JPS6393158A - Nonvolatile semiconductor storage device - Google Patents

Nonvolatile semiconductor storage device

Info

Publication number
JPS6393158A
JPS6393158A JP61238385A JP23838586A JPS6393158A JP S6393158 A JPS6393158 A JP S6393158A JP 61238385 A JP61238385 A JP 61238385A JP 23838586 A JP23838586 A JP 23838586A JP S6393158 A JPS6393158 A JP S6393158A
Authority
JP
Japan
Prior art keywords
floating
junction
dart
floating gate
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61238385A
Other languages
Japanese (ja)
Inventor
Kazunori Kanebako
和範 金箱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61238385A priority Critical patent/JPS6393158A/en
Publication of JPS6393158A publication Critical patent/JPS6393158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To erase information by extracting hot electrons generated by avalanche-breaking-down a P-N junction formed in a floating gate. CONSTITUTION:On 'writing', a source 36 and a substrate 33 are grounded, positive high voltage is applied to a control gate 32, No.2 control gate 35 and a drain 37, and hot carriers generated by the drain avalanche phenomenon of an N channel MOS type transistor are injected to a floating gate. On 'erasing', the P-N junction of an N-type section 31 and a P-type section 34 is shaped into the floating gate, the potential of the P-N junction is controlled by coupling by capacitance and avalanche breakdown is generated, and hot carriers generated by avalanche breakdown are extracted to the outside of the floating gate, thus conducting erasing.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は浮遊ダートに電子を蓄えることにょ)清報を記
憶し、該情報を電気的に消去可能な不揮発性半導体記憶
装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is a non-volatile semiconductor memory that stores news (electrons are stored in floating dirt) and can electrically erase the information. Regarding equipment.

(従来の技術) 従来、電気的に消去を行なう不揮発性半導体記憶装置で
典型的なものKは、第5図ないし第7図のようなものが
ある。
(Prior Art) Conventionally, typical nonvolatile semiconductor memory devices K that perform electrical erasing are shown in FIGS. 5 to 7.

第5図(1981Proceeding of Int
ernationalRellabl l ity P
hysics P、 11〜16参考)(っまシ国際信
頼性物理シンポジウム会報)において、1はソース、2
はドレイン、3は浮遊ダート、4は制!ゲート、5はダ
ート酸化膜、6はトンネル酸化膜である。この構造では
、浮遊)y”−トsに蓄えられた電子を電気的に抜くた
めに、制御ダート4を接地し、ドレイン2に高い正の電
圧を印加してトンネル酸化膜6を電子が流れるようにし
ている。この場合電子がトンネル酸化膜を通シ抜ける仕
゛組みはファウラー・ノルドハイムトンネリング(F−
N・トンネリング)である。
Figure 5 (1981Proceeding of Int.
ernationalRellable lity P
physics P, 11-16) (Bulletin of the International Reliable Physics Symposium), 1 is the source, 2
is drain, 3 is floating dart, 4 is control! The gate, 5 is a dirt oxide film, and 6 is a tunnel oxide film. In this structure, in order to electrically remove the electrons stored in the floating )y"-tos, the control dart 4 is grounded and a high positive voltage is applied to the drain 2, so that electrons flow through the tunnel oxide film 6. In this case, the mechanism by which electrons pass through the tunnel oxide film is called Fowler-Nordheim tunneling (F-Nordheim tunneling).
N tunneling).

第6図(Technical dlgest of I
EDM 1984P、480〜483参考)(つまシ国
際電子素子会誌の予稿集)において11は1層目ポリシ
リコン。
Figure 6 (Technical dlgest of I
In EDM 1984P, 480-483 (reference) (Tsumashi International Society of Electronic Devices Journal Proceedings), 11 is the first layer of polysilicon.

12は浮遊ダート、13は消去グー)、J(は浮遊ゲー
トポリシリコン上面の凹凸である。この構造では、浮遊
ダート12に蓄えられた電子を電気的に抜くためには、
1層目のポリシリコン11f。
12 is a floating dart, 13 is an erase goo), and J (is an unevenness on the upper surface of the floating gate polysilicon. In this structure, in order to electrically extract the electrons stored in the floating dart 12,
First layer polysilicon 11f.

接地し、消去f−1−13VC高い正の電圧を印加する
ことKより、浮遊ダート12から消去ゲート13へ電子
がフ1ウラ−・ノルドノ−イムトンネリングを起こすよ
うにしている。この構造の場合は浮遊r−トポリシリコ
ンの上面の凹凸14が電界の局所的な増加をもたらし、
電子のトンネリングを増進しているのが特徴である。
By grounding and applying a high positive voltage to the erase f-1-13VC, electrons from the floating dart 12 to the erase gate 13 are caused to undergo fuller-norm tunneling. In this structure, the irregularities 14 on the top surface of the floating r-polysilicon cause a local increase in the electric field;
It is characterized by enhanced electron tunneling.

第7図(Technical dIgest of I
 B D M1985  P、616〜619)におい
て、21はソース、22はドレイン、23は浮遊r−ト
Figure 7 (Technical dIgest of I
BD M1985 P, 616-619), 21 is a source, 22 is a drain, and 23 is a floating r-t.

24は消去ダートを兼ねた制御f−ト、25は基板であ
る。この構造では、浮遊r−ト23に蓄えられた電子を
電気的に抜くためにソース21.ドレイン22.基板2
5を接地し、消去ダートを兼ねた制御ゲート24に高い
正の電圧を印加することKよシ、浮遊r−ト23から消
去r−ト24へ電子がフ1ウラ−・ノルドハイムトンネ
リングを起こす。
Reference numeral 24 represents a control f-tar which also serves as an erase dart, and 25 represents a substrate. In this structure, the source 21. Drain 22. Board 2
5 is grounded and a high positive voltage is applied to the control gate 24, which also serves as an erase dart, to cause electrons to undergo floating-nordheim tunneling from the floating gate 23 to the erase gate 24. .

(発明が解決しようとする問題点) 以上の3例とも、電気的に電子を抜くために電子のフ1
ウラ−・ノルドハイムトンネリング(参考、 Jour
nal of Applied Physlcs Vo
140゜P、278〜283 (1969))を用いて
いるが、このメカニズムで電子が二酸化シリコンを流れ
るためには、かな)大きな電界を加えなければならない
。(6〜7MV/c7!L以上)このため第5図の例で
は非常に薄いトンネル用の二酸化シリコン膜を形成する
が、非常に薄い二酸化シリコン膜は形成が困難で信頼性
にも問題がある。
(Problems to be solved by the invention) In all of the above three examples, an electron beam is used to electrically extract electrons.
Ulla-Nordheim Tunneling (Reference, Jour
nal of Applied Physlcs Vo
140°P, 278-283 (1969)), but in order for electrons to flow through silicon dioxide using this mechanism, a large electric field must be applied. (6 to 7 MV/c7!L or more) Therefore, in the example shown in Figure 5, a very thin silicon dioxide film is formed for the tunnel, but it is difficult to form a very thin silicon dioxide film and there are problems with reliability. .

電子のトンネリングが起きるために印加しなければなら
ない電界(電圧)を低減するために、第6図、第7図の
例では浮遊ダートポリシリコン上面の凹凸による電界の
局所的な増加を用いている。
In order to reduce the electric field (voltage) that must be applied for electron tunneling to occur, the examples in Figures 6 and 7 use a local increase in the electric field due to the irregularities on the top surface of the floating dirt polysilicon. .

これ以外にも、シリコンを多く含む二酸化シリコンを浮
遊ダートの間の絶縁膜に用いることによってもトンネリ
ングに必要な電界を下げることができる。(参考、 J
ournal of ApplIed Physlcs
5.4 、P 5801〜5827 (1983))し
かし、上の2つの方法は浮遊r−)K蓄えられている電
子の保持を悪くする(情報を消したくない場合に情報が
消えやすい)傾向があるので、ポリシリコン上面の凹凸
の程度や二酸化シリコン中の余分のシリコンの量のコン
トロールが微妙になるという欠点がある。
In addition to this, the electric field required for tunneling can also be lowered by using silicon dioxide containing a large amount of silicon as an insulating film between floating darts. (Reference, J.
Our own of ApplIed Physlcs
5.4, P. 5801-5827 (1983)) However, the above two methods tend to deteriorate the retention of floating r-)K stored electrons (information tends to disappear when it is not desired to erase it). Therefore, there is a drawback that the degree of unevenness on the top surface of polysilicon and the amount of excess silicon in silicon dioxide are delicately controlled.

本発明は上記実情に鑑みてなされたもので、高電界を印
加しないでも浮遊ダートに蓄えられた電子を抜くことが
でき、信頼性が向上する不揮発性半導体記憶装置を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nonvolatile semiconductor memory device that can extract electrons stored in floating dirt without applying a high electric field, and has improved reliability. .

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明は、浮遊
ゲートKよ!ll情報を記憶する不揮発生半導体記憶装
置において、浮遊ダート内KPN接合を形成し、容量に
よる結合でこのPN接合の電位をコントロールしシ シ てアバランノエプレークダウンを起こし、それにより生
じたホットキャリアを浮遊ダートの外へ引き抜くことに
より消去を行彦うようKしたものである。
(Means and effects for solving the problems) The present invention is a floating gate K! In a nonvolatile semiconductor memory device that stores information, a KPN junction is formed in the floating dirt, and the potential of this PN junction is controlled by capacitive coupling to cause avalanche leakdown, and the resulting hot carriers are suspended. It is designed so that it can be erased by pulling it out of the dirt.

(実施例) 以下図面を参照して本発明の一実施例を説明する。はじ
めに、二酸化シリコン中を電子が伝導ランシェ注入は低
電界でも伝導が非常に起こ夛やすく、抵抗のオーダが何
桁も異なることは知られており、電界による抵抗率を比
較したものを第4図に引用しておく。(引用文献 H,
C,Cord andM、iJ31masry rpu
rc口anal Modelling of Non−
Volatlle MOS memory devic
es J 5olid−8tateElectroni
cs Vol 19 P、863〜870 (1976
) )第1図は本実施例の断面図、第2図は第1図の■
−…線に沿う断面図である。図中31は浮遊ダートのN
型部、32は浮遊ダート上の1番目の制御ダート、33
は基板、34は浮遊ダートのP型部、35はゲート側方
の2番目の制御y−)1゜36はソース層、37はドレ
イン層、38は絶縁膜でらシ、この構成の特徴は、浮遊
ダートにPN接合を設けた点である。
(Example) An example of the present invention will be described below with reference to the drawings. First, it is known that conduction of electrons in silicon dioxide is very easy to occur even in a low electric field during Lanche injection, and that the resistance differs by several orders of magnitude. Figure 4 shows a comparison of the resistivity due to the electric field. I will quote it. (Cited documents H,
C, Cord and M, iJ31masry rpu
rc mouth anal Modeling of Non-
Volatlle MOS memory device
es J 5solid-8tateElectroni
cs Vol 19 P, 863-870 (1976
)) Figure 1 is a cross-sectional view of this example, and Figure 2 is a cross-sectional view of Figure 1.
-... is a cross-sectional view along the line. 31 in the figure is floating dirt N
Mold part, 32 is the first control dart on the floating dart, 33
is the substrate, 34 is the P-type part of the floating dart, 35 is the second control on the side of the gate, 36 is the source layer, 37 is the drain layer, and 38 is the insulating film.The characteristics of this structure are , the floating dart is provided with a PN junction.

第1図、第2図において「書き込み」の場合は、ソース
36と基板33を接地し、制御ゲート32と2番目の制
wUダート35とドレイン37に正の高[王を印加し、
第2図に見られるNチャネルMO8型トランジスタのド
レインアバランシェ現象により生じたホットキャリアを
、浮遊グー)K注入を行なう点で従来例と同様である。
In the case of "writing" in FIGS. 1 and 2, the source 36 and the substrate 33 are grounded, and a positive high voltage is applied to the control gate 32, the second control gate 35, and the drain 37.
This is similar to the conventional example in that hot carriers generated by the drain avalanche phenomenon of the N-channel MO8 type transistor shown in FIG. 2 are injected with floating K.

「消去」の場合は制御グー)32に正の高電圧V、を印
加し2番目−の制御r −) 35を接地しておく。こ
の時、浮遊ゲートのN型部31とP型部34の電位がど
のようになるかを第3図をもとに考えてみる。ここでV
、は制御ダート32に印加した電圧1 ■SDBはソー
ス36.基板33.ドレイン37の電位だが、計算の簡
略化のためOvとする。Ct−tは浮遊ダートのN型部
31と制御ダート32間の容ffi = Ct−hは浮
遊ダートのPN接合容8.C4−5は浮遊ダートのP型
部34と第2の制御ダート35間の容量、Cl−8DB
は浮遊r−トとソース、ドレイン、基板の間容量とする
。浮遊ダートのP型部34と制mil?”−)sx間の
容量はオーバーラツプが非常に小さいので無視する。制
御r−ト32と第2の制御ダート35間の容量は層間膜
厚が厚いので無視する。簡単のため浮遊ダートの持つ電
荷を0とする。
In the case of "erase", a positive high voltage V is applied to the control (r) 32, and the second control (r-) 35 is grounded. At this time, consider what the potentials of the N-type part 31 and the P-type part 34 of the floating gate will be based on FIG. Here V
, is the voltage 1 applied to the control dart 32. ■SDB is the voltage 1 applied to the control dart 32. Substrate 33. The potential of the drain 37 is set to Ov to simplify calculation. Ct-t is the capacitance between the N-type part 31 of the floating dart and the control dart 32ffi=Ct-h is the PN junction capacitance of the floating dart8. C4-5 is the capacitance between the P-type part 34 of the floating dart and the second control dart 35, Cl-8DB
is the capacitance between the floating r-t and the source, drain, and substrate. Floating dart P type part 34 and control mil? ``-)sx is ignored because the overlap is very small.The capacitance between the control dart 32 and the second control dart 35 is ignored because the interlayer film thickness is thick.For simplicity, the charge held by the floating dart is Let be 0.

浮遊ダートのN型部31の電位v8は ただしく1)弐においてにとなるためKは、セルの条件
゛をC1−4<< Ct−*  s C1−4<(Cま
−、とする。また浮遊ダートのP型部34の電位v4は
、zO・・・・・・・・・・・・・・・・・・・・・・
・・(2)ただしく2)式においてたとなるためには、
セルの条件をC1一番<<C4−1とし、浮遊ダートの
PN接合にはおよそ の電位差が印加されることになる。通常C!−1はCl
−8BD の数倍の値をとるので、PN接合にはvlの
大部分が加わる。よってPN接合のブレークダウンを生
じさせることは不純物の度を調整することKよシ十分可
能である。−担プレークダウンを生ずると01−4はシ
ョートされた状態になり、浮遊ゲートの電位v′は、P
N接合のブレークダウン電圧が充分低いとすれば、 に落ちつく。この時までにアバランシェで生じた電荷は
正、負おのおの Q”C4−1(V”−V4) トナルo Ct−x= C4−1> C1−5DB  
J: ’) Q=C鵞−t・v、/2のオーダである。
Since the potential v8 of the N-type part 31 of the floating dart is exactly 1), K sets the cell condition as C1-4<< Ct-*s C1-4<(C-). The potential v4 of the P-type part 34 of the floating dirt is zO...
...(2) However, in order to hold in equation 2),
The cell condition is set as C1<<C4-1, and an approximate potential difference is applied to the PN junction of the floating dart. Normally C! -1 is Cl
Since it takes a value several times as large as -8BD, most of vl is added to the PN junction. Therefore, it is possible to cause breakdown of the PN junction by adjusting the degree of impurity. - When the carrier breakdown occurs, 01-4 becomes short-circuited, and the potential v' of the floating gate becomes P
If the breakdown voltage of the N junction is low enough, it will settle to . By this time, the charges generated by the avalanche are positive and negative respectively Q"C4-1(V"-V4) Tonal o Ct-x= C4-1> C1-5DB
J: ') Q=C-t·v, of the order of /2.

アパランシェブレークダウンで生じたホットエレクトロ
ンのわずかな部分が制御1llIダートへ抜けるので、
制御e−)32と第2の制御ゲート35をまとめてダー
トと見なしたMOS )ランジスタのしきい値電圧を十
分大きく変動させるためには高′f!L田の印加と切断
をくり返してアパランシェブレークダウンを繰り返し発
生させることが必要になるだろう。(ホットホールは二
酸化シリコンの障壁が電子よシ高いので、電子の抜けと
くらべると無視できる)本実施例の場合、フ1ウラ−・
ノルドハイムトンネリングで電子を浮遊ダートから抜く
場合にくらべ、低電界で電子を浮遊ダートから抜くこと
ができるので使用′J1掠電圧電圧くでき、キャリアと
Kより、保持特性の向上も期待できる。
A small portion of the hot electrons generated by the apalanche breakdown escapes to the control 1llI dirt, so
The control e-) 32 and the second control gate 35 are collectively regarded as a dart.) In order to vary the threshold voltage of the transistor sufficiently, the high 'f! It will be necessary to repeatedly apply and disconnect the L field to repeatedly generate aparanche breakdown. (Since the barrier of silicon dioxide is higher than that of electrons, hot holes can be ignored compared to the loss of electrons.) In the case of this example, hot holes
Compared to the case where electrons are extracted from floating darts by Nordheim tunneling, electrons can be extracted from floating darts with a lower electric field, so the voltage used can be lowered, and retention characteristics can be expected to be improved due to carriers and K.

なお本発明は実施例に限られず種々の応用が可能である
。例えば本実施例の製造プロセスは特に複雑な工程は用
いないが、できることならば浮遊ダートはポリシリコン
をレーデ−アニールする事によfi、PN接合の特性を
バルクのPN接合特性に近づけておくことが望ましい。
Note that the present invention is not limited to the embodiments and can be applied in various ways. For example, the manufacturing process of this embodiment does not use particularly complicated steps, but if possible, the floating dirt should be removed by radar annealing the polysilicon, and the characteristics of the PN junction should be kept close to those of the bulk PN junction. is desirable.

また浮遊ダートのP型部の形成は制till”−ト32
をマスクにして行なうと、ホットキャリアの大量に生成
されるPN接合部がわずかに制御n” −) s 2の
下にはいるため、ホットキャリアを引き抜く効率が良い
In addition, the formation of a P-type part of floating dirt can be prevented.
When this is carried out using a mask, the PN junction where a large amount of hot carriers are generated is slightly under the control n''-)s2, so that hot carriers can be drawn out efficiently.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、浮遊ダートに形成したPN接合の
アパランシェブレークダウンをさせて生じたホットエレ
クトロンを抜くことKよシ、情報の消去を行なうようK
したため、従来のフ1ウラ−・ノルドハイム・トンネリ
ングで電子を抜く方法にくらべて印加する電界を低くす
ることができ、電録電圧を低くでき、絶縁膜の信頼性を
上げることもできる。また従来の例のように絶縁膜のリ
ーク特性を悪く (リークを大きく)することはないの
で、保持特性(浮遊r−トに蓄えられた電子の保持)K
は問題を生ずることなく、低電界で消去できる分だけ絶
縁膜厚を厚くすることにより保持特性を向上させること
も可能である。
As mentioned above, in addition to extracting the hot electrons generated by aparanche breakdown of the PN junction formed in the floating dirt, it is also necessary to erase information.
Therefore, compared to the conventional method of extracting electrons using Fuller-Nordheim tunneling, the applied electric field can be lowered, the recording voltage can be lowered, and the reliability of the insulating film can be improved. In addition, unlike the conventional example, the leakage characteristics of the insulating film are not deteriorated (leakage is increased), so the retention characteristic (retention of electrons stored in floating r-t) is
It is also possible to improve the retention characteristics by increasing the thickness of the insulating film by the amount that can be erased with a low electric field without causing any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は第1
図の■−■線に沿う断面図、第3図は同実施例の消去時
の電位を求めるための等価回路図、第4図は二酸化シリ
コン膜における電界強度と抵抗率の関係を示す特性図、
第5図ないし第7図は従来装置の断面図である。 31・・・浮遊ダートのN型部、32・・・制御r−)
、33・・・基板、34・・・浮遊ゲートのP型部、3
5・・・2番目の制御ダート、36・・・ソース層、3
7・・・ドレイン層、38・・・絶縁膜。 出願人代理人弁理士 鈴 江 武 彦 ■ 第 1 図 第2 口 第3図 第4図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
3 is an equivalent circuit diagram for determining the potential during erasing in the same example, and FIG. 4 is a characteristic diagram showing the relationship between electric field strength and resistivity in the silicon dioxide film. ,
FIGS. 5 to 7 are cross-sectional views of conventional devices. 31... N-type part of floating dart, 32... Control r-)
, 33... Substrate, 34... P-type part of floating gate, 3
5...Second control dart, 36...Source layer, 3
7... Drain layer, 38... Insulating film. Patent attorney representing the applicant Takehiko Suzue■ Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  浮遊ゲートに電子を蓄えることにより情報を記憶する
不揮発性半導体記憶装置において、前記浮遊ゲート内に
PN接合を形成し、容量による結合で前記PN接合の電
位をコントロールしてアパランシェブレークダウンを起
こし、それにより生じたホットキャリアを前記浮遊ゲー
トの外へ引き抜くことで消去を行なう手段を具備したこ
とを特徴とする不揮発性半導体記憶装置。
In a nonvolatile semiconductor memory device that stores information by storing electrons in a floating gate, a PN junction is formed in the floating gate, and the potential of the PN junction is controlled by capacitive coupling to cause aparanche breakdown, 1. A nonvolatile semiconductor memory device comprising means for erasing by drawing hot carriers generated thereby out of the floating gate.
JP61238385A 1986-10-07 1986-10-07 Nonvolatile semiconductor storage device Pending JPS6393158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61238385A JPS6393158A (en) 1986-10-07 1986-10-07 Nonvolatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61238385A JPS6393158A (en) 1986-10-07 1986-10-07 Nonvolatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS6393158A true JPS6393158A (en) 1988-04-23

Family

ID=17029405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61238385A Pending JPS6393158A (en) 1986-10-07 1986-10-07 Nonvolatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS6393158A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095344A (en) * 1988-06-08 1992-03-10 Eliyahou Harari Highly compact eprom and flash eeprom devices
US5168465A (en) * 1988-06-08 1992-12-01 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5554553A (en) * 1988-06-08 1996-09-10 Harari; Eliyahou Highly compact EPROM and flash EEPROM devices
EP0740306A2 (en) * 1991-01-31 1996-10-30 Interuniversitair Microelektronica Centrum Vzw Method of programming a semiconductor memory device
US5650649A (en) * 1993-12-14 1997-07-22 Nec Corporation Floating gate type field effect transistor having control gate applied with pulses for evacuating carriers from p-type semiconductor floating gate
JP2009188291A (en) * 2008-02-08 2009-08-20 Nec Electronics Corp Nonvolatile semiconductor storage and method of manufacturing method the same
JP2012049515A (en) * 2010-07-28 2012-03-08 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method of semiconductor device
EP2560195A1 (en) * 2011-08-17 2013-02-20 Hitachi, Ltd. Memory device with an isolated gate comprising two portions separated by a barrier and method of operating the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095344A (en) * 1988-06-08 1992-03-10 Eliyahou Harari Highly compact eprom and flash eeprom devices
US5168465A (en) * 1988-06-08 1992-12-01 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5554553A (en) * 1988-06-08 1996-09-10 Harari; Eliyahou Highly compact EPROM and flash EEPROM devices
EP0740306A2 (en) * 1991-01-31 1996-10-30 Interuniversitair Microelektronica Centrum Vzw Method of programming a semiconductor memory device
EP0740306A3 (en) * 1991-01-31 1996-11-13 Interuniversitair Microelektronica Centrum Vzw Method of programming a semiconductor memory device
US5650649A (en) * 1993-12-14 1997-07-22 Nec Corporation Floating gate type field effect transistor having control gate applied with pulses for evacuating carriers from p-type semiconductor floating gate
JP2009188291A (en) * 2008-02-08 2009-08-20 Nec Electronics Corp Nonvolatile semiconductor storage and method of manufacturing method the same
JP2012049515A (en) * 2010-07-28 2012-03-08 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method of semiconductor device
JP2016006878A (en) * 2010-07-28 2016-01-14 株式会社半導体エネルギー研究所 Semiconductor device
EP2560195A1 (en) * 2011-08-17 2013-02-20 Hitachi, Ltd. Memory device with an isolated gate comprising two portions separated by a barrier and method of operating the same

Similar Documents

Publication Publication Date Title
US6477088B2 (en) Usage of word voltage assistance in twin MONOS cell during program and erase
US6784480B2 (en) Asymmetric band-gap engineered nonvolatile memory device
US4996571A (en) Non-volatile semiconductor memory device erasing operation
US6356482B1 (en) Using negative gate erase voltage to simultaneously erase two bits from a non-volatile memory cell with an oxide-nitride-oxide (ONO) gate structure
US4104675A (en) Moderate field hole and electron injection from one interface of MIM or MIS structures
US20070138541A1 (en) Method of erasing data from SONOS memory device
US4503519A (en) Semiconductor non-volatile memory element of an electrically erasable type
JPS5829199A (en) Programming of non-volatile memory
US5051795A (en) EEPROM with trench-isolated bitlines
JPS6393158A (en) Nonvolatile semiconductor storage device
JP3175665B2 (en) Data erasing method for nonvolatile semiconductor memory device
US6501681B1 (en) Using a low drain bias during erase verify to ensure complete removal of residual charge in the nitride in sonos non-volatile memories
KR100601915B1 (en) Non-volatile memory device
KR100602939B1 (en) Non-volatile memory device
US6381179B1 (en) Using a negative gate erase to increase the cycling endurance of a non-volatile memory cell with an oxide-nitride-oxide (ONO) structure
Bhattacharya et al. Improved performance and reliability of split gate source-side injected flash memory cells
US6549466B1 (en) Using a negative gate erase voltage applied in steps of decreasing amounts to reduce erase time for a non-volatile memory cell with an oxide-nitride-oxide (ONO) structure
US9966476B2 (en) Semiconductor memory device having first and second floating gates of different polarity
JPS6367783A (en) Semiconductor storage device
JP2964412B2 (en) Non-volatile memory
JPS58222561A (en) Semiconductor memory device
JPS609168A (en) Nonvolatile semiconductor memory storage
JP3324691B2 (en) Nonvolatile semiconductor memory device and data rewriting method for nonvolatile semiconductor memory device
JPH07112018B2 (en) Semiconductor memory device
KR100609237B1 (en) Non-volatile memory device