JPS6391574A - Monitoring apparatus for insulation in multipoint grounding system - Google Patents

Monitoring apparatus for insulation in multipoint grounding system

Info

Publication number
JPS6391574A
JPS6391574A JP23862286A JP23862286A JPS6391574A JP S6391574 A JPS6391574 A JP S6391574A JP 23862286 A JP23862286 A JP 23862286A JP 23862286 A JP23862286 A JP 23862286A JP S6391574 A JPS6391574 A JP S6391574A
Authority
JP
Japan
Prior art keywords
voltage
grounding
diode
insulation
diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23862286A
Other languages
Japanese (ja)
Other versions
JPH0515232B2 (en
Inventor
Ryuichi Shimada
隆一 嶋田
Masaki Tsuneoka
まさき 恒岡
Tsuneyuki Koike
小池 常之
Takanori Tsunoda
孝典 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nissin Electric Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP23862286A priority Critical patent/JPS6391574A/en
Publication of JPS6391574A publication Critical patent/JPS6391574A/en
Publication of JPH0515232B2 publication Critical patent/JPH0515232B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To make it possible to monitor the state of insulation in a multipoint grounding system while securing the state of connection of the system, by detecting a current flowing through diodes which are connected between a plurality of grounding points of a system apparatus and the ground. CONSTITUTION:Grounding wires 3 having diodes 2 connected forward respectively are connected between a plurality of points of a system apparatus 1 and the ground, while a power source 4 and an ammeter 5 detecting a current are connected in series between terminals of one diode 2. When a voltage smaller than a forward rise voltage is impressed on said diode 2 by the power source 4 in the state of non-operation of the system apparatus 1, all of the diodes 2 are put in a state of high impedance, and therefore a combined resistance obtained from the parallel connection of all of the grounding wires 3 also becomes large. As the result, an insulation resistance can be calculated by detecting the conduction current while retaining the impressed voltage to be a prescribed value smaller than the forward rise voltage.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は多点接地系システムにおける絶縁監視装置に
関し、さらに詳細にいえば、機器を複数箇所において接
地しているシステムにおける絶縁状態を、1個の接地回
路への印加電圧、および通電電流に基いて監視する装置
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an insulation monitoring device in a multi-point grounding system. More specifically, the present invention relates to an insulation monitoring device for a multi-point grounding system. The present invention relates to a device for monitoring based on voltage applied to a ground circuit and current flowing therein.

〈従来の技術〉 従来から、一般に大電力を使用する試験システム、強大
な磁場を発生させるシステム等においては、システムの
保全、制御系の誤動作防止等の観点から、可能な限り一
点接地系システムが採用されている。
<Conventional technology> Conventionally, single-point grounding systems have been used as much as possible in test systems that use large amounts of power, systems that generate strong magnetic fields, etc. from the viewpoint of system maintenance and control system malfunction prevention. It has been adopted.

しかし、上記のようなシステムにおいても、過渡的な電
位の安定度を向上させる要求が強い場合、または、大電
力を使用することがなく、或は強大な磁場を発生するこ
とがないようなシステムの場合には、多点接地系システ
ムが採用される。
However, even in the above-mentioned systems, there are cases where there is a strong demand for improving the stability of transient potential, or systems that do not use large amounts of power or generate strong magnetic fields. In this case, a multi-point grounding system is adopted.

そして、−点接地系システムにおける絶縁監視を行なう
ために、従来から、第5図に示すように、最も接地側の
機器(21)と接地(22)との間を接続する接地線(
23)に、抵抗値が小さい2個の抵抗(24)(25)
を直列に介挿し、一方の抵抗(24)の端子間に電源(
26)を接続することにより、直流電圧、或は低周波の
交流電圧を供給するとともに、他方の抵抗(25)の端
子間電圧を電圧計(27)により検出し、結果的に絶縁
抵抗(28〉を通して流れる漏れ電流を検出することが
考えられていた。
In order to monitor insulation in a - point grounding system, conventionally, as shown in Fig. 5, a grounding wire (
In 23), add two resistors (24) and (25) with small resistance values.
are inserted in series, and a power supply (
By connecting the insulation resistance (26), a DC voltage or a low frequency AC voltage is supplied, and the voltage between the terminals of the other resistor (25) is detected by the voltmeter (27), and as a result, the insulation resistance (28) The idea was to detect the leakage current flowing through the

このような構成を採用すれば、抵抗(25)の端子間電
圧Vが、 v−RE/ (Z+R) 但し、Eは電@ (2B)により供給される電圧、Zは
絶縁抵抗値、Rは上記抵抗(24) (25)の抵抗値
である。
If such a configuration is adopted, the voltage V between the terminals of the resistor (25) will be v-RE/ (Z+R) where E is the voltage supplied by the electric current (2B), Z is the insulation resistance value, and R is the This is the resistance value of the resistors (24) and (25).

そして、絶縁が完全には破壊されていない状態において
は、R<<Zであるから、 V−RE/Zとなり、絶縁抵抗に逆比例する検出結果を
得ることができることになる。
In a state where the insulation is not completely destroyed, R<<Z, so V-RE/Z, and a detection result that is inversely proportional to the insulation resistance can be obtained.

〈発明が解決しようとする問題点〉 上記の構成の絶縁監視装置は、−点接地系システムにお
いては有効であるが、第6図に示すような多点接地系シ
ステムにおいては、複数の各接地線毎に2個の抵抗を直
列に介挿することになるので、上記のように抵抗の端子
間電圧を測定し、測定電圧に基いて抵抗値を算出しても
、絶縁抵抗を測定することはできず、単に接地線の抵抗
のみを測定する結果になってしまうという問題がある。
<Problems to be Solved by the Invention> The insulation monitoring device with the above configuration is effective in a - point grounding system, but in a multi-point grounding system as shown in FIG. Since two resistors are inserted in series for each wire, even if you measure the voltage between the terminals of the resistor and calculate the resistance value based on the measured voltage as described above, the insulation resistance cannot be measured. However, there is a problem in that the result is that only the resistance of the ground wire is measured.

〈発明の目的〉 過渡的な電位の安定度を向上させるこの発明は上記の問
題点に鑑みてなされたものであり、多点接地系システム
における絶縁状態を、システムの接続状態を確保したま
まで監視することができる多点接地系システムにおける
絶縁監視装置を提供することを目的としている。
<Purpose of the Invention> This invention, which improves the stability of transient potential, was made in view of the above problems, and is intended to improve the insulation state in a multi-point grounding system while maintaining the connection state of the system. The purpose of the present invention is to provide an insulation monitoring device in a multi-point grounding system that can be monitored.

く問題点を解決するための手段〉 上記の目的を達成するための、この発明の絶縁監視装置
は、システム機器の複数個の接地点と接地との間にそれ
ぞれダイオードを接続し、さらに、1個のダイオードの
端子間に順方向立上り電圧より小さい電圧を印加する電
源と、上記1個のダイオードに流れる電流を検出する電
流計とを有するものである。
Means for Solving the Problems> In order to achieve the above object, the insulation monitoring device of the present invention connects diodes between each of the plurality of grounding points of the system equipment and the ground; The device includes a power source that applies a voltage smaller than the forward rising voltage between the terminals of the two diodes, and an ammeter that detects the current flowing through the one diode.

く作用〉 以上の構成の絶縁監視装置であれば、システム機器の複
数個の接地点を接地して過渡的な電位の安定度を向上さ
せるようにした多点接地系システムを非動作状態にして
おいて、各接地点と接地との間を接続する接地線に接続
したダイオードの端子間に順方向立上り電圧より小さい
電圧を印加して通電電流を検出するので、ダイオードが
高インピーダンス状態になり、複数個のダイオードが並
列接続された状態においても合成抵抗が高い状態になる
のであるから、実質的に絶縁抵抗とほぼ逆比例する電流
値を得ることができる。
With the insulation monitoring device configured as described above, the multi-point grounding system, which improves the stability of transient potential by grounding multiple grounding points of system equipment, can be put in a non-operating state. In this case, the conducting current is detected by applying a voltage smaller than the forward rising voltage between the terminals of the diode connected to the ground wire that connects each ground point and the ground, so the diode becomes in a high impedance state. Since the combined resistance is high even when a plurality of diodes are connected in parallel, it is possible to obtain a current value that is substantially inversely proportional to the insulation resistance.

さらに詳細に説明すると、各ダイオードへの順方向印加
電圧をE、等価インピーダンスをR1絶縁抵抗をZ1接
地点数をnとすれば、ダイオードを流れる電流Iは、 I = ((n/R)+ (1/Z)l Eとなるが、
R>>Zとなるように印加電圧Eを設定することにより
、I′、E/Zとなり、実質的に絶縁抵抗とほぼ逆比例
する電流値を得ることができる。
To explain in more detail, if the forward applied voltage to each diode is E, the equivalent impedance is R1, the insulation resistance is Z1, and the number of grounding points is n, then the current I flowing through the diode is I = ((n/R) + ( 1/Z)l E, but
By setting the applied voltage E so that R>>Z, I', E/Z, and it is possible to obtain a current value that is substantially inversely proportional to the insulation resistance.

また、多点接地系システムの動作状態においては、各ダ
イオードの印加電圧が順方向立上り電圧より大きくなる
ので、低インピーダンス状態になり、接地状態を確保す
ることができる。
Further, in the operating state of the multi-point grounding system, the voltage applied to each diode is higher than the forward rising voltage, so the impedance state is low and the grounding state can be ensured.

〈実施例〉 以下、実施例を示す添付図面によって詳細に説明する。<Example> Hereinafter, embodiments will be described in detail with reference to the accompanying drawings showing examples.

第1図はこの発明の原理を示す概略図であり、システム
装置(1)の複数の箇所と接地との間に、それぞれダイ
オード(Jを順接続した接地線[3)を接続していると
ともに、1つのダイオード(2)の端子間に、順方向立
上り電圧より小さい電圧を印加する電源(4)、および
通電電流を検出する電流計(5]を直列接続している。
FIG. 1 is a schematic diagram showing the principle of the present invention, in which ground wires [3] in which diodes (J) are connected in order are connected between multiple locations of the system device (1) and the ground. , a power source (4) that applies a voltage smaller than the forward rising voltage, and an ammeter (5) that detects the flowing current are connected in series between the terminals of one diode (2).

尚、上記電源(4)としては、直流電源、交流電源の何
れであってもよい。
Note that the power source (4) may be either a DC power source or an AC power source.

第2図はダイオード(2)の順方向印加電圧−等価イン
ピーダンス特性を示す図であり、順方向印加電圧が小さ
い領域において抵抗が急激に立上り、順方向印加電圧が
大きい領域において急激に立下っている。そして、両頭
域の境界部に相当する順方向印加電圧が順方向立上り電
圧である。
Figure 2 is a diagram showing the forward applied voltage-equivalent impedance characteristics of the diode (2), in which the resistance rises rapidly in the region where the forward applied voltage is small, and rapidly falls in the region where the forward applied voltage is large. There is. The forward applied voltage corresponding to the boundary between the two head regions is the forward rising voltage.

したがって、システム装置[1)の非動作状態において
電源(4)により1つのダイオード(2)に順方向立上
り電圧より小さい電圧を印加すれば、全てのダイオード
(2)は高インピーダンス状態になるので、全ての接地
線(3)の並列接続による合成抵抗も大きくなり、 I =  ((n/R)+ (1/Z))E′、E/Z (但し、■は通電電流、Eは印加電圧、Rはダイオード
(2)の等価インピーダンス、nは接地線数、Zは絶縁
抵抗) が成立する。
Therefore, if a voltage smaller than the forward rising voltage is applied to one diode (2) by the power supply (4) when the system device [1] is not in operation, all the diodes (2) will be in a high impedance state. The combined resistance due to the parallel connection of all the grounding wires (3) also increases, I = ((n/R) + (1/Z)) E', E/Z (where ■ is the carrying current and E is the applied voltage) , R is the equivalent impedance of the diode (2), n is the number of grounding lines, and Z is the insulation resistance).

この結果、印加電圧Eを順方向立上り電圧より小さい所
定電圧に保持したままで通電電流1を検出すれば、絶縁
抵抗Zを算出すること々(できる。
As a result, if the applied current 1 is detected while the applied voltage E is maintained at a predetermined voltage smaller than the forward rising voltage, the insulation resistance Z can be calculated.

第3図はこの発明の絶縁監視装置の一実施例を示す概略
図であり、大規模な構造物(11)を全範囲にわたって
ほぼ接地電位に保持するために、構造物(11)を4個
に分割形成しているとともに、各分割部(12)同士を
互に電気的に接続している。そして、各分割部(12)
と大地(13)との間を、互に逆極性となるよう並列接
続した1対のダイオード(14)(15)を介挿した接
地線(16)で接続し、何れかの接地線(1B)に介挿
したダイオード(14) (15)の端子間に、直流電
源(17)、および電流計(18)を直列接続している
FIG. 3 is a schematic diagram showing an embodiment of the insulation monitoring device of the present invention, in which four large-scale structures (11) are connected to each other in order to maintain the entire range of the large-scale structure (11) at approximately ground potential. The divided portions (12) are electrically connected to each other. And each division part (12)
and the ground (13) are connected by a grounding wire (16) with a pair of diodes (14) and (15) connected in parallel so that they have opposite polarities, and either grounding wire (1B ) A DC power supply (17) and an ammeter (18) are connected in series between the terminals of diodes (14) and (15) inserted in the diodes (14) and (15).

尚、(工9)は仮想的に表示した絶縁抵抗であり、また
、上記直流電源(17)は、ダイオードの順方向立上り
電圧より小さい電圧(例えば0.1〜0.2V程度)を
出力するものである。
In addition, (9) is the insulation resistance shown virtually, and the DC power supply (17) outputs a voltage smaller than the forward rising voltage of the diode (for example, about 0.1 to 0.2 V). It is something.

第4図はダイオードの一例として株式会社東芝製電力用
ダイオード25JC4H1を使用した場合における順方
向印加電圧−等価インピーダンス特性を示す図であり、
順方向印加電圧が小さい領域において抵抗が急激に立上
り、順方向印加電圧が大きい領域において急激に立下っ
ている。そして、順方向印加電圧が0.2Vの場合にお
ける等価インピーダンスが IOMΩである。
FIG. 4 is a diagram showing forward applied voltage-equivalent impedance characteristics when using a power diode 25JC4H1 manufactured by Toshiba Corporation as an example of a diode.
The resistance rises rapidly in a region where the forward applied voltage is small, and falls sharply in a region where the forward applied voltage is large. The equivalent impedance when the forward applied voltage is 0.2V is IOMΩ.

上記の構成の絶縁監視装置の動作は次のとおりである。The operation of the insulation monitoring device having the above configuration is as follows.

構造物(11)を含むシステムが稼働している状態にお
いては、構造物(11)の、大地(13)に対する電位
が正逆変化するするのであるが、互に逆極性に並列接続
された1対のダイオード(14)(15)を有している
ので、何れかのダイオードが順接続状態になり、確実な
接地を行なわせることができる。
When the system including the structure (11) is in operation, the potential of the structure (11) with respect to the earth (13) changes in the positive and negative directions. Since it has a pair of diodes (14) and (15), any one of the diodes is connected in order, and reliable grounding can be achieved.

また、構造物(11)を含むシステムが可動していない
状態においては、直流電源(17)によりダイオード(
15)の端子間に順方向立上り電圧より小さい電圧(0
,2V)を印加すれば、上記第4図の特性図によれば約
10MΩ、温度特性、製品のばらつき等を考慮しても少
なくとも約4MΩの等価インピーダンスを有することに
なるから、4本の接地線(16)を並列接続したことに
よる合成インピーダンスは少なくとも約IMΩとなる。
In addition, when the system including the structure (11) is not in operation, the diode (
15) between the terminals (0) which is smaller than the forward rising voltage.
. The combined impedance due to the parallel connection of the lines (16) is at least about IMΩ.

したがって、絶縁抵抗(工9)の上限値が約100にΩ
(但し、100にΩ近傍における直線性の誤差が約±1
0%)であれば、電流計(18)により検出される通電
電流Iは、I:E/Zとなり、構造物(11)の大地(
13)に対する絶縁抵抗(19)の検出、即ち絶縁監視
を行なうことができる。
Therefore, the upper limit of the insulation resistance (technique 9) is approximately 100Ω.
(However, the linearity error near 100Ω is approximately ±1
0%), the current I detected by the ammeter (18) becomes I:E/Z, and the ground (
13), the insulation resistance (19) can be detected, ie insulation monitoring can be carried out.

上記絶縁抵抗(19)の上限値が100にΩよりも大き
い場合には、直流電源(17)の出力電圧をさらに減少
させればよく、等価インピーダンスをより大きくして通
電電流1′、E/Zに基く絶縁抵抗の算出を可能とする
ことができる。
If the upper limit of the insulation resistance (19) is greater than 100Ω, the output voltage of the DC power supply (17) may be further reduced, and the equivalent impedance may be increased to increase the current 1', E/ It is possible to calculate the insulation resistance based on Z.

尚、この発明は上記の実施例に限定されるものではなく
、例えば、電流計(18)の表示により直接絶縁抵抗値
を読取る代わりに、通電電流に基いて必要な演算を施す
ことにより絶縁抵抗値を表示すること、単に絶縁抵抗が
所定値以上であるか否かのみを表示すること等が可能で
ある他、直流電源(17)に代えて交流電源を使用する
ことが可能であり、その他、この発明の要旨を変更しな
い範囲内において種々の設計変更を施すことが可能であ
る。
Note that the present invention is not limited to the above-described embodiments. For example, instead of directly reading the insulation resistance value from the display of the ammeter (18), the insulation resistance value can be determined by performing necessary calculations based on the current flowing. In addition to being able to display the value, simply displaying whether the insulation resistance is greater than or equal to a predetermined value, it is also possible to use an AC power source instead of the DC power source (17), etc. However, various design changes can be made without departing from the gist of the invention.

〈発明の効果〉 以上のようにこの発明は、多点接地系システムにおける
絶縁抵抗を、並列接続状態になっている複数の接地線に
よる合成接地抵抗の影響を受けることなく正確に検出す
ることができるという特有の効果を奏する。
<Effects of the Invention> As described above, the present invention makes it possible to accurately detect the insulation resistance in a multi-point grounding system without being affected by the composite grounding resistance of multiple grounding wires connected in parallel. It has the unique effect of being able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための概略図、 第2図はダイオードの順方向印加電圧−等価インピーダ
ンス特性を概念的に示す図、 第3図はこの発明の絶縁監視装置の一実施例を示す概略
図、 第4図は株式会社東芝製電力用ダイオード25JC4H
1の順方向印加電圧−等価インピーダンス特性を示す図
、 第5図は一点接地系システムにおける絶縁監視装置を示
す概略図、 第6図は多点接地系システムに適用した状態を示す概略
図。
Fig. 1 is a schematic diagram for explaining the present invention in detail, Fig. 2 is a diagram conceptually showing the forward applied voltage-equivalent impedance characteristics of a diode, and Fig. 3 is an implementation of the insulation monitoring device of the present invention. A schematic diagram showing an example, Figure 4 is a power diode 25JC4H manufactured by Toshiba Corporation.
FIG. 5 is a schematic diagram showing the insulation monitoring device in a single-point grounding system, and FIG. 6 is a schematic diagram showing the state in which it is applied to a multi-point grounding system.

Claims (1)

【特許請求の範囲】 1、システム機器の複数個の接地点と接地 との間にそれぞれダイオードを接続し、 さらに、1個のダイオードの端子間に順 方向立上り電圧より小さい電圧を印加す る電源と、上記1個のダイオードに流れ る電流を検出する電流計とを有すること を特徴とする多点接地系システムにおけ る絶縁監視装置。[Claims] 1. Multiple grounding points and grounding of system equipment Connect a diode between each In addition, between the terminals of one diode, Apply a voltage smaller than the directional rise voltage The current flows through the power supply and the one diode mentioned above. and an ammeter that detects the current. In a multi-point grounding system featuring Insulation monitoring device.
JP23862286A 1986-10-06 1986-10-06 Monitoring apparatus for insulation in multipoint grounding system Granted JPS6391574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23862286A JPS6391574A (en) 1986-10-06 1986-10-06 Monitoring apparatus for insulation in multipoint grounding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23862286A JPS6391574A (en) 1986-10-06 1986-10-06 Monitoring apparatus for insulation in multipoint grounding system

Publications (2)

Publication Number Publication Date
JPS6391574A true JPS6391574A (en) 1988-04-22
JPH0515232B2 JPH0515232B2 (en) 1993-03-01

Family

ID=17032885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23862286A Granted JPS6391574A (en) 1986-10-06 1986-10-06 Monitoring apparatus for insulation in multipoint grounding system

Country Status (1)

Country Link
JP (1) JPS6391574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926863A (en) * 1993-04-06 1999-07-27 Toto Ltd. Low flush volume toilet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926863A (en) * 1993-04-06 1999-07-27 Toto Ltd. Low flush volume toilet

Also Published As

Publication number Publication date
JPH0515232B2 (en) 1993-03-01

Similar Documents

Publication Publication Date Title
US4770173A (en) Multiple element flat electrode useful for HF-surgery
CN102187447B (en) Method for inspecting electrostatic chuck, and electrostatic chuck apparatus
DE102011086270B4 (en) CURRENT SENSOR
CN107290629A (en) A kind of 10KV low-voltage networks Earth design method
CN105182157A (en) Neutral point multi-point grounding detection device based on high-accuracy detection current
JPS6391574A (en) Monitoring apparatus for insulation in multipoint grounding system
CN110231539A (en) A kind of monopolar grounding fault detection system for true bipolar DC electric line
CN205015427U (en) Neutral point multipoint earthing detection device based on high accuracy testing electric current
CN109669148A (en) A kind of measurement method and device of Hall effect
CN216449650U (en) Wire rod capable of bidirectional detection
CN221326653U (en) Connector stability detection circuit and detection device
JP4876026B2 (en) Board inspection equipment
US20240044959A1 (en) Grounding impedance measuring circuit and grounding impedance measuring method
CN217639292U (en) PE resistance detection circuit
JP2023154787A (en) Fault point position specifying device
JPH02106120A (en) Overcurrent detector
JPS60169774A (en) Locating method of insulating failure point of cable under live state
JPS63281063A (en) Measuring instrument for insulation deterioration relation quantity
JPH0422306Y2 (en)
JPS62264586A (en) Method of detecting deterioration of arrestor for sheath protection
SU1737362A1 (en) Device for checking resistance of insulation of constant current circuits
JPH05870Y2 (en)
JPS63281075A (en) Measuring instrument for insulation deterioration relation quantity
JPS6330770A (en) Method for measuring potential difference in van der pawu method
JPH04198768A (en) Trouble monitoring device for connecting cable