JPS6393161A - Semiconductor switching element - Google Patents

Semiconductor switching element

Info

Publication number
JPS6393161A
JPS6393161A JP23885086A JP23885086A JPS6393161A JP S6393161 A JPS6393161 A JP S6393161A JP 23885086 A JP23885086 A JP 23885086A JP 23885086 A JP23885086 A JP 23885086A JP S6393161 A JPS6393161 A JP S6393161A
Authority
JP
Japan
Prior art keywords
layers
gate voltage
semiconductor switching
switching element
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23885086A
Other languages
Japanese (ja)
Inventor
Noriaki Tsukada
塚田 紀昭
Kenzo Fujiwara
藤原 賢三
Yasuki Tokuda
徳田 安紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23885086A priority Critical patent/JPS6393161A/en
Publication of JPS6393161A publication Critical patent/JPS6393161A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects

Abstract

PURPOSE:To enable switching at high speed at low gate voltage by changing electronic distribution in a conductive channel by gate voltage in a semiconductor switching element using a quantum interference effect. CONSTITUTION:GaAs quantum well layers 21, 22 held by AlGaAs layers 2, 4, 6 are formed onto a semi-insulating GaAs substrate 1. Currents flowing between electrodes 8a, 8b pass through the GaAs layers 21, 22. Switching operation is conducted by the alteration of the phase difference of electron waves flowing through the layers 21, 22 in response to a magnetic field or an electric field. When the thickness of the layers 21, 22 is made to differ previously, voltage is applied to a gate 23 and electronic distribution in the layers 12, 22 is varied, a distance between the conductive channel of the layer 21 and the conductive channel of the layer 22 changes, thus altering the phase difference of the electron waves of both layers 21, 22. A semiconductor switching element is operated at gate voltage lower than switching only by an electric field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子の量子干渉効果を用いた超高速スイッチ
ング機能を有する半導体スイッチング素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor switching element having an ultra-high-speed switching function using the quantum interference effect of electrons.

〔従来の技術〕[Conventional technology]

第4図は例えばフィジカル レビュー レターズ、55
巻、 2344頁、 (1985年)(Physica
l Review Letters Vol、55 P
、2344(1985))に示された電子の量子干渉効
果(アハラノフ・ボーム効果)を用いたスイッチング素
子を示す構成図であり、図において、1は半絶縁性Ga
As基板、2.6はAj2GaAsjli、3,5はG
aAs量子井戸層、4はAlGaAsバリア層、7a、
7b・はアロイ化されたコンタクト領域、13a、8b
は電極である。
Figure 4 is an example of Physical Review Letters, 55.
Volume, 2344 pages, (1985) (Physica
l Review Letters Vol, 55 P
, 2344 (1985)) is a configuration diagram showing a switching element using the electron quantum interference effect (Aharanov-Bohm effect), in which 1 is a semi-insulating Ga
As substrate, 2.6 is Aj2GaAsjli, 3,5 is G
aAs quantum well layer, 4 is an AlGaAs barrier layer, 7a,
7b is an alloyed contact region, 13a, 8b
is an electrode.

次に動作について説明する。第4図に示した素子構造に
おいて、AJGaAs層2,4.6に挟まれた2本のG
aAs層3,5が電子の通路となる。従って第4図を模
式的に示すと第5図(a)のようになる。ここで導電チ
ャネル(すなわちC,aAS層)の厚さWは十分薄く電
子波の基本横モードのみを伝搬するものと考える。キャ
リア密度を10′。cIiとすればW〜0.1μmとな
る。第5図(a)に示す様な2本の導電チャネルの導電
率σ−ITI”は、各々の導電チャネルの透過係数によ
って下記の様に与えられる。
Next, the operation will be explained. In the device structure shown in FIG. 4, two G
The aAs layers 3 and 5 serve as paths for electrons. Therefore, when FIG. 4 is schematically shown, it becomes as shown in FIG. 5(a). Here, it is assumed that the thickness W of the conductive channel (ie, C, aAS layer) is sufficiently thin to propagate only the fundamental transverse mode of the electron wave. Carrier density is 10'. If cIi, then W~0.1 μm. The conductivity σ-ITI'' of two conductive channels as shown in FIG. 5(a) is given by the transmission coefficient of each conductive channel as follows.

σ=lTlt=l t、+t、l” −t、” +t、” +2t、tICO3φ ・(1)
ここでTは両電極間の透過係数、1.はチャネル1の透
過係数、t2はチャネル2の透過係数で、φは位相差(
チャネルlと2との電子波間の位相差)である。式(1
)より電極間の導電率σはチャネル間の位相差φによっ
て変化し得ることがわかる。
σ=lTlt=l t, +t, l” −t, “+t,” +2t, tICO3φ ・(1)
Here, T is the transmission coefficient between both electrodes, 1. is the transmission coefficient of channel 1, t2 is the transmission coefficient of channel 2, and φ is the phase difference (
phase difference between the electron waves of channels 1 and 2). Formula (1
), it can be seen that the conductivity σ between the electrodes can be changed depending on the phase difference φ between the channels.

位相差φは下記(2)式から磁界B、(アハラノフ・ボ
ーム効果)によって φ−e B y L d /’N          
・・・(2)または下記(3)式から電界εW(静電界
アハラノフ・ボーム効果) φ=e am l、d/′frvx        −
(3)によって変化させ得る。Lはチャネルの長さ、d
はチャネル間の距離、vXはX方向(チャネル方向)の
電子の速度、eは電子の電荷、市はブランク定数りの1
/2i (n−1t/2π)T:ある。
The phase difference φ is determined by the magnetic field B and (Aharanov-Bohm effect) from the following equation (2) as φ−e B y L d /'N
...(2) or the following equation (3), electric field εW (electrostatic field Ahranov-Bohm effect) φ=e am l, d/'frvx −
(3) can be changed. L is the length of the channel, d
is the distance between channels, vX is the velocity of the electron in the X direction (channel direction), e is the charge of the electron, and 1 is the blank constant
/2i (n-1t/2π)T: Yes.

従って(1)〜(3)式により磁界B、または電界ε1
をON、OFFすることによりスイッチングが可能なこ
とは容易に理解できる。
Therefore, according to equations (1) to (3), the magnetic field B or the electric field ε1
It is easy to understand that switching is possible by turning on and off.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の磁場効果による位相変化を用いる素子では高速ス
イッチング動作は不可能である。また静電界効果による
位相変化を用いる場合も比較的高いゲート電圧が必要で
あるなどの問題点があった。
High-speed switching operations are not possible with conventional elements that use phase changes due to magnetic field effects. Further, when using phase change due to an electrostatic field effect, there are also problems such as the need for a relatively high gate voltage.

この発明は上記のような問題点を解消するためになされ
たもので、磁場効果を用いる場合にも高速スイッチング
が可能で、静電界効果を用いる場合にはさらに低ゲート
電圧でON、OFF動作が可能な半導体スイッチング素
子を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and high-speed switching is possible even when using a magnetic field effect, and ON/OFF operation can be performed with an even lower gate voltage when using an electrostatic field effect. The purpose is to obtain a semiconductor switching element that is possible.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体スイッチング素子は、導電チャネ
ルの上方、にゲート電極を設け、アハラノフ・ボーム効
果又は静電界アハラノフ・ボーム効果と上記ゲート電極
に印加する電界を変化させることとにより電流のスイッ
チングを行なうようにしたものである。
The semiconductor switching element according to the present invention provides a gate electrode above the conductive channel, and performs current switching by using the Ahranoff-Bohm effect or the electrostatic field Ahlanoff-Bohm effect and changing the electric field applied to the gate electrode. This is how it was done.

〔作用〕[Effect]

この発明においては、各導電チャネル内の電子分布をゲ
ート電圧の印加により変化させることにより2本の導電
チャネルで囲まれる面積が変化し、これとアハラノフ・
ボーム効果又は静電界アハラノフ・ボーム効果とにより
電流のスイッチングを行うことができる。
In this invention, by changing the electron distribution within each conductive channel by applying a gate voltage, the area surrounded by the two conductive channels changes, and the area surrounded by the two conductive channels changes.
Switching of the current can be performed by the Bohm effect or the electrostatic Ahranov-Bohm effect.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例に°よる半導体スイッチング素子
を示す構造図であり、図において、21.22は厚さの
異なるGaAs導電チャネルで、23はゲート電極であ
る。また第4図と同一符号は同一部分を示す。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a structural diagram showing a semiconductor switching device according to an embodiment of the present invention. In the figure, 21 and 22 are GaAs conductive channels with different thicknesses, and 23 is a gate electrode. Also, the same reference numerals as in FIG. 4 indicate the same parts.

次に本発明に係る半導体スイッチング素子の構造と動作
について述べる。第1図の導電チャネル21の厚さWl
は、もう一方の導電チャネル22の厚さW2に比べて薄
クシている。第2図(al、 (b)にゲート電圧を印
加しない場合と、印加した場合のゲート下の導電チャネ
ルの伝導帯のエネルギーポテンシャルを示す。ゲート電
圧を印加しない場合は(a)に示す様に導電チャネルの
ポテンシャルの底はチャネルの中心に対して対称となり
、電子分布も中心対称となっている。従って、導電チャ
ネル21.22によって囲まれる面積は両チャネル間の
距離d0と、その長さしの積(S、=doL)で与えら
れる。ゲート電圧を印加した場合にはポテンシャルは(
b)に示す様に勾配をもち、導電チャネル21.22の
ポテンシャルの底はもはや中心対称ではなくなり、電子
分布もチャネルの片側に片寄った状態となる。しかし導
電チャネル21は導電チャネル22に比べ薄いので電子
分布の変化は小さい、従って、ゲート電圧を印加した場
合の両チャネル間の距離はd、となり、印加しない場合
の値d0より小さくなり、両チャネルで囲まれる面積は
5t−diLとなる。
Next, the structure and operation of the semiconductor switching element according to the present invention will be described. Thickness Wl of conductive channel 21 in FIG.
is thinner than the thickness W2 of the other conductive channel 22. Figure 2 (al, (b) shows the energy potential of the conduction band of the conductive channel under the gate when no gate voltage is applied and when it is applied. When no gate voltage is applied, as shown in (a) The bottom of the potential of the conductive channel is symmetrical with respect to the center of the channel, and the electron distribution is also centrally symmetrical.Therefore, the area surrounded by the conductive channels 21 and 22 is determined by the distance d0 between both channels and their length. The potential is given by the product (S, = doL). When a gate voltage is applied, the potential is (
As shown in b), the bottom of the potential in the conductive channels 21 and 22 is no longer centrally symmetrical, and the electron distribution is also biased to one side of the channel. However, since the conductive channel 21 is thinner than the conductive channel 22, the change in electron distribution is small. Therefore, when a gate voltage is applied, the distance between both channels is d, which is smaller than the value d0 when no gate voltage is applied, and both channels The area surrounded by is 5t-diL.

先ず、磁界Bアによるアハラノフ・ボーム効果と上記の
ゲート電圧の変化による電子分布の変化を用いたスイッ
チング動作について説明する。
First, a switching operation using the Ahranoff-Bohm effect caused by the magnetic field B and the change in electron distribution caused by the change in the gate voltage described above will be explained.

一定の磁界Byをスイッチング動作に関係なく与えてお
き、ゲート電圧vc、を印加することにより(2)式中
のdの値を変化させようとするのがこの場合の動作原理
の基本である。ゲート電圧ゼロの場合にφ。weB、L
do /fr=2nπ(n=o。
The basic operating principle in this case is to apply a constant magnetic field By regardless of the switching operation and to change the value of d in equation (2) by applying a gate voltage vc. φ when the gate voltage is zero. weB,L
do /fr=2nπ(n=o.

1.2.・・・・・・)となる様にBydoの値を設定
し、ゲート電圧印加時にφ+ =eB、Ld+ /′y
L= (2+1)π(n=0.1,2. ・・・・・・
)となる様にB、d、の値を設定すれば、ゲート電圧の
ON。
1.2. ), and when applying the gate voltage, φ+ = eB, Ld+ /'y
L= (2+1)π(n=0.1,2.
), if you set the values of B and d, the gate voltage will turn ON.

OFFにより電流のON、OFFが可能となる。OFF enables current to be turned ON and OFF.

そしてこの場合は磁界は一定磁界Byをかけたままでゲ
ート電圧をON、OFFするようにしているので、高速
のスイッチング動作が可能となる。
In this case, the gate voltage is turned on and off while a constant magnetic field By is applied, so that high-speed switching operation is possible.

一方、静電界アハラノフ・ボーム効果とゲート電圧の変
化による電子分布の変化を用いる場合には、(3)式中
のゲート電圧のON、OFFによりε2の値が変化する
のと同時に該ゲート電圧の変化により上述のdの変化(
ao−dt)も発生することになる。ゲート電圧がゼロ
の場合ε8=Oであるからφ。=Oとなるので(1)式
より電流は最大(すなわちON状態)となる。ゲート電
圧印加時にφ1 =e t* ldI/Sv、= (2
H+l) πとなる様にすれば、OFF状態が得られる
On the other hand, when using the electrostatic field Ahranov-Bohm effect and changes in electron distribution due to changes in gate voltage, the value of ε2 changes depending on ON and OFF of the gate voltage in equation (3), and at the same time the gate voltage changes. Due to the change, the change in d mentioned above (
ao-dt) will also occur. When the gate voltage is zero, ε8=O, so φ. =O, so according to equation (1), the current becomes maximum (that is, ON state). When gate voltage is applied, φ1 = e t* ldI/Sv, = (2
H+l) π, an OFF state can be obtained.

従ってこの場合ゲート電圧の印加により静電界アハラノ
フ・ボーム効果を生じさせ、かつ両チャネルで囲まれる
面積dLの変化を生じさせるようにしたの・で、比較的
低い電圧で電流のON、OFFが可能となる。
Therefore, in this case, the application of the gate voltage causes the electrostatic field Ahranov-Bohm effect and causes a change in the area dL surrounded by both channels. Therefore, it is possible to turn the current on and off with a relatively low voltage. becomes.

なお、上記実施例では2本の厚さの異なるGaAs1電
チヤネルを用いる場合を示したが、一つの比較的厚いG
aAs層を用いても同様の効果が期待出来る。第3図は
このようにした本発明の他の実施例のポテンシャルと電
子分布の様子を示す。
In the above embodiment, two GaAs1 electrical channels with different thicknesses were used, but one relatively thick G
A similar effect can be expected by using an aAs layer. FIG. 3 shows the potential and electron distribution of another embodiment of the present invention.

図において、30は本実施例のGaAs量子井戸層から
なる導電チャネルである* CyaAs量子井戸層30
とこれを両側からはさんでいるAlGaAs層との界面
ポテンシャルは電子親和力のため三角ポテンシャルに近
いポテンシャル構造となり、ゼロバイアスでは(a)に
示すように電子はこの界面近傍に2箇所にわかれて分布
する。ゼロバイアスではこの2つのチャネルが上記の2
つのGaAs導電チャネルと同様の作用をする。一方、
これにゲート電圧を印加すると(blに示す様に井戸の
底のポテンシャルが傾き、電子は一方の界面に分布する
様になる。従って、2つの導電チャネルに囲まれる面積
は、このときゼロ(位相差φ1もゼロ)で電流はON状
態となる。従ってゼロバイアスでφ。= <2n+1)
 πとなる様にB、d、の値を設定しておけば、バイア
ス印加のON、OFFが電流のON、OFFに対応する
ことになる。
In the figure, 30 is a conductive channel made of the GaAs quantum well layer of this embodiment. *CyaAs quantum well layer 30
The interfacial potential between this and the AlGaAs layer sandwiching it from both sides has a potential structure close to a triangular potential due to electron affinity, and at zero bias, electrons are distributed in two locations near this interface, as shown in (a). do. At zero bias, these two channels are
It acts similarly to two GaAs conductive channels. on the other hand,
When a gate voltage is applied to this (as shown in bl), the potential at the bottom of the well is tilted and electrons are distributed at one interface. Therefore, the area surrounded by the two conductive channels is zero (potential). When the phase difference φ1 is also zero), the current is in the ON state.Therefore, with zero bias, φ.=<2n+1)
If the values of B and d are set so as to be π, turning on and off the bias application corresponds to turning on and off the current.

さらに第3図の構造においてGaAs井戸層とAgGa
As1Wの2つの界面のどちらか一方にドーピングを行
い、(3)式のv8を変化させるように構成することも
可能である。
Furthermore, in the structure shown in FIG.
It is also possible to do a configuration in which one of the two interfaces of As1W is doped to change v8 in equation (3).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体スイッチング素子
によれば電子波の干渉を用いる半導体スイッチング素子
において、従来、磁場または電界の強さを変化させてO
N、OFF動作を行っていたものを、ゲート電界により
電子波の伝搬チャネルを空間的に変化させ、2本の導電
チャネルにより囲まれる面積を変えるようにし、これと
アハラノフ・ボーム効果又は静電界アハラノフ・ボーム
効果とを利用して電流のスイッチングを行うようにした
ので、高速スイッチング動作が可能であるとともに、低
いゲート電圧で動作可能なものが得られる効果がある。
As described above, according to the semiconductor switching device according to the present invention, in a semiconductor switching device that uses interference of electron waves, conventionally, O
The N, OFF operation was changed by spatially changing the electron wave propagation channel using a gate electric field, changing the area surrounded by the two conductive channels, and combining this with the Ahranov-Bohm effect or electrostatic field Ahranoff.・Since current switching is performed using the Bohm effect, high-speed switching operation is possible, and the device can operate with a low gate voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体スイッチング
素子の構成図、第2図は第1図の動作を説明するための
図、第3図はこの発明の他の実施例の動作を説明するた
めの図、第4図は従来の半導体スイッチング素子の構造
を示す図、第5図は第4図の従来の素子の動作を説明す
るための図である。 2.4.6はA6GaAs層、21. 22. 30は
GaAs量子井戸層、23はゲート電極である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram of a semiconductor switching element according to an embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of FIG. 1, and FIG. 3 is a diagram for explaining the operation of another embodiment of the invention. FIG. 4 is a diagram showing the structure of a conventional semiconductor switching element, and FIG. 5 is a diagram for explaining the operation of the conventional element shown in FIG. 2.4.6 is an A6GaAs layer, 21. 22. 30 is a GaAs quantum well layer, and 23 is a gate electrode. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)2本の導電チャネルを伝搬する電子波の干渉効果
を用いる半導体電流スイッチング素子において、 上記2本の導電チャネル上にその印加電圧によって上記
導電チャネルのエネルギーポテンシャルを変化させるゲ
ート電極を備え、上記ゲート電極への印加電圧を変化さ
せることとアハラノフ・ボーム効果又は静電界アハラノ
フ・ボーム効果とを用いて電流のスイッチングを行うよ
うにしたことを特徴とする半導体スイッチング素子。
(1) A semiconductor current switching element that uses the interference effect of electron waves propagating through two conductive channels, comprising a gate electrode on the two conductive channels that changes the energy potential of the conductive channel depending on the applied voltage; A semiconductor switching element characterized in that current switching is performed by changing the voltage applied to the gate electrode and using the Ahlanoff-Bohm effect or the electrostatic field Ahlanoff-Bohm effect.
(2)上記2本の導電チャネルとして厚さの異なる2つ
のGaAs量子井戸層を用いたことを特徴とする特許請
求の範囲第1項記載の半導体スイッチング素子。
(2) The semiconductor switching device according to claim 1, wherein two GaAs quantum well layers having different thicknesses are used as the two conductive channels.
(3)上記2本の導電チャネルとして、一つのGaAs
量子井戸層とこれを挟む2つのAlGaAs層との界面
近傍に分布する2個所の電子導電領域を用いたことを特
徴とする特許請求の範囲第1項記載の半導体スイッチン
グ素子。
(3) As the two conductive channels, one GaAs
2. A semiconductor switching device according to claim 1, characterized in that two electronically conductive regions are used that are distributed near an interface between a quantum well layer and two AlGaAs layers sandwiching the quantum well layer.
JP23885086A 1986-10-07 1986-10-07 Semiconductor switching element Pending JPS6393161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23885086A JPS6393161A (en) 1986-10-07 1986-10-07 Semiconductor switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23885086A JPS6393161A (en) 1986-10-07 1986-10-07 Semiconductor switching element

Publications (1)

Publication Number Publication Date
JPS6393161A true JPS6393161A (en) 1988-04-23

Family

ID=17036190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23885086A Pending JPS6393161A (en) 1986-10-07 1986-10-07 Semiconductor switching element

Country Status (1)

Country Link
JP (1) JPS6393161A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003360A (en) * 1988-07-15 1991-03-26 Fujitsu Limited Semiconductor functional element
US5084743A (en) * 1990-03-15 1992-01-28 North Carolina State University At Raleigh High current, high voltage breakdown field effect transistor
EP0471288A2 (en) * 1990-08-09 1992-02-19 Canon Kabushiki Kaisha Electron wave coupling or decoupling devices and quantum interference devices
EP0475396A2 (en) * 1990-09-12 1992-03-18 Canon Kabushiki Kaisha Quantum interference device and corresponding method for processing electron waves
EP0475403A2 (en) * 1990-09-13 1992-03-18 Canon Kabushiki Kaisha Quantum interference devices and methods for processing interference current
US5130766A (en) * 1988-08-04 1992-07-14 Fujitsu Limited Quantum interference type semiconductor device
US5367274A (en) * 1991-06-28 1994-11-22 Telefonaktiebolaget L M Ericsson Quantum wave guiding electronic switch
US5406094A (en) * 1991-10-14 1995-04-11 Fujitsu Limited Quantum interference effect semiconductor device and method of producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003360A (en) * 1988-07-15 1991-03-26 Fujitsu Limited Semiconductor functional element
US5130766A (en) * 1988-08-04 1992-07-14 Fujitsu Limited Quantum interference type semiconductor device
US5084743A (en) * 1990-03-15 1992-01-28 North Carolina State University At Raleigh High current, high voltage breakdown field effect transistor
EP0471288A2 (en) * 1990-08-09 1992-02-19 Canon Kabushiki Kaisha Electron wave coupling or decoupling devices and quantum interference devices
EP0471288A3 (en) * 1990-08-09 1994-05-18 Canon Kk Electron wave coupling or decoupling devices and quantum interference devices
US5521735A (en) * 1990-08-09 1996-05-28 Canon Kabushiki Kaisha Electron wave combining/branching devices and quantum interference devices
EP0475396A2 (en) * 1990-09-12 1992-03-18 Canon Kabushiki Kaisha Quantum interference device and corresponding method for processing electron waves
EP0475396A3 (en) * 1990-09-12 1994-04-20 Canon Kk
EP0475403A2 (en) * 1990-09-13 1992-03-18 Canon Kabushiki Kaisha Quantum interference devices and methods for processing interference current
EP0475403A3 (en) * 1990-09-13 1994-04-20 Canon Kk
US5367274A (en) * 1991-06-28 1994-11-22 Telefonaktiebolaget L M Ericsson Quantum wave guiding electronic switch
US5406094A (en) * 1991-10-14 1995-04-11 Fujitsu Limited Quantum interference effect semiconductor device and method of producing the same

Similar Documents

Publication Publication Date Title
US4550330A (en) Semiconductor interferometer
Sols et al. Theory for a quantum modulated transistor
US4704622A (en) Negative transconductance device
JPS6393161A (en) Semiconductor switching element
US5003360A (en) Semiconductor functional element
Coraiola et al. Spin-degeneracy breaking and parity transitions in three-terminal Josephson junctions
EP0475403B1 (en) Quantum interference devices and methods for processing interference current
JP3436779B2 (en) Single electron tunneling device
Pandey et al. Energy distribution controlled ballistic Josephson junction
JPS5984475A (en) Field effect device
US5519232A (en) Quantum interference device
JPS62254469A (en) Quantum well device
JPS63280473A (en) Switching element
JPS60163468A (en) Semiconductor element
JPH0983027A (en) Superconducting circuit
JP3511212B2 (en) Electron wave interference device
JPS6010792A (en) Superconducting transistor
JPS60210880A (en) Semiconductor device
JPH0260176A (en) Aharonov-bohm effect transistor
JPH06177447A (en) Superconducting functional device
JPS5842281A (en) Hall element
JPH01226182A (en) Electron wave interference device
Schäpers et al. Control of interference effects in a two-dimensional-electron-gas/superconductor junction by the Josephson effect
JPH02297982A (en) Superconducting device
JPH0212876A (en) Semiconductor device suitable for very high speed switch