JPS6394618A - Crystal growth method of ii-v compound semiconductor - Google Patents

Crystal growth method of ii-v compound semiconductor

Info

Publication number
JPS6394618A
JPS6394618A JP24061986A JP24061986A JPS6394618A JP S6394618 A JPS6394618 A JP S6394618A JP 24061986 A JP24061986 A JP 24061986A JP 24061986 A JP24061986 A JP 24061986A JP S6394618 A JPS6394618 A JP S6394618A
Authority
JP
Japan
Prior art keywords
doped
impurities
compound semiconductor
lattice
atomic radii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24061986A
Other languages
Japanese (ja)
Inventor
Naoki Furuhata
直規 古畑
Masaji Yoshida
吉田 政次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24061986A priority Critical patent/JPS6394618A/en
Publication of JPS6394618A publication Critical patent/JPS6394618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the distortion of lattice while attaining the higher carrier concentration by a method wherein, when III-V compound semiconductor is doped with donor impurities, said semiconductor is simultaneously doped with impurities with larger or smaller atomic radii than that of host element. CONSTITUTION:Material gas and doping gas led in a reaction tube 2 from a gas inlet 1 are decomposed on a substrate 3 mounted on a carbon-made pedestal 4 heated by high-frequency coils 5 to produce a compound semiconductor. Within the reaction tube 2, GaAs is doped with Si, Sn using trimethylgallium (TMG), arsine (AsH3) as material gas as well as silane (SiH4) containing Si, tetramethyl tin (TMSn) containing Sn as doping gas. Si and Sn are impurities substituting for Ga to be donors subject to the atomic radii of Si<Ga<Sn i.e. respectively represented by 1.17A, 1.26A, 1.40A of the atomic radii. Through these procedures, when the substrate 3 is doped with impurities with larger or smaller atomic radii than that of III group element, lattice can be relieved to eliminate any distortion thereof.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は■−V族化合物半尋体の結晶成長方法に関し、
特に■−V族化合物半導体への高濃度ドーピング技術に
関する。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to a method for growing crystals of a hemihybrid compound of the ■-V group,
In particular, it relates to high-concentration doping technology for ■-V group compound semiconductors.

〔従来の技術〕[Conventional technology]

111−V族化合物半導体を用いたGaAsMESFE
T、IIEMT等の半導体デバイスにとってn型高濃度
層の形成は、プロセス応用上重要である。特にオーミッ
クコンタクI一層などに用いられるn+層を形成する場
合には、所定位置に高精度かつ有効にドーピングする必
要があるなめ、容易に高い制御性が得られる結晶成長技
術をドーピングに用いることはきわめて有効である。し
かも結晶成長法によるドーピングは、イオン注入法や拡
散法と比較して、下地の結晶を痛めないことと界面での
不Klの拡散がないという利点がある。このI−V族化
合物半導体のn型ドーパントには、■族元素を置換して
ドナーとなるSi、Ge、Sn、V族元素を置換し。て
ドナーとなるS 、 Se 、 Te等がある。
GaAsMESFE using 111-V group compound semiconductor
For semiconductor devices such as T and IIEMT, formation of an n-type high concentration layer is important for process applications. In particular, when forming an n+ layer used in an ohmic contact I single layer, etc., it is necessary to dope the predetermined positions with high precision and effectively. Extremely effective. Moreover, doping by the crystal growth method has advantages over the ion implantation method and the diffusion method in that it does not damage the underlying crystal and there is no diffusion of non-Kl at the interface. In the n-type dopant of this IV group compound semiconductor, a group (I) element is substituted with Si, Ge, Sn, or a group V element to serve as a donor. There are S, Se, Te, etc., which serve as donors.

しかし、■族元素を置換してドナーとなるドーパ〉トで
も、V族元素を置換してドナーとなるドーパントでも高
濃度にドーピングする場合には、ドーパントはある濃度
まではドナーとして活性化するが、それ以上ドーピング
しても活性化しないという問題がある。例えば、ガリウ
ム砒素(GaAs)中にSiをドーピングした場合、雑
誌「ジャーナル・オブ・クリスタルグロース(Jour
nalof’ Crystal Growtb)」、1
982年発行、第57巻、318ページにエム・ドラミ
ンスキー(M。
However, when doping at a high concentration, whether it is a dopant that replaces a group I element and becomes a donor, or a dopant that replaces a group V element and becomes a donor, the dopant becomes activated as a donor up to a certain concentration. , there is a problem that it will not be activated even if it is doped further. For example, if Si is doped into gallium arsenide (GaAs), the magazine "Journal of Crystal Growth"
nalof'Crystal Growtb), 1
Published in 1982, Volume 57, Page 318 by M. Draminsky.

Dru+ainski)らによって報告さているように
、キャリア濃度は6 X 1018(c+s−’)にし
か達しない。
As reported by Dru+ainski et al., the carrier concentration reaches only 6×1018(c+s−′).

[、発明が解決しようとする問題点1 この■族元素を置換してドナーとなる不純物について活
性化しない原因のひとつには、結晶中に不純物が大量に
導入されると、不純物とホスI・元素の原子半径の違い
から母相の格子に歪を生じ、格子欠陥ができやすくなり
、ドナーとなる不純物と格子欠陥がベアを形成しキャリ
アを放出しないということがある。
[Problem to be Solved by the Invention 1] One of the reasons why the impurity that replaces the group III element and becomes a donor is not activated is that when a large amount of impurity is introduced into the crystal, the impurity and phos I. Differences in the atomic radii of the elements cause strain in the lattice of the parent phase, making it easier for lattice defects to form, and impurities serving as donors and lattice defects may form a bare structure, preventing carriers from being emitted.

本発明の目的は、このような問題を解決し、高濃度にド
ーピングできる■−V族化合物半導体の結晶成長方法を
提供することにある。
An object of the present invention is to solve such problems and provide a method for growing crystals of a -V group compound semiconductor that can be doped at a high concentration.

し問題点を解決するための手段〕 本発明の■−V族化合物半導体の結晶成長方法は、■族
元素を置換してドナーとなる不純物をドーピングする際
に、前記■族元素より大きな原子半径を持つ不純物と小
さな原子半径を持つ不純物とを同時にドーピングするこ
とにより、格子の歪を解消したことを特徴とする。
[Means for Solving the Problems] The crystal growth method of the ■-V group compound semiconductor of the present invention is such that when doping with an impurity that replaces the group ■ element and becomes a donor, an atomic radius larger than that of the group ■ element is used. It is characterized by eliminating lattice distortion by simultaneously doping an impurity with an atomic radius and an impurity with a small atomic radius.

〔作用」 本発明の構成において、■族元素より原子半径の大きな
不純物と小さな不純物とを同時にドーピングすると格子
の緩和が起こり格子の歪を解消する。このため格子の歪
による欠陥の発生が抑制され、ドナーの補償の原因であ
る不純物と欠陥のペアが形成されないので、有効にドナ
ーは活性化されキャリア濃度を増加させることが出来る
[Function] In the structure of the present invention, when an impurity with a larger atomic radius and an impurity with a smaller atomic radius than the Group Ⅰ element are simultaneously doped, lattice relaxation occurs and lattice distortion is eliminated. Therefore, the generation of defects due to lattice distortion is suppressed, and pairs of impurities and defects that cause donor compensation are not formed, so that donors can be effectively activated and the carrier concentration can be increased.

〔実施例〕〔Example〕

次に本発明を図面により詳細に説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の実施例の結晶成長方法を実施するため
の装置の概略図である。図において、原料ガスおよびド
ーピングガスは、ガス供給口1より反応管内2に導入さ
れ、高周波コイル5で加熱されたカーボン製ペデスタル
4上に設置された基板3上にて分解され、化合物半導体
を生成する。
FIG. 1 is a schematic diagram of an apparatus for carrying out a crystal growth method according to an embodiment of the present invention. In the figure, raw material gas and doping gas are introduced into a reaction tube 2 through a gas supply port 1, and are decomposed on a substrate 3 placed on a carbon pedestal 4 heated by a high-frequency coil 5 to produce a compound semiconductor. do.

未反応あるいは反応後のガスは、ガス排出口6がら排出
される。
Unreacted or reacted gas is discharged from the gas outlet 6.

この装置を用い、原料ガスとしてトリメチルガリウム(
TMG)、アルシン(^5l13)、ドーピングガスと
してSiを含むシラン(Sil14) 、Snを含むテ
1−ラメチルスズ(TMSn)を用いてGaAs中にS
i、Snをドーピングした。Si、SnはGat!−置
換してドナーとなる不純物であり、Si、Ga、Snの
原子半径はそれぞれ1.17人、1.26人、1.40
人なので、Siの原子半径はGaより小さく、Snの原
子半径は逆に大きい。
Using this equipment, trimethyl gallium (
S in GaAs using TMG), arsine (^5l13), silane containing Si as a doping gas (Sil14), and tetramethyltin (TMSn) containing Sn.
i, Doped with Sn. Si, Sn is Gat! -It is an impurity that becomes a donor by substitution, and the atomic radius of Si, Ga, and Sn is 1.17, 1.26, and 1.40, respectively.
Since it is a human being, the atomic radius of Si is smaller than that of Ga, whereas the atomic radius of Sn is larger.

第2図(a)〜(c)はGaAs基板上に不純物をドー
ピングしたGaAsをエピタキシャル成長した場合の基
板のエピタキシャル成長層の格子定数の差をエックス線
二結晶法で評価した特性図である。
FIGS. 2(a) to 2(c) are characteristic diagrams obtained by evaluating the difference in lattice constant of the epitaxially grown layer of a GaAs substrate by epitaxially growing GaAs doped with impurities using the X-ray double crystal method.

TMGに対するドーピング流量比は5il14.TMS
nともに3X10−2である。第2図(a>は、5il
14を用いてGaAsにSiのみをドーピングした場合
を示し、格子定数差比にして、Δa/ a=1.5 X
 10−4だけ成長層の方が基板より格子定数が短くな
る。第2図(b)は、TMSnを用いてGaAsにSn
のみをドーピングした場合を示し、Δa/ a=2−7
 X 10−’だけ成長層の方が基板より格子定数が長
くなる。
The doping flow rate ratio to TMG is 5il14. TMS
Both n are 3X10-2. Figure 2 (a> is 5il
14 is used to dope GaAs with only Si, and the lattice constant difference ratio is Δa/a=1.5X
The lattice constant of the grown layer is shorter than that of the substrate by 10-4. Figure 2(b) shows how Sn is applied to GaAs using TMSn.
Δa/a=2-7
The lattice constant of the grown layer is longer than that of the substrate by X 10-'.

しかし、第2図(c)に示すようにSi、Snを同量ド
ーピングした場合は、基板と成長層の格子定数差はなく
なり、格子歪が緩和されていることを示している。この
効果により、Si、Snを単独にドーピングした時はキ
ャリア濃度の最高値が6〜8X 1018(cn−’)
であるのに対し、同時ドーピングを行うとキャリア濃度
は1.5 X 1019(c+a−’)に増加した。
However, as shown in FIG. 2(c), when the same amounts of Si and Sn are doped, there is no difference in lattice constant between the substrate and the grown layer, indicating that the lattice strain is relaxed. Due to this effect, when Si and Sn are doped alone, the maximum value of the carrier concentration is 6 to 8X 1018 (cn-')
On the other hand, when simultaneous doping was performed, the carrier concentration increased to 1.5 x 1019 (c+a-').

以上の実施例では、結晶成長方法として有機金属気相成
長法を用いてn型GaAs層を形成する場合を示したが
、他の■−v族化合物、例えばアルミニウムヒソ(^e
As)、インジウムヒソ(InAs)、ガリウムリン(
GaP)あるいはこれらの混晶であっても、また他の不
純物を用いても、他の成長法で行っても、本発明の範囲
を逸脱しない条件で任意に変更できる。
In the above embodiments, the case where the n-type GaAs layer was formed using organometallic vapor phase epitaxy as the crystal growth method was shown, but other ■-v group compounds, such as aluminum histo(^e
As), indium histo (InAs), gallium phosphide (
Any changes can be made without departing from the scope of the present invention, such as by using GaP) or a mixed crystal thereof, using other impurities, or using other growth methods.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、l1l−V族化
合物半導体にドナー不純物をドーピングする際にホスト
元素より大きな原子半径を持つ不純物と小さな原子半径
を持つ不純物を同時にドーピングすることにより、格子
の歪を解消し、より高いキャリア濃度を得ることができ
る。
As explained above, according to the present invention, when doping an l1l-V group compound semiconductor with a donor impurity, by simultaneously doping an impurity with a larger atomic radius and an impurity with a smaller atomic radius than the host element, the lattice distortion can be eliminated and higher carrier concentration can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いた結晶成長装置の概略図
、第2図(a)〜(c)はエックス線二結晶法による基
板と成長層のずれを示す特性図である。 1・・・ガス供給口、2・・・反応管、3・・・基板、
4・・・ペデスタル、5・・・高周波コイル、6・・・
ガス排出口。 第1 ¥2I
FIG. 1 is a schematic diagram of a crystal growth apparatus used in an example of the present invention, and FIGS. 2(a) to 2(c) are characteristic diagrams showing misalignment between a substrate and a grown layer by the X-ray double crystal method. 1... Gas supply port, 2... Reaction tube, 3... Substrate,
4...Pedestal, 5...High frequency coil, 6...
Gas outlet. 1st ¥2I

Claims (1)

【特許請求の範囲】[Claims] III族元素を置換してドナーとなる不純物をドーピング
する際に、前記III族元素より大きな原子半径を持つ不
純物と小さな原子半径を持つ不純物とを同時にドーピン
グすることを特徴とするIII−V族化合物半導体の結晶
成長方法。
A III-V compound characterized in that when doping an impurity that replaces a Group III element and becomes a donor, an impurity having a larger atomic radius and an impurity having a smaller atomic radius than the Group III element are simultaneously doped. Semiconductor crystal growth method.
JP24061986A 1986-10-08 1986-10-08 Crystal growth method of ii-v compound semiconductor Pending JPS6394618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24061986A JPS6394618A (en) 1986-10-08 1986-10-08 Crystal growth method of ii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24061986A JPS6394618A (en) 1986-10-08 1986-10-08 Crystal growth method of ii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPS6394618A true JPS6394618A (en) 1988-04-25

Family

ID=17062189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24061986A Pending JPS6394618A (en) 1986-10-08 1986-10-08 Crystal growth method of ii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6394618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186784A (en) * 1989-06-20 1993-02-16 Texas Instruments Incorporated Process for improved doping of semiconductor crystals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186784A (en) * 1989-06-20 1993-02-16 Texas Instruments Incorporated Process for improved doping of semiconductor crystals

Similar Documents

Publication Publication Date Title
Kikkawa et al. The growth of GaAs, AlGaAs, and selectively doped AlGaAs/GaAs heterostructures by metalorganic vapor phase epitaxy using tertiarybutylarsine
JPH0547665A (en) Vapor growth method
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPS6394618A (en) Crystal growth method of ii-v compound semiconductor
US20110233730A1 (en) REACTIVE CODOPING OF GaAlInP COMPOUND SEMICONDUCTORS
JP3536699B2 (en) Compound semiconductor vapor phase epitaxial growth method
JPH03203228A (en) Semiinsulating garium arsenic formation
Ludowise et al. Use of column V alkyls in organometallic vapor phase epitaxy (OMVPE)
JP3189061B2 (en) Method for manufacturing compound semiconductor device
JPS63124408A (en) Crystal growth method of iii-v compound semiconductor
Ruiz et al. Nitrogen and carbon incorporation in GaNxAs1-x grown in a showerhead MOVPE reactor
EP0631298A2 (en) Semiconductor epitaxial substrate and process for its production
JP3116954B2 (en) Method for growing compound semiconductor thin film
JPS63129609A (en) Method of adding impurity for iii-v compound semiconductor single crystal thin film
JP3109149B2 (en) Compound semiconductor crystal growth method
JPH01100976A (en) Manufacture of semiconductor element
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
JPH03188619A (en) Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate
JPS60182722A (en) Decompression cvd device
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS62229822A (en) Vapor growth method for gallium arsenide layer
JPS6187318A (en) Doping method in gallium-aluminum-arsenic layer
JPH02184019A (en) Vapor growth device
Spurdens et al. A TEM study of GaInAsP/InP heterojunctions grown by atmospheric pressure MOVPE