JPS6393698A - Double reverse rotating propelling device - Google Patents

Double reverse rotating propelling device

Info

Publication number
JPS6393698A
JPS6393698A JP61237872A JP23787286A JPS6393698A JP S6393698 A JPS6393698 A JP S6393698A JP 61237872 A JP61237872 A JP 61237872A JP 23787286 A JP23787286 A JP 23787286A JP S6393698 A JPS6393698 A JP S6393698A
Authority
JP
Japan
Prior art keywords
engine
vibration
shaft
clutch
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61237872A
Other languages
Japanese (ja)
Other versions
JPH0774032B2 (en
Inventor
Toyonobu Narita
成田 豊伸
Akihiro Miyake
三宅 章宏
Taisuke Okamoto
泰典 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP61237872A priority Critical patent/JPH0774032B2/en
Publication of JPS6393698A publication Critical patent/JPS6393698A/en
Publication of JPH0774032B2 publication Critical patent/JPH0774032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • B63H2005/106Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type with drive shafts of second or further propellers co-axially passing through hub of first propeller, e.g. counter-rotating tandem propellers with co-axial drive shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • B63H2023/323Bearings for coaxial propeller shafts, e.g. for driving propellers of the counter-rotative type

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Structure Of Transmissions (AREA)

Abstract

PURPOSE:To make it possible to eliminate a continuous use prohibition area from an engine operation range by arranging a clutch between an input end of a power distribution means and a distribution output end in order to change a mass of a vibration train by disengaging either an inner or outer shaft from a main shaft. CONSTITUTION:When performing a normal navigation by rotating paired propellers 2 and 3 in directions reverse to each other, a control device 30 engages a clutch 21 and transmits engine power to both inner and outer shafts 6 and 5 by means of a power distribution means 17. Here, if an engine rpm is lowered to a certain rpm in order to slow a speed of a ship down, a peak of vibration torque is produced. The control device 30 therefore, detects that an rpm at which the peak of the vibration torque is produced is drawing near by means of a detector 31, disengages the clutch 21, disengages a bow side propeller 2 located after a planetary gear mechanism 20 from an engine 11, reduces a mass of a vibration train, and makes the peak of the vibration torque move to a higher rpm side. Thus, it is possible to eliminate a continuous use prohibition area from an engine operation range to improve maneuverability of a ship.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二重反転推進装置に係り、特に操船性の観点か
らその改善を図った二重反転推進装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a counter-rotating propulsion system, and more particularly to a counter-rotating propulsion system that is improved from the viewpoint of ship maneuverability.

[従来の技術] 二重反転推進装置は第4図に示すように、船尾aに同軸
で且つ軸方向に沿って重ねて直列に設けられた一対のス
クリュ推進器す、cを、互いに反対方向に回転駆動させ
ることにより推力を発生するようになっている。この場
合に、これら推進器す、cを同軸で反対方向に駆動させ
るために二重反転軸dが採用される。この二重反転軸d
は、一方の推進器Cを駆動する中空の外輪e内に軸受i
を介して他方の推進器すを駆動する内軸fが挿通されて
構成され、機関9の動力を、歯車列で構成した動力分配
手段りを介して夫々の軸e、fに反対方向に伝達するこ
とにより、一対の推進器す。
[Prior Art] As shown in Fig. 4, a counter-rotating propulsion system has a pair of screw propulsors (A) and (C) installed coaxially in the stern (a) and stacked in series along the axial direction. It is designed to generate thrust by rotating it. In this case, a counter-rotating axis d is employed to drive these propulsors s, c coaxially and in opposite directions. This counter-rotating axis d
is a bearing i inside a hollow outer ring e that drives one thruster C.
The inner shaft f for driving the other thruster is inserted through the shaft, and the power of the engine 9 is transmitted in opposite directions to the respective shafts e and f through power distribution means constructed of a gear train. By doing so, a pair of propulsors are activated.

Cを略等しい回転数で互いに反転できるようになってい
る。
C can be mutually reversed at approximately the same number of rotations.

[発明が解決しようとする問題点] ところで一般に機関9及び推進器す、cを含む動力伝達
系は振動系を構成しており、機関gにおける爆発起振に
よって振動が発生している。そし1口の振動は撮動系固
有の振動数でビーク(共振点)を持つことになり、殊に
低速ディーゼル機関の場合には第5図に示ずように、機
関gの常用運転回転数範囲内で高いビーク(図中、Δで
示す)を持つことになる。そしてこのようなビークAが
存在しても、その大きさが推進器す、cを駆動するのに
要する、所謂平均トルク(図中、実線Bで示す)よりも
小さい場合には問題はない。
[Problems to be Solved by the Invention] Generally, the power transmission system including the engine 9 and the propulsors (s) and (c) constitutes a vibration system, and vibrations are generated by explosion vibration in the engine (g). The vibration of one mouth has a peak (resonance point) at a frequency unique to the imaging system, and especially in the case of a low-speed diesel engine, as shown in Figure 5, the normal operating speed of engine g It will have a high peak (indicated by Δ in the figure) within this range. Even if such a beak A exists, there is no problem as long as its size is smaller than the so-called average torque (indicated by the solid line B in the figure) required to drive the thrusters 1 and 2.

しかしながら、二重反転軸dで構成された動力伝達系は
、動力分配手段りにより機関gの動力を略1/2の大き
さに分配して内軸f及び外軸e夫々に伝達するものであ
るため、平均トルクBも動力分配手段り及び各軸e、f
において全体の略1/2の値となる。これに対し、振動
トルク(図中、破線Cで示す)は動力分配手段りの歯車
列の部分でそのまま 100%の値をとる。従って、一
般の単一軸で構成された動力伝達系に比べて二重反転軸
dで構成された動力伝達系の場合には、動力分配の結果
として動力分配手段りの部分において各軸e、fに伝達
づる平均トルクBが振動トルクCよりも小さくなり、振
動トルクCが平均トルクBを上回ってしまうという問題
があった。
However, the power transmission system configured with the counter-rotating shaft d is such that the power of the engine g is divided into approximately 1/2 by the power distribution means and transmitted to the inner shaft f and the outer shaft e, respectively. Therefore, the average torque B also depends on the power distribution means and each axis e, f.
The value is approximately 1/2 of the total. On the other hand, the vibration torque (indicated by broken line C in the figure) takes a value of 100% at the gear train portion of the power distribution means. Therefore, compared to a power transmission system composed of a general single shaft, in the case of a power transmission system composed of a counter-rotating shaft d, as a result of power distribution, each axis e, f There was a problem in that the average torque B transmitted to the vibration torque C was smaller than the vibration torque C, and the vibration torque C exceeded the average torque B.

このように振動トルクCが平均トルクBを上回ると、機
関9を含む動力伝達系の耐久性、信頼性に悪影響を及ぼ
し、また動力分配手段りの歯車列においてチャタリング
を起こし、歯を損傷させるおそれがある。そこで、この
ようなチャタリングの発生等を防止するために、振動ト
ルクCが平均トルクBを上回ってチャタリング等を生じ
させる機関回転数範囲は、操船上動力伝達を行なわない
ように運転を禁止する、所謂連続使用禁止範囲(図中、
Dで示す範囲)として設定される。このため、船舶の操
船上、全回転数範囲に亘って機関Qを運転することがで
きず、極めて不便であった。
If the vibration torque C exceeds the average torque B in this way, it will adversely affect the durability and reliability of the power transmission system including the engine 9, and may cause chattering in the gear train of the power distribution means, causing damage to the teeth. There is. Therefore, in order to prevent the occurrence of such chattering, etc., operation is prohibited in the engine speed range where the vibration torque C exceeds the average torque B and causes chattering, etc., so that power transmission is not performed during ship maneuvering. The so-called continuous use prohibited range (in the diagram,
range indicated by D). For this reason, it was not possible to operate the engine Q over the entire rotation speed range, which was extremely inconvenient.

また殊に、この連続使用禁止範囲りは一般に機関gの低
回転数域となるために低船速で操船することができず、
最低船速か速くなり過ぎ、出入港時等に危険であるとい
う問題があった。
In particular, this continuous use prohibition range is generally a low rotational speed range of the engine g, making it impossible to maneuver the ship at low speeds.
There was a problem that the minimum ship speed was too fast, which was dangerous when entering and exiting port.

にに従来採用されてさに次のような振動対策を講するこ
とが考えられる。
It is conceivable to take the following vibration countermeasures, which have been conventionally adopted in the past.

■ 機関と動力分配手段との間の適当な位置に弾性継手
を介設する。しかしながらこの場合にあっては、振動系
の固有振動数が小さくなるだけであり、依然常用運転回
転数範囲に振動トルクのビークが存在することになる。
■ Interpose elastic joints at appropriate locations between the engine and the power distribution means. However, in this case, the natural frequency of the vibration system only becomes smaller, and a peak of vibration torque still exists in the normal operating speed range.

従って、連続使用禁止範囲の上限をある程度下げること
はできても、最低船速を充分に小さく確保することはで
きない。
Therefore, even if it is possible to lower the upper limit of the continuous use prohibition range to some extent, it is not possible to ensure a sufficiently low minimum ship speed.

■ 機関にトーショナル・バイブレーション・ダンパを
置設する。しかしこのような構成では、充分に振動を消
し去ることはできないと共に信頼性の面でも不安があり
、更にコストアップを招くことになる。
■ Install a torsional vibration damper in the engine. However, with such a configuration, it is not possible to sufficiently eliminate vibrations, and there are also concerns about reliability, which further increases costs.

■ 低速ディーゼル機関に替えて中速ディーゼル機関を
採用する。これによれば爆発起振による振動を高振動域
に移すことができるが、低速ディーゼル直結型の種々の
メリットを活かせなくなると共に、リダクションギヤ等
を必要としてコストアップを招(ことになる。
■ Adopt a medium-speed diesel engine instead of a low-speed diesel engine. According to this, the vibration caused by the explosion can be moved to a high vibration range, but the various advantages of the low-speed diesel direct connection type cannot be utilized, and a reduction gear etc. is required, leading to an increase in cost.

[問題点を解決するための手段] 本発明は、中空状の外輪及び外輪内に挿通された内輪と
から成り、これら内・外軸に夫々取り付けられた一対の
推進器を同軸上で互いに反転駆動する二重反転軸の内・
外軸夫々にその分配出力端が連結されると共に、入力端
に11閏動力を伝達する主軸が連結され、機関動力を内
・外軸に分配しつつ伝達する動力分配手段と、動力分配
手段の入力端と分配出力端との間に設けられ内・外軸の
いずれか一方を主軸から係脱して振動系の質量を変える
ためのクラッチとを備えて構成される。
[Means for Solving the Problems] The present invention consists of a hollow outer ring and an inner ring inserted into the outer ring, and a pair of propellers attached to the inner and outer shafts are rotated coaxially with each other. Of the counter-rotating shafts to be driven,
A distribution output end is connected to each of the outer shafts, and a main shaft for transmitting the 11 leap force is connected to the input end, and a power distribution means for transmitting the engine power while dividing it to the inner and outer shafts, and a power distribution means for transmitting the engine power while distributing it to the inner and outer shafts are connected. It is configured to include a clutch provided between the input end and the distribution output end to change the mass of the vibration system by engaging or disengaging one of the inner and outer shafts from the main shaft.

[作 用コ 次に本発明の作用について述べると、二重反転軸で成る
動力伝達系が構成する振動系は、凡そ機関並びに各推進
器が質量となり、またこれらを連結する二重反転軸系が
バネとして機能する。ここに、振動系の固有振動数は、
これら質量とバネとによって決定され、質量が変われば
固有振動数も変化する。二重反転推進装置は、外軸とそ
の推進器で成る系と、内軸とその推進器で成る系との別
個の系を動力分配手段で主軸と連結することにより構成
されている。そこで、機関に対しこれら別個の系の一方
を分離させたり接続させたりすることにより、振動系の
質量を変えることができ、その固有振動数を変更させる
ことができる。殊に振動系の固有振動数は質量が大きい
程低いので、外輪あるいは内軸の一方の系を機関から切
り離すことにより質問は小さくなって固有振動数は高い
ものとなる。
[Function] Next, to describe the function of the present invention, the vibration system constituted by the power transmission system consisting of counter-rotating shafts has the mass of the engine and each propulsion device, and the counter-rotating shaft system that connects them. acts as a spring. Here, the natural frequency of the vibration system is
It is determined by these masses and springs, and if the mass changes, the natural frequency will also change. A counter-rotating propulsion device is constructed by connecting two separate systems: a system consisting of an outer shaft and its propeller, and a system consisting of an inner shaft and its propeller, to the main shaft by a power distribution means. Therefore, by separating or connecting one of these separate systems to the engine, the mass of the vibration system can be changed and its natural frequency can be changed. In particular, the greater the mass, the lower the natural frequency of the vibration system, so by separating either the outer ring or the inner shaft from the engine, the vibration becomes smaller and the natural frequency becomes higher.

そこで、主軸に連結される動力分配手段の入力端と、内
・外軸に夫々連結される動力分配手段の分配出力端との
間に、内・外軸のいずれか一方を主軸から係脱するクラ
ッチを介設することにより、振動系の質量を変えて上述
した固有振動数の変更を達成できる。
Therefore, one of the inner and outer shafts is disengaged from the main shaft between the input end of the power distribution means connected to the main shaft and the distribution output end of the power distribution means connected to the inner and outer shafts respectively. By interposing a clutch, the mass of the vibration system can be changed to achieve the change in the natural frequency described above.

そして、二重反転による両推進器の駆動中において、振
動トルクのピークが存在する機関の低回転域(連続使用
禁止範囲〉に至った場合には、クラッチによりいずれか
一方の系を主軸から切り離せば、振動トルクのピークを
機関の中・高回転域側に移すことができ、爾後他方の系
に動力を伝達して単−推進器により低船速域で継続航行
できるようになっている。また機関の中・高回転域にお
ける運転では、クラッチを接続すれば振動トルクのピー
クは低回転域側に存在するので、通常の二重反転による
両推進器駆動で航行を継続できるようになっている。
When both propulsors are being driven by counter-rotation, if the engine reaches a low rotational speed range (range where continuous use is prohibited) where the vibration torque peaks, one of the systems can be disconnected from the main shaft using a clutch. For example, the peak of the vibration torque can be shifted to the mid- to high-speed range of the engine, and power is then transmitted to the other system, allowing the vessel to continue sailing at low speeds using a single propulsion system. In addition, when operating the engine in the medium and high speed ranges, if the clutch is engaged, the peak of vibration torque will be in the low speed range, so navigation can be continued with normal contra-rotation drive of both propulsors. There is.

し実施例] 以下に本発明の好適一実施例を添付図面に従って詳述す
る。
Embodiment] A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図に示すように船尾1には、互いに逆ピッチで構成
された一対のスクリュ推進器2.3が同軸で且つ軸方向
に沿って重ねて直列に設けられ、これら推進器2,3を
互いに逆転させることにより推進できるようになってい
る。そして、これら推進器2,3には、これらを同軸で
夫々反対方向に回転駆動させるために二重反転軸4が連
結される。二重反転軸4は、船首側推進器2に連結され
る中空状の外軸5と、この外軸5内に挿通されて船尾側
推進器3に連結される内軸6とから構成され、これら軸
5,6が互いに反転されつつ同軸で動力を伝達してこれ
ら推進器2.3を反転駆動するようになっている。これ
ら内軸6と外軸5との間には、船体内方の一端部並びに
船首側推進器2のボス7内に、相互の回転を自在とする
軸受部材8が配設される。また船首側推進器2のスラス
トは、そのボス7内に設けられたスラストパッド9及び
内軸6に設けられこれらスラストパッド9に軸方向から
挟持されるスラストカラ10を介して内軸6に伝達され
、また船尾側推進器3のスラストは、スラストカラ10
を介して伝達される船首側推進器2のスラストと共に内
軸6に伝達され、機関11に内蔵されたスラスト軸受で
一括して支持されるようになっている。尚、二重反転軸
4が貫通する船尾隔壁12並びに船尾端13には、夫々
シール部材14が配設される。また、15は外軸5を船
体に回転自在に支持する船尾管軸受である。
As shown in Fig. 1, a pair of screw propulsors 2.3 configured with opposite pitches are installed coaxially and in series in series along the axial direction in the stern 1. They can be propelled by reversing each other. A counter-rotating shaft 4 is connected to these propulsors 2 and 3 in order to coaxially drive them to rotate in opposite directions. The counter-rotating shaft 4 includes a hollow outer shaft 5 connected to the bow propeller 2, and an inner shaft 6 inserted into the outer shaft 5 and connected to the stern propeller 3. These shafts 5 and 6 are rotated in opposite directions and coaxially transmit power to drive the propellers 2.3 in reverse. A bearing member 8 is disposed between the inner shaft 6 and the outer shaft 5 at one end inside the hull and within the boss 7 of the bow propeller 2 to allow mutual rotation. Further, the thrust of the bow propeller 2 is transmitted to the inner shaft 6 via a thrust pad 9 provided in the boss 7 and a thrust collar 10 provided on the inner shaft 6 and held between the thrust pads 9 from the axial direction. , and the thrust of the stern thruster 3 is the thrust collar 10.
The thrust of the bow propeller 2 is transmitted to the inner shaft 6 together with the thrust of the bow propeller 2, and is collectively supported by a thrust bearing built into the engine 11. Note that a seal member 14 is provided at each of the stern bulkhead 12 and the stern end 13 through which the counter-rotating shaft 4 passes. Further, 15 is a stern tube bearing that rotatably supports the outer shaft 5 on the hull.

このようにして動力を伝達する二重反転軸4と、劃11
に連結されて機関動力を伝達する主軸16との間には、
外軸5及び内軸6夫々にその分配出力端17a、17b
が連結されると共に、入力端17cに主軸16が連結さ
れ、入力端17Cから入力される動力をこれら内・外軸
6.5に逆回転で分配して伝達するための動力分配手段
17が設けられる。この動力分配手段17は具体的には
第2図に示すように、主軸16に接合されるフランジカ
ップリング18と、ハウジング19内に収容された遊星
歯車機構20とから構成され、殊に遊星歯車機構20と
フランジカップリング18との間には、後述するクラッ
チ21が設けられる。
The counter-rotating shaft 4 that transmits power in this way, and the shaft 11
between the main shaft 16 that is connected to the main shaft 16 and transmits the engine power,
Distribution output ends 17a and 17b are provided on the outer shaft 5 and the inner shaft 6, respectively.
are connected to each other, and a main shaft 16 is connected to the input end 17c, and a power distribution means 17 is provided for distributing and transmitting the power input from the input end 17C to these inner and outer shafts 6.5 in reverse rotation. It will be done. Specifically, as shown in FIG. 2, this power distribution means 17 is composed of a flange coupling 18 joined to the main shaft 16 and a planetary gear mechanism 20 housed in a housing 19. A clutch 21, which will be described later, is provided between the mechanism 20 and the flange coupling 18.

ハウジング19には、機関側の一端部に開口部19aが
形成され、この開口部19ak:Fat接する内軸6の
一端にフランジカップリング18が取り付けられる。他
方遊星歯車機構20は一般的構成で成り、内軸6を囲繞
するスリーブ状に形成された太陽歯車24と、ハウジン
グ19にその公転が規制されつつ軸受部材25を介して
自転自在に支持され太陽歯車24に噛合される遊星歯車
26と、遊星歯車26に噛合される環状の内歯車27と
から構成される。そし−で、この内歯車27は、外軸5
に取り付けられlζフランジカップリング28に形成さ
れた環状の外歯中29に噛合される。そして機関動力は
主軸16を介してフランジカップリング18に人力され
、モの一部がフランジカップリング18から直接内軸6
に伝達されると共に、残部は遊星歯車機lll120に
伝達されこの遊犀歯中機構20で回転ノヲ向が逆転され
て内歯車27から外軸5へ伝達されるようになっており
、フランジカップリング1ε3が動力分配手段17の入
力端17cを成りど共に、またこのフランジカップリン
グ18と遊Wl!ljI中機構20、具体的には内歯車
27とが人々内軸6及び外軸5への分配出力端17b、
17aと成っている。
An opening 19a is formed in the housing 19 at one end on the engine side, and a flange coupling 18 is attached to one end of the inner shaft 6 in contact with the opening 19ak:Fat. On the other hand, the planetary gear mechanism 20 has a general configuration, and includes a sun gear 24 formed in the shape of a sleeve surrounding the inner shaft 6, and a sun gear 24 that is rotatably supported via a bearing member 25 while its revolution is regulated by the housing 19. It is composed of a planetary gear 26 that meshes with the gear 24 and an annular internal gear 27 that meshes with the planetary gear 26. Therefore, this internal gear 27 is connected to the outer shaft 5.
The lζ flange coupling 28 is attached to the lζ flange coupling 28 and is engaged with an annular outer tooth 29 formed thereon. Then, the engine power is manually applied to the flange coupling 18 via the main shaft 16, and a part of the engine power is transferred directly from the flange coupling 18 to the inner shaft 6.
At the same time, the remaining part is transmitted to the planetary gear mechanism 120, the direction of rotation is reversed by the idler gear mechanism 20, and the rotation is transmitted from the internal gear 27 to the outer shaft 5, and the flange coupling 1ε3 forms the input end 17c of the power distribution means 17, and the flange coupling 18 and the play Wl! The internal mechanism 20, specifically the internal gear 27, has a distribution output end 17b to the internal shaft 6 and the external shaft 5,
17a.

ところで、このように構成された動力分配手段17の一
方の分配出力端17aたる内歯車27と入力端17cた
るフランジカップリング18、より具体的には分配出力
端17aを成す遊星歯巾機構20の太陽雨中24とフラ
ンジカップリング18との間には、ハウジング190聞
l]部19aに位置させて、外軸5を主軸16から係脱
して振動系の質相を変えるための一般的構成で成る油几
式等のクラップ21が設けられる。そしてこのクラップ
21を接続すれば内・外軸6.5双方を介しく機関11
と一対の推進器2.3が接続されてこれらに動力がイム
達されると共に振動系たる動力伝達系の質量が増加され
、他方クラッチ21を切断すれば遊W歯中に貿20以降
の外軸5側並びに船市側推進器2が機関11と切り離さ
れて動力伝達が断たれると共に動力伝達系の質量が減少
されるようになっている。このクラッチ21には第1図
に示すように、操船用の制御盤30が接続され、この制
御盤30には、機関N転数を検出する検出器31が接続
される。イしてクラッチ21は、検出器31から人力さ
れる検出値に従って制御盤30が出力づる制御f4月に
1心して断続制御されるようになっている。
By the way, the internal gear 27 which is one distribution output end 17a of the power distribution means 17 configured in this way and the flange coupling 18 which is the input end 17c, more specifically, the planetary tooth width mechanism 20 which constitutes the distribution output end 17a. It is located in the housing 190 part 19a between the solar rain cover 24 and the flange coupling 18, and has a general configuration for changing the quality of the vibration system by disengaging the outer shaft 5 from the main shaft 16. A clap 21 of an oil tank type or the like is provided. When this clamp 21 is connected, the engine 11 is connected through both the inner and outer shafts 6.5.
and a pair of propellers 2.3 are connected, power is delivered to them, and the mass of the power transmission system, which is a vibration system, is increased.On the other hand, if the clutch 21 is disengaged, the external force after the trade 20 is released during the free W tooth. The shaft 5 side and the boat side propeller 2 are separated from the engine 11 to cut off power transmission and reduce the mass of the power transmission system. As shown in FIG. 1, this clutch 21 is connected to a control panel 30 for boat maneuvering, and to this control panel 30 is connected a detector 31 for detecting the engine N rotation speed. Then, the clutch 21 is controlled intermittently, with the control panel 30 outputting an output in accordance with the detected value manually inputted from the detector 31.

また図中、ハウジング19の開「1部″+98には、ク
ラッチ21との間をシール覆るためのAイルシール部材
35〕が設けられる。また36はAイルシール部材であ
る。
Further, in the figure, an A-il seal member 35 for sealing the gap between the housing 19 and the clutch 21 is provided at the opening ``part'' +98 of the housing 19. Further, 36 is an A seal member.

次に実施例の作用について述べる。Next, the operation of the embodiment will be described.

一対の推進器2,3を17いに反転させて通常の航行を
する場合には、クラッチ21を接続し、動力分配手段1
7により機関動力を内・外軸6,5双すに伝達すること
になる。これに際し、船速を低下させるべく機関回転数
を下げると、相当の機関回転数N1において振動トルク
のビークが発生する。この状態は第3図において、内・
外軸並びにクランク軸に生ずる捩り振仙軸応力と機関回
転数との関係を示すグラフとして示されている。クラッ
チ2′1を接)7cbた場合の関係は上段に示されてお
り、このような振動トルクのビークEを発生させる機関
回転数N1の近傍では応力1lf1(図中、「で示ず)
が許容応力値(図中、Gで示す)に近づ゛くと共にチャ
タリングが発生しく図中、)」で示す範囲)、殊にビー
ク1てを発生させる機関回転数N1を含む相当の回転数
域が連続使用禁止範囲にとなる。
When the pair of propulsors 2 and 3 are reversed to 17 degrees for normal navigation, the clutch 21 is connected and the power distribution means 1
7, the engine power is transmitted to the inner and outer shafts 6 and 5. At this time, when the engine speed is lowered to reduce the boat speed, a vibration torque peak occurs at a considerable engine speed N1. This state is shown in Figure 3.
It is shown as a graph showing the relationship between the torsional axial stress generated on the outer shaft and the crankshaft and the engine speed. The relationship when the clutch 2'1 is connected) 7cb is shown in the upper row, and near the engine speed N1 that generates the peak E of vibration torque, the stress 1lf1 (not shown in the figure)
As the stress approaches the allowable stress value (indicated by G in the figure), chattering occurs. area is prohibited from continuous use.

ここに、クラッチ21を切断し゛(遊W歯車機構20以
降船首側推進器2を機関11から切り11ft−1と、
撮動系の質量が減少され、その結果固有振動数が高くな
つ−Cグラノの一ト段に示すように振動トルクのビーク
Lを高回転N2側に移動させることができる。このよう
に高回転N2側に撮動トルクのビークLを移動させるこ
とができれば、上段で示した連続使用禁止範囲にも高回
転側に移すことができく図中、Mで示す)、低回転域で
も継続して機関を運転することができる。即ち、振動系
の共振周波数と機関の爆発起振周波数とが一致しないよ
うに、クラッチ21の断続により撮動系の質量を変える
ことにより、連続使用禁止範囲に、Mのない操船が可能
となる。グラフに従って説明すれば、中・高速回転域で
はクラッチ21を継続して二重反転(−航行し、連続使
用禁止範囲Kに入る直前の船速、若しくは機関回転数N
となったならば爾後クラッチ21を切り離して単一の推
進器3による航行に移行させることになる。ここに、こ
のようなりラッチ21の断続切換点となる機関回転数N
は予め制御盤30にインプットされ、制御盤30は検出
器31からの検呂値を読み取りつつ操船のシーケンスに
従ってクラッチ21を断続制御するようになっている。
At this point, the clutch 21 is disconnected.
The mass of the imaging system is reduced, and as a result, the natural frequency is increased, and the peak L of the vibration torque can be moved to the high rotation N2 side as shown in the first stage of the C graph. If it is possible to move the peak L of the photographing torque to the high rotation N2 side in this way, it is possible to move it to the high rotation side even in the continuous use prohibited range shown in the upper row (indicated by M in the figure), low rotation The engine can be operated continuously even in the region. In other words, by changing the mass of the imaging system by turning on and off the clutch 21 so that the resonance frequency of the vibration system does not match the engine's explosion excitation frequency, it becomes possible to maneuver the ship without M within the range where continuous use is prohibited. . To explain according to the graph, in the medium and high speed range, the clutch 21 is kept in counter-rotation (-) and the ship speed or engine speed N just before entering the continuous use prohibited range K.
If this happens, the clutch 21 is then disengaged and navigation is shifted to using the single propulsion device 3. Here, the engine rotation speed N at which the latch 21 is switched on and off like this
is input into the control panel 30 in advance, and the control panel 30 reads the test value from the detector 31 and controls the clutch 21 on and off in accordance with the sequence of boat maneuvering.

このようにクラッチ21を断続III m1ll して
振動系の質量を変えることにより、連続使用禁止範囲の
ない操船を行なうことができる。また、チャタリングの
防止や動力伝達系の信頼性、耐久性を向上できる。
By controlling the clutch 21 on and off in this way and changing the mass of the vibration system, it is possible to maneuver the ship without any prohibition of continuous use. In addition, chattering can be prevented and the reliability and durability of the power transmission system can be improved.

またクラッチ21による断続制御であるため、航行中に
おいて切換制御ができ、一旦停船を必要とする等の不便
もない。
Furthermore, since the on/off control is performed by the clutch 21, switching control can be performed during navigation, and there is no inconvenience such as having to temporarily stop the ship.

更に、クラッチ21を採用したことにより、構造が簡単
であり、実用化し易い。
Furthermore, by employing the clutch 21, the structure is simple and easy to put into practical use.

なお、上記実施例にあってはクラッチ21を7ランジカ
ツプリング18と太陽歯車24との間に設けたが、外軸
5への分配出力端゛17aである内歯車27までの間で
あるならば、いずれの箇所に設けても良い。また、外軸
51\の分配出力端17aのみならず、内軸6への分配
出力端17bとの間にクラッチ21を設けて、内軸6と
主軸16とを係脱さけるように構成しても良い。
In the above embodiment, the clutch 21 is provided between the seven-lunge coupling 18 and the sun gear 24, but if the clutch 21 is provided between the internal gear 27, which is the distribution output end 17a to the outer shaft 5, For example, it may be provided at any location. Further, a clutch 21 is provided between not only the distribution output end 17a of the outer shaft 51\ but also the distribution output end 17b to the inner shaft 6, so as to prevent the inner shaft 6 and the main shaft 16 from being engaged or disengaged. Also good.

[発明の効果1 以上要するに本発明によれば次のような優れた効果を発
揮する。
[Effects of the Invention 1 In summary, the present invention exhibits the following excellent effects.

動力分配手段の入力端と分配出力端との間に、内・外軸
のいずれか一方を主軸から係脱して振動系の質量を変え
るクラッチを設けたことにより、クラッチの断続により
振動系の振動トルクのピークを移動させることができる
。従ってクラッチの切換えにより、連続使用禁止範囲を
機関運転域から除くことができ、操船性を向上すること
ができる。
By providing a clutch between the input end and the distribution output end of the power distribution means to change the mass of the vibration system by engaging or disengaging either the inner or outer shaft from the main shaft, the vibration of the vibration system can be reduced by disconnecting or disconnecting the clutch. The torque peak can be moved. Therefore, by switching the clutch, the range in which continuous use is prohibited can be excluded from the engine operating range, and the maneuverability of the ship can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適一実施例を示す側断面図、第2図
は要部拡大断面図、第3図は機関回転数と捩り振動軸応
力との関係を示すグラフ、第4図は一般的な二重反転推
進装置を示す側断面図、第5図は機関回転数と振動トル
クとの関係を示すグラフである。 図中、2,3は推進器、4は二重反転軸、5は外軸、6
は内軸、16は主軸、17は動力分配手段、17a、1
7bはその分配出力端、17cはその入力端、2゛1は
クラッチである。 特許出願人  石川島播磨重工業株式会社代理人弁理士
  絹  谷  信  雄vJi4&二交さ
Fig. 1 is a side sectional view showing a preferred embodiment of the present invention, Fig. 2 is an enlarged sectional view of main parts, Fig. 3 is a graph showing the relationship between engine speed and torsional vibration axial stress, and Fig. 4 is a graph showing the relationship between engine speed and torsional vibration axial stress. FIG. 5, a side sectional view showing a general counter-rotating propulsion device, is a graph showing the relationship between engine rotation speed and vibration torque. In the figure, 2 and 3 are propellers, 4 is a contra-rotating shaft, 5 is an outer shaft, and 6
1 is an inner shaft, 16 is a main shaft, 17 is a power distribution means, 17a, 1
7b is its distribution output end, 17c is its input end, and 2'1 is a clutch. Patent applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative Patent Attorney: Nobuo Kinuya vJi4 & Nikosa

Claims (1)

【特許請求の範囲】[Claims] 中空状の外軸及び該外軸内に挿通された内軸とから成り
、これら内・外軸に夫々取り付けられた一対の推進器を
同軸上で互いに反転駆動する二重反転軸の該内・外軸夫
々にその分配出力端が連結されると共に、入力端に機関
動力を伝達する主軸が連結され、該機関動力を該内・外
軸に分配しつつ伝達する動力分配手段と、該動力分配手
段の入力端と分配出力端との間に設けられ上記内・外軸
のいずれか一方を上記主軸から係脱して振動系の質量を
変えるためのクラッチとを備えたことを特徴とする二重
反転推進装置。
The counter-rotating shaft is composed of a hollow outer shaft and an inner shaft inserted into the outer shaft, and drives a pair of propellers attached to the inner and outer shafts, respectively, coaxially in opposite directions. A power distribution means having a distribution output end connected to each of the outer shafts and a main shaft for transmitting engine power being connected to an input end thereof, and transmitting the engine power while distributing it to the inner and outer shafts, and the power distribution means. A double clutch provided between the input end and the distribution output end of the means for changing the mass of the vibration system by engaging or disengaging one of the inner and outer shafts from the main shaft. Reversing propulsion device.
JP61237872A 1986-10-08 1986-10-08 Counter-rotating propulsion device Expired - Lifetime JPH0774032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61237872A JPH0774032B2 (en) 1986-10-08 1986-10-08 Counter-rotating propulsion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61237872A JPH0774032B2 (en) 1986-10-08 1986-10-08 Counter-rotating propulsion device

Publications (2)

Publication Number Publication Date
JPS6393698A true JPS6393698A (en) 1988-04-23
JPH0774032B2 JPH0774032B2 (en) 1995-08-09

Family

ID=17021663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61237872A Expired - Lifetime JPH0774032B2 (en) 1986-10-08 1986-10-08 Counter-rotating propulsion device

Country Status (1)

Country Link
JP (1) JPH0774032B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030149A (en) * 1989-08-28 1991-07-09 Ishikawajima-Harima Heavy Industries Co., Ltd. Power transmission arrangement for contra-rotating propeller shafts
US5791951A (en) * 1997-02-13 1998-08-11 Brunswick Corporation Clutch controller for a twin propeller marine propulsion unit
JP2010530334A (en) * 2007-06-20 2010-09-09 アグスタ ソチエタ ペル アツィオニ Helicopter rotor blade with vibration damper and method for updating the same
KR101313590B1 (en) * 2011-06-02 2013-10-01 삼성중공업 주식회사 Counter-rotating propulsion device and ship having the same
WO2013168986A1 (en) * 2012-05-10 2013-11-14 삼성중공업 주식회사 Propulsion device for ship and ship comprising same
WO2014088167A1 (en) * 2012-12-03 2014-06-12 삼성중공업 주식회사 Propeller for ship, and assembling method and disassembling method therefor
KR101444116B1 (en) * 2012-11-29 2014-09-26 삼성중공업 주식회사 Propeller Power Transmitting Apparatus for Ship
CN114572370A (en) * 2021-12-28 2022-06-03 深圳潜行创新科技有限公司 Contra-rotating double-propeller underwater propeller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261894A (en) * 1985-09-11 1987-03-18 Mitsubishi Heavy Ind Ltd Emergency drive coupling device for double reversal propeller shaft system
JPS638097A (en) * 1986-06-27 1988-01-13 Mitsubishi Heavy Ind Ltd Emergency navigation method for ship with double reversing propeller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261894A (en) * 1985-09-11 1987-03-18 Mitsubishi Heavy Ind Ltd Emergency drive coupling device for double reversal propeller shaft system
JPS638097A (en) * 1986-06-27 1988-01-13 Mitsubishi Heavy Ind Ltd Emergency navigation method for ship with double reversing propeller

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030149A (en) * 1989-08-28 1991-07-09 Ishikawajima-Harima Heavy Industries Co., Ltd. Power transmission arrangement for contra-rotating propeller shafts
US5791951A (en) * 1997-02-13 1998-08-11 Brunswick Corporation Clutch controller for a twin propeller marine propulsion unit
JP2010530334A (en) * 2007-06-20 2010-09-09 アグスタ ソチエタ ペル アツィオニ Helicopter rotor blade with vibration damper and method for updating the same
KR101313590B1 (en) * 2011-06-02 2013-10-01 삼성중공업 주식회사 Counter-rotating propulsion device and ship having the same
WO2013168986A1 (en) * 2012-05-10 2013-11-14 삼성중공업 주식회사 Propulsion device for ship and ship comprising same
US9751603B2 (en) 2012-05-10 2017-09-05 Samsung Heavy Ind. Co., Ltd. Propulsion device for ship and ship comprising the same
KR101444116B1 (en) * 2012-11-29 2014-09-26 삼성중공업 주식회사 Propeller Power Transmitting Apparatus for Ship
WO2014088167A1 (en) * 2012-12-03 2014-06-12 삼성중공업 주식회사 Propeller for ship, and assembling method and disassembling method therefor
CN104853985A (en) * 2012-12-03 2015-08-19 三星重工业有限公司 Propeller for ship, and assembling method and disassembling method therefor
JP2016500041A (en) * 2012-12-03 2016-01-07 サムスン ヘビー インダストリーズ カンパニー リミテッド Ship propulsion device, its installation method and installation disassembly method
US9862460B2 (en) 2012-12-03 2018-01-09 Samsung Heavy Ind. Co., Ltd. Propeller for ship, and assembling method and disassembling method therefor
CN114572370A (en) * 2021-12-28 2022-06-03 深圳潜行创新科技有限公司 Contra-rotating double-propeller underwater propeller

Also Published As

Publication number Publication date
JPH0774032B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JPH0727277Y2 (en) Double inversion shaft power transmission device
US5024639A (en) "Z" type steerable balanced power transmission
US5494466A (en) Transmission for dual propellers driven by an inboard marine engine
JP5623155B2 (en) Counter-rotating propeller propulsion device
TW201223826A (en) Marine propulsion apparatus
US5724867A (en) Airboat transmission
US4828518A (en) Double reverse revolution propeller apparatus
JPS6393698A (en) Double reverse rotating propelling device
GB2035501A (en) Two propeller drive system
US7244154B1 (en) Single and multi-engine drive system for a twin screw vessel
US6066012A (en) Propulsion system for a marine vessel
JP2692239B2 (en) Contra-rotating propeller device
CA1065165A (en) Marine gear drives
JPH06278690A (en) Ship propulsion device with counter-rotating screw
JP2515864Y2 (en) Boat pod-type counter-rotating propeller
JPH0733084A (en) Counter-rotating propeller type propulsion device for ship
US5558548A (en) Propeller drive for boats
JPH0840369A (en) Propeller for ship
JPS62279189A (en) Power transmitting system for double contrarotating propeller device
JPS60121191A (en) Double contrarotating propeller device for ship
JPH0517073B2 (en)
JPH0194099A (en) Drive unit for inboard engine and outboard motor
JPH0427756Y2 (en)
JPH0439117Y2 (en)
JP3351094B2 (en) Ship propulsion system using contra-rotating propeller