficiency cadmium telluride solar cell and method of fabrication
US5797999A (en) Solar cell and method for fabricating the same
JP3705016B2 (en) Translucent electrode film and group III nitride compound semiconductor device
US8257561B2 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
US3904453A (en) Fabrication of silicon solar cell with anti reflection film
US4105471A (en) Solar cell with improved printed contact and method of making the same
CN112054068A (en) Silicon heterojunction solar cell and manufacturing method thereof
US4165241A (en) Solar cell with improved printed contact and method of making the same
US3984261A (en) Ohmic contact
JP4486622B2 (en) Manufacturing method of solar cell
JPS59208789A (en) Solar cell
JPS6395679A (en) Manufacture of gaas solar cell
TW201931619A (en) Method for manufacturing solar cell
US3806779A (en) Semiconductor device and method of making same
JP2000277455A (en) Ohmic electrode and manufacture of it
JPS6395678A (en) Manufacture of gaas solar cell
JP2016189433A (en) Solar cell element and manufacturing method of the same
CN207398153U (en) Silicon heterojunction solar battery
JPS6395680A (en) Gaas solar cell and manufacture thereof
GB1526823A (en) Photovoltaic devices
JPH10256184A (en) Electrode for p-type nitride semiconductor semiconductor element having electrode and fabrication thereof
FR2505556A1 (en) P plus/N/N plus silicon solar cell prodn. - by cutting block of N=type silicon into sheets, diffusing impurities and forming contacts with aluminium ink
JPH09148597A (en) Manufacture of solar cell