JPS6391018A - Program control of greenhouse - Google Patents

Program control of greenhouse

Info

Publication number
JPS6391018A
JPS6391018A JP61237694A JP23769486A JPS6391018A JP S6391018 A JPS6391018 A JP S6391018A JP 61237694 A JP61237694 A JP 61237694A JP 23769486 A JP23769486 A JP 23769486A JP S6391018 A JPS6391018 A JP S6391018A
Authority
JP
Japan
Prior art keywords
stage
greenhouse
cumulative
cultivation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61237694A
Other languages
Japanese (ja)
Inventor
英夫 島地
肇 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61237694A priority Critical patent/JPS6391018A/en
Publication of JPS6391018A publication Critical patent/JPS6391018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、コンピュータを用いた温室の環境制御a装置
における、プログラム制御のの改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to improvement of program control in a greenhouse environmental control device using a computer.

〈従来技術〉 温室内の作物は生育ステージの進むにつれて成nに必要
な温度や潅水量などが変化するものであり、栽培者はそ
の肋と経験によって成育ステージの変わるごとに温度や
潅水間を変えており、良い栽培を1!7ようと思うほど
、また高い栽培技術を要する作物はどその変更は大変慎
重にかつ気を使っての仕事となる。そのため、栽培者は
しばしば時期を失したり、変えるべきところを忘れたり
することがあり、必ずしも会心の栽培結果を10られな
いことがある。温室の環境制御をコンピュータを用いて
実行する場合でも、この様な問題は同様にある。
<Prior art> As the growth stage of crops in a greenhouse progresses, the temperature and amount of watering required for growth change, and growers use their own knowledge and experience to adjust the temperature and watering intervals as the growth stage changes. For crops that require advanced cultivation techniques, changes must be made with great care and care. As a result, growers often lose track of time or forget what to change, and may not always be able to achieve the desired cultivation results. Similar problems exist even when greenhouse environmental control is performed using computers.

第1図はコンピュータを用いた温室環境制υ11装置の
概念図であり、1は温室、201,202は換気用天窓
、301.302はこれら天窓の開閉操作用電動機、4
は潅水Wの供給管路、5はこの潅水流量の制御弁、6は
暖房表門、7は冷房装置である。
Figure 1 is a conceptual diagram of a greenhouse environment control system υ11 using a computer, in which 1 is a greenhouse, 201 and 202 are ventilation skylights, 301 and 302 are electric motors for opening and closing these skylights, and 4
5 is a control valve for the irrigation water flow rate, 6 is a heating front gate, and 7 is an air conditioner.

8は温室内温度センサーでP1はイのml定値、9は外
気温度センサーでありP2はその測定値、10は日射間
センサーでありP V 3はイの測定値、11は風速セ
ンサーでありPV4はその測定値である。
8 is a greenhouse temperature sensor, P1 is the ml constant value of A, 9 is an outside temperature sensor, P2 is its measured value, 10 is a solar radiation sensor, PV3 is the measured value of A, 11 is a wind speed sensor, PV4 is its measured value.

12はマイクロコンピュータ手段をtiする制御装置で
、上記各センサーの測定値P V +〜P V aを入
力すると共に天窓側0電afi301,302に操作出
力M V +を、暖房装置6に操作I M V 2を、
冷房装置7に操作ffiMV3を、潅水の流量制御弁5
に操作a M V 4をそれぞれ供給する。
Reference numeral 12 denotes a control device for controlling the microcomputer means, which inputs the measured values PV + to P V a of each of the above-mentioned sensors, and outputs an operation output M V + to the skylight-side electric afi 301 and 302, and an operation I to the heating device 6. MV 2,
Operate ffiMV3 on the air conditioner 7, and operate the irrigation flow rate control valve 5.
and operation a M V 4 respectively.

13は制御装置12と情報交換を行うマンマシンインタ
ーフェイスであり、このインターフェイスを介して制i
ll装置にプログラム情報を入力する。
13 is a man-machine interface for exchanging information with the control device 12;
Enter program information into the ll device.

プログラム情報の一例を第2図により説明する。An example of program information will be explained with reference to FIG.

(△)は栽培開始より収穫までの経過日数であり、−1
乍の日数をXN日とし、これを−(B)に示すようにX
A 、 x9 、 XC”’XN−1日毎にi数のステ
ージ△、B、C,・・・Nに区分し、各ステージ毎に温
室内温度T、I水流m Wを設定し、各ステージ毎にこ
の設定値を維持するように換気窓、暖房。
(△) is the number of days that have passed from the start of cultivation to harvest, -1
Let the number of days be XN days, and convert this to X as shown in -(B).
A, x9, Ventilate windows and heat to maintain this setting.

冷房装置、潅水流量が制御される。The cooling system and irrigation flow rate are controlled.

〈発明が解決しようとする問題点〉 この様なプログラム制御において、経過の途中にお【ノ
る環境条f[の変化により各ステージの切り換えのタイ
ミングを修正する必要が生じるが、この判断と修正は人
間の肋と経験により決定しているのが現状であり、適切
な判断が難しい。
<Problems to be Solved by the Invention> In such program control, it becomes necessary to correct the timing of switching each stage due to changes in the environmental conditions during the course of the process. Currently, it is determined based on the human body and experience, and it is difficult to make an appropriate judgment.

栽培の中でも果菜では特にその判断がその栽培結果に及
ぼす彩管が大きく、高度の判断技術が要求される。
Among the cultivation methods, especially when it comes to fruits and vegetables, the decision to make has a huge impact on the cultivation results, and requires a high level of decision-making skills.

本発明は、この様な判断と修正を自助的に実行すること
を可能とするプログラム制御]装置の提供を目的とする
An object of the present invention is to provide a program control device that enables self-help execution of such judgments and corrections.

く問題点を解決するだめの手段〉 本発明制御方法の特徴は、栽培開始より収穫までを、栽
培開始日よりの経過日数により複数のステージに区分し
、各区分毎に温室内温度、清水量。
The control method of the present invention is characterized by dividing the period from the start of cultivation until harvest into multiple stages according to the number of days that have passed since the start of cultivation, and for each stage, the temperature inside the greenhouse and the amount of fresh water are adjusted. .

積算温度、積算日射間をプ【コグラム設定すると共に、
栽培開始日より各ステージの経過日毎に温室内のvi停
渇度測定値及び/又は積算日射量11121泊を各ステ
ージのプログラム設定値と比較し、この比較結果に応じ
て次のステージへの切り換えタイミングを修正すること
にある。
In addition to setting the cumulative temperature and cumulative solar radiation interval,
From the cultivation start date, the VI stagnation measurement value and/or cumulative solar radiation 11,121 nights in the greenhouse are compared with the program setting value of each stage every day that passes for each stage, and the switch to the next stage is performed according to the comparison result. It's about correcting the timing.

く作用〉 本発明によれば、栽培開始口より温度のfi!11直と
日射量の8i算値が測定され、各ステージの終了時点で
そのステージの設定積算温度及び/又は設定積算日射量
が測定1aと比較され、その比較結果に応じて次のステ
ージへの切り換えタイミングが修正される。
According to the present invention, the temperature fi! 11 shifts and the 8i calculated value of solar radiation are measured, and at the end of each stage, the set cumulative temperature and/or set cumulative solar radiation of that stage is compared with measurement 1a, and depending on the comparison result, the next stage is The switching timing is corrected.

ど実施例〉 第2図([3)項目欄に示すように、TA、WA。Example As shown in the item column of FIG. 2 ([3), TA, WA.

TSA、R5AはAステージにおける温度、潅水流IK
1.積算温度、積算日射量日射定値をそれぞれ示す。他
の各ステージにおいても同様な設定が行われている。
TSA, R5A is the temperature at stage A, irrigation flow IK
1. The cumulative temperature and cumulative solar radiation constant value are shown respectively. Similar settings are made in each of the other stages.

制O1]装置FI 12は各ステージにおいて、湿度並
びに潅水量を設定1直に維持するように換気窓、暖房機
、冷房機、iff水流量シリレp弁を操作すると共に、
温度測定値PV+を時間積分して栽培開始時点よりの温
室の温度積算Tp  (degree−day)及び日
射量測定値P V 3を時間積分して栽培開始時点より
の積咋***吊Rp  (ca I/cm2)を鱈算し、
それらの測定inを制御装置内に保持している。
At each stage, the device FI 12 operates the ventilation window, heater, air conditioner, and IF water flow rate valve to maintain the humidity and irrigation amount at the set level.
The temperature measurement value PV+ is integrated over time to calculate the cumulative greenhouse temperature Tp (degree-day) from the start of cultivation, and the measured solar radiation value PV3 is integrated over time to calculate the cumulative temperature Rp (degree-day) from the start of cultivation. Calculate I/cm2),
Those measurements are kept in the control device.

栽培開始時点よりXA日経過してAステージからBステ
ージに移る数日前の時点において、積算’f4Bの測定
1flTpA、積ET 口04 m ノ測定’11 R
p AがΔステージの設定値TSA 、R9Aと比較さ
れ、イの比較結果に応じてプログラム設定の通りに次の
Bステージへ移行することびが適正か否かが判断され、
修正される。
After XA days have passed since the start of cultivation, and several days before the transition from the A stage to the B stage, the integration 'f4B measurement 1flTpA, the product ET mouth 04 m no measurement '11 R
p A is compared with the set values TSA and R9A of the Δ stage, and it is determined whether it is appropriate to move to the next B stage according to the program settings according to the comparison result of A,
Fixed.

例えば、測定値と設定値の差の度合いに応じて差の大き
いときにはステージ間日数X9日そのものを1日とか2
日繰り上げたり繰り下げたりする修正を実行する。
For example, depending on the degree of difference between the measured value and the set value, if the difference is large, the number of days between stages x 9 days itself may be set to 1 or 2 days.
Perform corrections that move the date forward or backward.

この様な修正を各ステージの移り変わり毎に実行し、よ
い(速い)成育と11!2積を目指した最適な環境のプ
ログラム制御を目指すわけである。
This kind of modification is carried out at each stage transition, aiming at program control of an optimal environment for good (fast) growth and 11!2 product.

尚ステージによっては修正方向を成育促進の方向とは逆
に修正し、成育を押さえる方向の管理を実(テすること
もあり17る。
Depending on the stage, the direction of correction may be reversed from the direction of promoting growth, and management may be carried out in the direction of suppressing growth17.

第3図は、動作説明図であり、(A)はv4算温度、(
B)は積算日射量の測定値を示し、各ステージA、B、
C・・・ごとに域値を設定し、このFafffIに達し
た日数XA −、Xs −、Xc ′・・・とプログラ
ムであらかじめ設定したステージ間日数xA。
FIG. 3 is an explanatory diagram of the operation, where (A) is the v4 calculated temperature, (
B) shows the measured value of cumulative solar radiation, and each stage A, B,
A threshold value is set for each FaffI, XA -, Xs -, Xc'... and the number of days between stages xA set in advance by the program.

XS、XC・・・とが比較され、一方又は両方が設定値
と一定量の差が生じたときにステージ間日数の修正が実
行される。。
XS, XC, etc. are compared, and when one or both of them differ by a certain amount from the set value, the number of days between stages is corrected. .

なお、各ステージの温度並びに潅水量は、固定設定で運
転しても良いしfar3温r!X並びに積弊日射量がプ
ログラム設定値と大巾に変動したときはステージ間日数
と共に修正してもよい。
In addition, the temperature and irrigation amount of each stage may be operated with fixed settings or far3 temperature r! If X and the cumulative amount of solar radiation vary widely from the program setting values, they may be corrected together with the number of days between stages.

〈発明の効果〉 以上び1明したように、本発明によれば各ステージにお
けるステージ間日数のプログラム設定値は、成育に最も
密接な関係を有する積n温度並びに積算日照量の比較に
よって自動的に最適値に修正されるので、ステージ切り
換えに経験を要する判断は必要なく、判断ミスによる栽
培の失敗を未然に防止することが可能である。
<Effects of the Invention> As described above, according to the present invention, the program setting value for the number of days between stages in each stage is automatically determined by comparing the cumulative temperature and cumulative amount of sunlight, which are most closely related to growth. Since the value is corrected to the optimum value, there is no need to make judgments that require experience when switching stages, and it is possible to prevent cultivation failures due to errors in judgment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、コンピュータを用いた温室の環境制御装置の
構成図、第2図は、第3図は本発明方法のプログラム制
御の動作説明図である。 1・・・温室  201,202・・・天窓  301
゜302・・・電動成  4・・・潅水供給管路  5
・・・潅水流爵制御弁  6・・・暖房機  7・・・
冷房機8・・・温室内温度センサー  9・・・外気温
度センサー  10・・・日照量センサー  11・・
・風速センサー  12・・・制till装置  13
・・・マンマシンインターフエイス
FIG. 1 is a block diagram of a greenhouse environment control device using a computer, and FIGS. 2 and 3 are diagrams illustrating the program control operation of the method of the present invention. 1...Greenhouse 201,202...Skylight 301
゜302...Electric generation 4...Irrigation supply pipe 5
...Irrigation control valve 6...Heater 7...
Air conditioner 8... Greenhouse temperature sensor 9... Outside temperature sensor 10... Sunshine amount sensor 11...
・Wind speed sensor 12...Till control device 13
...Man-machine interface

Claims (1)

【特許請求の範囲】[Claims] 栽培開始より収穫までを、栽培開始日よりの経過日数に
より複数のステージに区分し、各区分毎に温室内温度、
灌水量、積算温度、積算日射量をプログラム設定すると
共に、栽培開始日より各ステージの経過日ごとに温室内
の積算濃度測定値及び/又は積算日射量測定値を各ステ
ージのプログラム設定値と比較し、この比較結果に応じ
て次のステージへの切り換えタイミングを修正すること
を特徴とする温室のプログラム制御方法。
The period from the start of cultivation to harvest is divided into multiple stages according to the number of days that have passed since the start of cultivation, and the greenhouse temperature,
In addition to setting the irrigation amount, cumulative temperature, and cumulative solar radiation in a program, the cumulative concentration measurement value and/or cumulative solar radiation measurement value in the greenhouse is compared with the program setting value for each stage every day that passes from the cultivation start date to each stage. and modifying the timing of switching to the next stage according to the comparison result.
JP61237694A 1986-10-06 1986-10-06 Program control of greenhouse Pending JPS6391018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61237694A JPS6391018A (en) 1986-10-06 1986-10-06 Program control of greenhouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61237694A JPS6391018A (en) 1986-10-06 1986-10-06 Program control of greenhouse

Publications (1)

Publication Number Publication Date
JPS6391018A true JPS6391018A (en) 1988-04-21

Family

ID=17019124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61237694A Pending JPS6391018A (en) 1986-10-06 1986-10-06 Program control of greenhouse

Country Status (1)

Country Link
JP (1) JPS6391018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794285B1 (en) 2005-07-29 2008-01-15 대한민국 Apparatus for controlling environment of greenhouse
WO2014156358A1 (en) 2013-03-26 2014-10-02 Necソリューションイノベータ株式会社 Plant cultivation system and plant cultivation unit
CN107783523A (en) * 2017-10-25 2018-03-09 江苏穿越金点信息科技股份有限公司 The unmanned net wind cycle intelligent management system of greenhouse
WO2018220673A1 (en) * 2017-05-29 2018-12-06 株式会社日立情報通信エンジニアリング State prediction control device and state prediction control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794285B1 (en) 2005-07-29 2008-01-15 대한민국 Apparatus for controlling environment of greenhouse
WO2014156358A1 (en) 2013-03-26 2014-10-02 Necソリューションイノベータ株式会社 Plant cultivation system and plant cultivation unit
US10064347B2 (en) 2013-03-26 2018-09-04 Nec Solution Innovators, Ltd. Plant cultivation system, and plant cultivation unit
WO2018220673A1 (en) * 2017-05-29 2018-12-06 株式会社日立情報通信エンジニアリング State prediction control device and state prediction control method
JPWO2018220673A1 (en) * 2017-05-29 2019-06-27 株式会社日立情報通信エンジニアリング State prediction controller and state prediction control method
US11006107B2 (en) 2017-05-29 2021-05-11 Hitachi Information & Telecommunication Engineering, Ltd. State prediction control apparatus and state prediction control method
CN107783523A (en) * 2017-10-25 2018-03-09 江苏穿越金点信息科技股份有限公司 The unmanned net wind cycle intelligent management system of greenhouse

Similar Documents

Publication Publication Date Title
El Ghoumari et al. Non-linear constrained MPC: Real-time implementation of greenhouse air temperature control
del Sagrado et al. Bayesian networks for greenhouse temperature control
JP3511684B2 (en) Greenhouse controls
CN108958204A (en) A kind of edible fungus culturing investigating method based on expert system knowledge base
Fernandes et al. Hydroponic greenhouse crop optimization
JP6922460B2 (en) Opening control device
JPS6391018A (en) Program control of greenhouse
KR20200073538A (en) carbon dioxide application system of greenhouse
Seginer Optimizing greenhouse operation for best aerial environment
KR20100032978A (en) Apparatus for growth and development environment control of greenhouse
JP6785902B2 (en) Crop activity index-based facility Horticulture complex environmental control system and method
KR101950203B1 (en) The control method of protected cultivation system based on setting log and plant growth model
JPH04278031A (en) Controller for environment of greenhouse
JP2021073894A (en) Ventilation window control system and ventilation window control method of agricultural greenhouse
JPH06195138A (en) Skylight controller for greenhouse
KR101772121B1 (en) Apparatus and Method for controlling plant growth in city farm control system
Bot A validated physical model of greenhouse climate
Jung et al. Design optimization of proportional plus derivative band parameters used in greenhouse ventilation by response surface methodology
KR100528135B1 (en) automation shading system according to solar radiation in horticultural greenhouse
Sen et al. Automatic climate control of a greenhouse: a review
CN112034916A (en) Greenhouse control system
KR101805758B1 (en) Automatic Temperature Control System for House
JP2508855B2 (en) House environment control device in facility gardening
Bontsema et al. On-line estimation of the ventilation rate of greenhouses
KR20010079061A (en) Optimization Method of Variable Temperature Control of Greenhouse Facilities using Stepless Variable Set-point Generator referred to Insolation Amount Estimation