JPS638848Y2 - - Google Patents

Info

Publication number
JPS638848Y2
JPS638848Y2 JP15394782U JP15394782U JPS638848Y2 JP S638848 Y2 JPS638848 Y2 JP S638848Y2 JP 15394782 U JP15394782 U JP 15394782U JP 15394782 U JP15394782 U JP 15394782U JP S638848 Y2 JPS638848 Y2 JP S638848Y2
Authority
JP
Japan
Prior art keywords
heating element
fibers
end surface
mixed
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15394782U
Other languages
Japanese (ja)
Other versions
JPS5958767U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15394782U priority Critical patent/JPS5958767U/en
Publication of JPS5958767U publication Critical patent/JPS5958767U/en
Application granted granted Critical
Publication of JPS638848Y2 publication Critical patent/JPS638848Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【考案の詳細な説明】 本考案はエンジンに使用される吸気加熱装置、
特に高分子発熱体を用いた吸気加熱装置に関す
る。
[Detailed description of the invention] This invention is an intake air heating device used in an engine.
In particular, it relates to an intake air heating device using a polymer heating element.

耐熱性高分子材料(耐熱性合成樹脂)にカーボ
ン粒子を分散させ、補強材としてグラスフアイバ
等の繊維を混入させて円筒状の発熱体を構成し、
この円筒状発熱体の内周面及び外周面にそれぞれ
電極メツキ層を形成し、液体燃料と空気の混合気
が円筒内を通過する間に加熱されるようにした吸
気加熱装置が最近注目されている。この発熱体は
いわゆる正温度特性(PTC特性)を示すもので、
温度によりその電気抵抗値が変化し、ある温度を
越えると抵抗値は急激に増加する性質を示す。従
つて、温度が低い時にはこの発熱体を流れる電流
が大きいため、これにより吸気を一定の温度にな
るように発熱する。
A cylindrical heating element is constructed by dispersing carbon particles in a heat-resistant polymer material (heat-resistant synthetic resin) and mixing fibers such as glass fiber as a reinforcing material.
Recently, an intake air heating device has been attracting attention, in which electrode plating layers are formed on the inner and outer peripheral surfaces of this cylindrical heating element so that the mixture of liquid fuel and air is heated while it passes through the cylinder. There is. This heating element exhibits so-called positive temperature characteristics (PTC characteristics).
Its electrical resistance value changes depending on the temperature, and when a certain temperature is exceeded, the resistance value shows a property of increasing rapidly. Therefore, when the temperature is low, the current flowing through this heating element is large, so that the intake air is heated to a constant temperature.

この発熱体を成形した円筒状発熱体はその上部
は本体部分によつて支持されているが、下端部の
電極メツキ層が形成されていない端面は高分子材
料が直接吸気通路に露出している。この露出して
いる端面は液体燃料であるガソリンに対して耐久
力がなく、長期間使用後には発熱体の温度・抵抗
特性に影響を与え、所望の発熱量が得られなくな
るということが実験によりわかつた。その原因
は、発熱体にランダムな方向で繊維が混入されて
いることによるものと推定される。即ち、円筒状
の発熱体は金属メツキ層を形成した後、電極間の
直接の導通を防止するために、円筒体の下端部を
機械加工により切り落とし、高分子材料の露出面
としているが、高分子材料の内部には繊維がラン
ダムな方向に混入している為、その露出面に繊維
も露出することとなり、高分子材料と繊維との間
の熱膨張率差により繊維の周囲に空隙が出来、ガ
ソリンが高分子材料の内部に浸入しやすくなるた
めであると考えられる。そして、このように高分
子材料の内部に浸入したガソリンは導通材である
カーボン粒子に影響を与え、発熱体の電気抵抗値
を増加させることにより発熱量が減少するのであ
ると考えられる。また、前述のような空隙がなけ
れば、ガソリンの浸入はかなり防止できることが
実験により確認されている。
The upper part of the cylindrical heating element formed by this heating element is supported by the main body part, but the polymer material at the lower end where the electrode plating layer is not formed is directly exposed to the intake passage. . Experiments have shown that this exposed end face has no durability against gasoline, which is a liquid fuel, and that after long-term use it affects the temperature and resistance characteristics of the heating element, making it impossible to obtain the desired amount of heat. I understand. The cause is presumed to be that fibers are mixed in the heating element in random directions. In other words, after forming a metal plating layer on a cylindrical heating element, the lower end of the cylindrical body is cut off by machining to expose the polymer material in order to prevent direct conduction between the electrodes. Since fibers are mixed in random directions inside the molecular material, the fibers are also exposed on the exposed surface, and voids are created around the fibers due to the difference in thermal expansion coefficient between the polymer material and the fibers. This is thought to be because gasoline easily penetrates into the interior of the polymer material. It is thought that the gasoline that has entered the interior of the polymeric material in this way affects the carbon particles, which are the conductive material, and increases the electrical resistance of the heating element, thereby reducing the amount of heat generated. Furthermore, it has been confirmed through experiments that without the above-mentioned voids, infiltration of gasoline can be significantly prevented.

本考案は上記のような事情に鑑みてなされたも
ので、繊維を含む耐熱性高分子材料から成る発熱
体の内部にガソリン等の液体燃料が浸入するのを
防止し、良好な温度特性の得られる高分子発熱体
を用いた吸気加熱装置を提供することを目的とす
る。
The present invention was developed in view of the above circumstances, and aims to prevent liquid fuel such as gasoline from penetrating into the interior of a heating element made of a heat-resistant polymer material containing fibers, and to obtain good temperature characteristics. The purpose of the present invention is to provide an intake air heating device using a polymer heating element.

このような目的を実現するために、本考案によ
れば、耐熱性合成樹脂にカーボン粒子を分散さ
せ、補強材として繊維を混入させて成る略円筒状
の高分子発熱体と、該略円筒状発熱体の内周面及
び外周面に形成した金属メツキ層より成る電極と
から成り、液体燃料と空気の混合気が円筒内を通
過する間に加熱されるようにした吸気加熱装置で
あつて、前記略円筒状発熱体の金属メツキ層の形
成されていない端面部に隣接する領域では、該発
熱体内部に繊維を混入させないか又は混入させる
量を少なくし、該隣接領域の範囲内で該端面を機
械加工により切削したことを特徴とする液体燃料
が発熱体内部に浸入するのを防止するようにし
た、高分子発熱体を用いた吸気加熱装置が提供さ
れる。
In order to achieve such an object, the present invention provides a substantially cylindrical polymer heating element made of a heat-resistant synthetic resin in which carbon particles are dispersed and fibers are mixed therein as a reinforcing material; An intake air heating device comprising electrodes made of a metal plating layer formed on the inner circumferential surface and the outer circumferential surface of a heating element, and configured to heat a mixture of liquid fuel and air while passing through a cylinder, In the region adjacent to the end surface portion of the substantially cylindrical heating element on which the metal plating layer is not formed, no fibers are mixed into the heating element or the amount of fibers mixed is reduced, and the end surface portion within the range of the adjacent region is Provided is an intake air heating device using a polymer heating element, which prevents liquid fuel from penetrating into the heating element, which is cut by machining.

以下、図面を参照して本考案を詳細に説明す
る。第1図及び第2図において、高分子発熱体を
用いた吸気加熱装置は丸孔を有する平板状の本体
部1と円筒状の発熱部2とを一体的に構成したも
のである。これらの部分は母材として耐熱性高分
子材料(耐熱性合成樹脂)、例えば熱可塑性のポ
リフツ化ビニリデン樹脂を主材料とし成形された
ものである。円筒状の発熱部2はこの他に導電材
料としてのカーボン粒子(図示せず)が分散され
て混入されておりかつ補強材としてのグラスフア
イバ又はシリコンフアイバ等の短繊維10(第3
図〜第5図)が混入されている。円筒状発熱部2
の内周面および外周面にはそれぞれ電極層3a,
3bがメツキにより形成され、内周面の電極層3
aは本体部1の上面を越えて本体部1に設けられ
た接続部4の一側4aまでのびており、外周面の
電極層3bはその接続部4の他側4bまでのびて
いる。円筒状発熱部2の下端面2a、本体部1の
側面1b、接続部4の下面4c等は電極層が形成
されておらず、電極層3a,3bは互いに電気的
に接触しないようになつている。このような加熱
装置はインシユレータ5に保持される。このイン
シユレータ5には電極層4a,4bに接触する端
子をもつたリード線6,7が埋め込まれている。
この吸気加熱装置をエンジンの吸気系に組み込め
ば円筒状発熱部2の内面が吸気通路の一部を構成
すると共に、リード線6,7により電源を供給す
れば発熱体2の温度特性(PTC特性)に応じて
その抵抗値が変化し、発熱部2が発熱して矢印P
方向(第2図)に流れるガソリンと空気の混合気
を加熱するのである。
Hereinafter, the present invention will be described in detail with reference to the drawings. In FIGS. 1 and 2, an intake air heating device using a polymer heating element is one in which a flat body portion 1 having a round hole and a cylindrical heating portion 2 are integrally constructed. These parts are molded using a heat-resistant polymeric material (heat-resistant synthetic resin), such as thermoplastic polyvinylidene fluoride resin, as the main material. In addition, the cylindrical heat generating part 2 has carbon particles (not shown) as a conductive material dispersed therein, and short fibers 10 (third fiber) such as glass fiber or silicon fiber as a reinforcing material.
Figures 5 to 5) are mixed in. Cylindrical heat generating part 2
Electrode layers 3a and 3a are provided on the inner and outer peripheral surfaces of the
3b is formed by plating, and the electrode layer 3 on the inner peripheral surface
a extends beyond the upper surface of the main body part 1 to one side 4a of the connecting part 4 provided on the main body part 1, and the electrode layer 3b on the outer peripheral surface extends to the other side 4b of the connecting part 4. No electrode layer is formed on the lower end surface 2a of the cylindrical heat generating section 2, the side surface 1b of the main body section 1, the lower surface 4c of the connecting section 4, etc., and the electrode layers 3a and 3b are not in electrical contact with each other. There is. Such a heating device is held in the insulator 5. Lead wires 6 and 7 having terminals that contact the electrode layers 4a and 4b are embedded in this insulator 5.
If this intake air heating device is incorporated into the intake system of an engine, the inner surface of the cylindrical heat generating part 2 will constitute a part of the intake passage, and if power is supplied through the lead wires 6 and 7, the temperature characteristics (PTC characteristics) of the heating element 2 ), the resistance value changes according to
This heats the mixture of gasoline and air flowing in the direction shown in Figure 2.

液体燃料であるガソリンの液滴は、円筒状発熱
体2の電極3aの形成された内周壁面、一部は電
極の形成されていない下端面2aに付着し、発熱
体2の発熱時には蒸発するが、特に下端面2aよ
り発熱体2の内部にガソリン液滴が浸入すると前
述のような問題が生ずる。そこで、本考案では、
発熱体2の内部へのガソリン液滴の浸入を防止す
る為に、第5図に示すような構造とする。
Droplets of gasoline, which is a liquid fuel, adhere to the inner circumferential wall surface of the cylindrical heating element 2 where the electrode 3a is formed, and a part of it adheres to the lower end surface 2a where the electrode is not formed, and evaporates when the heating element 2 generates heat. However, especially when gasoline droplets enter the inside of the heating element 2 from the lower end surface 2a, the above-mentioned problem occurs. Therefore, in this proposal,
In order to prevent gasoline droplets from entering the inside of the heating element 2, a structure as shown in FIG. 5 is used.

第3図は比較のために示した例で、電極層3
a,3bを形成するメツキ工程において、電極を
形成しない円筒発熱体2の下端面2aにシールテ
ープ8を貼り付け、この部分にメツキ液が浸入し
ないようにする。メツキの終了後は、このシール
テープ8を剥がし、別のシールテープ(図示せ
ず)を貼り付けるか又はそのままの面にしてお
く。なお、電極を形成しない他の面1b,4c等
(第1図)はメツキ後機械加工により電極層を切
り落としてもよい。このように第3図の比較例で
は、ガソリン液滴の浸入しやすい発熱体2の下端
面2aを機械加工によつて電極層を切り落として
いるものではないので、発熱体2の内部に混入さ
れているランダムな方向の短繊維10が切削され
ず、これらの繊維10が下端面2aに露出するこ
とがなくなるか又は露出の程度はきわめて少なく
なる。しかし、第3図に示した比較例は発熱体2
の下端面2aを機械加工していないことによる精
度上の面、或いは使用するシールテープ8の耐久
性等の点で後述の第5図の実施例と比べ実現性に
乏しい。
FIG. 3 shows an example shown for comparison, in which the electrode layer 3
In the plating process for forming portions a and 3b, a sealing tape 8 is applied to the lower end surface 2a of the cylindrical heating element 2 on which no electrodes are formed, to prevent the plating liquid from entering this portion. After plating, this seal tape 8 is peeled off and another seal tape (not shown) is applied or the surface is left as is. Note that the electrode layer may be cut off by machining after plating on the other surfaces 1b, 4c, etc. (FIG. 1) on which no electrodes are formed. In this way, in the comparative example shown in FIG. 3, the electrode layer is not cut off by machining the lower end surface 2a of the heating element 2, into which gasoline droplets easily enter, so that gasoline droplets are not mixed into the interior of the heating element 2. The randomly oriented short fibers 10 are not cut, and these fibers 10 are not exposed to the lower end surface 2a or are exposed to a very small extent. However, in the comparative example shown in FIG.
This embodiment is less practical than the embodiment shown in FIG. 5, which will be described later, in terms of accuracy due to the fact that the lower end surface 2a is not machined, or the durability of the sealing tape 8 used.

第4図は比較のために示した他の例で、発熱体
2の成形時に、下端面2a付近の短繊維10′を
ランダムではなく下端面2aと平行に配列してお
く。即ち、第4図のAの領域が短繊維10をラン
ダムに配列し発熱体2の補強を図つた領域であ
り、Bの領域が短繊維10′を下端面2aと平行
に配列した領域である。メツキ工程では発熱体2
の全面をメツキ処理し、その後機械加工によりC
の部分を削り落とし電極の存在しない面2aとす
る。第4図の比較例では、機械加工部分Cにおい
ては短繊維10′が切削面と平行に配列されてい
るので、ガソリン液滴の浸入しやすい下端面2a
には短繊維10′の露出がきわめて少なくなると
考えられる。しかし、第4図に示した比較例は下
端面2a付近の領域Bのみ短繊維10′の配列を
下端面2aと平行にするものであるが、充分な効
果を生じさせ得る程度の配列とするのが実際上困
難で、後述の第5図の実施例と比べ実現性に乏し
い。
FIG. 4 shows another example shown for comparison, in which short fibers 10' near the lower end surface 2a are arranged parallel to the lower end surface 2a rather than at random when the heating element 2 is molded. That is, the area A in FIG. 4 is an area where short fibers 10 are arranged randomly to reinforce the heating element 2, and the area B is an area where short fibers 10' are arranged parallel to the lower end surface 2a. . In the plating process, heating element 2
The entire surface is plated, and then machined to form a C
The portion is shaved off to form the surface 2a where no electrode exists. In the comparative example shown in FIG. 4, the short fibers 10' are arranged parallel to the cutting surface in the machined portion C, so the lower end surface 2a is easily penetrated by gasoline droplets.
It is considered that exposure of the short fibers 10' is extremely reduced. However, in the comparative example shown in FIG. 4, the short fibers 10' are arranged parallel to the lower end surface 2a only in region B near the lower end surface 2a, but the arrangement is made to an extent that can produce a sufficient effect. This is actually difficult and is less practical than the embodiment shown in FIG. 5, which will be described later.

第5図は本考案の実施例で、発熱体2の成形時
に、下端面2a付近には短繊維10を混入させな
いか又はその混入量を少なくする。即ち、第5図
のDの領域はランダム配列の短繊維10が多い部
分であり、Eの領域が繊維を混入させないか又は
混入量を少なくした領域である。メツキ工程で
は、第4図の実施例と同様、発熱体2の全面にメ
ツキ処理し、その後機械加工によりFの部分を削
り落とし電極の存在しない面2aとする。第5図
の実施例では、機械加工部分Fにおいては短繊維
10が存在していないか又はその混入量が少ない
ので、ガソリン液滴の浸入しやすい下端面2aに
は短繊維10の露出がなくなるか又はきわめて少
なくすることができる。
FIG. 5 shows an embodiment of the present invention, in which short fibers 10 are not mixed into the vicinity of the lower end surface 2a or the amount of the short fibers mixed therein is reduced when the heating element 2 is molded. That is, the region D in FIG. 5 is a region where there are many randomly arranged short fibers 10, and the region E is a region where no fibers are mixed or the amount of fibers mixed is reduced. In the plating step, as in the embodiment shown in FIG. 4, the entire surface of the heating element 2 is plated, and then the portion F is shaved off by machining to form the surface 2a where no electrode is present. In the embodiment shown in FIG. 5, the short fibers 10 are not present in the machined part F or the amount of the short fibers 10 mixed therein is small, so that the short fibers 10 are not exposed on the lower end surface 2a where gasoline droplets easily penetrate. or it can be made very small.

以上のように、本考案では、円筒状発熱体2の
ガソリン液滴の浸入しやすい下端面2aにおいて
繊維の露出がなくなるか又は露出の程度がきわめ
て少なくなるので、繊維と高分子材料との間の熱
膨張率差によつて繊維にひずみが生じても、下端
面2aにおいて繊維周囲に間隙が形成されず、形
成されてもごくわずかとなり、液体燃料であるガ
ソリンが発熱体2の内部へ浸入することが有効に
防止される。これにより、発熱体2自体の温度−
抵抗特性が長期間にわたつて変化せず、安定した
吸気加熱装置を得ることができる。
As described above, in the present invention, fibers are not exposed at the lower end surface 2a of the cylindrical heating element 2 where gasoline droplets easily penetrate, or the degree of exposure is extremely reduced, so that there is a gap between the fibers and the polymeric material. Even if the fibers are strained due to the difference in thermal expansion coefficients, no gaps are formed around the fibers at the lower end surface 2a, and even if they are formed, the gap is very small, and gasoline, which is liquid fuel, penetrates into the interior of the heating element 2. This is effectively prevented. As a result, the temperature of the heating element 2 itself -
A stable intake air heating device whose resistance characteristics do not change over a long period of time can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高分子発熱体を用いた吸気加熱装置の
斜視図、第2図はその断面図、第3図は第2図の
一部に相当する図であつて発熱体の比較例を示す
ものであり、第4図は他の比較例、第5図は本考
案の実施例をそれぞれ示すものである。 1……本体部、2……円筒状発熱部、2a……
発熱部下端面、3a,3b……電極、4……接続
部、5……インシユレータ、6,7……リード
線、8……シールテープ、10……短繊維。
Fig. 1 is a perspective view of an intake air heating device using a polymer heating element, Fig. 2 is a sectional view thereof, and Fig. 3 is a diagram corresponding to a part of Fig. 2 and shows a comparative example of the heating element. FIG. 4 shows another comparative example, and FIG. 5 shows an embodiment of the present invention. 1... Main body part, 2... Cylindrical heat generating part, 2a...
Heat generating lower end surface, 3a, 3b... electrode, 4... connection part, 5... insulator, 6, 7... lead wire, 8... sealing tape, 10... short fiber.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 耐熱性合成樹脂にカーボン粒子を分散させ、補
強材として繊維を混入させて成る略円筒状の高分
子発熱体と、該略円筒状発熱体の内周面及び外周
面に形成した金属メツキ層より成る電極とから成
り、液体燃料と空気の混合気が円筒内を通過する
間に加熱されるようにした吸気加熱装置であつ
て、前記略円筒状発熱体の金属メツキ層の形成さ
れていない端面部に隣接する領域では、該発熱体
内部に繊維を混入させないか又は混入させる量を
少なくし、該隣接領域の範囲内で該端面を機械加
工により切削したことを特徴とする高分子発熱体
を用いた吸気加熱装置。
A substantially cylindrical polymer heating element made of a heat-resistant synthetic resin with carbon particles dispersed and fibers mixed therein as a reinforcing material, and a metal plating layer formed on the inner and outer peripheral surfaces of the substantially cylindrical heating element. An intake air heating device comprising an electrode and an electrode, in which a mixture of liquid fuel and air is heated while passing through the cylinder, the end surface of the substantially cylindrical heating element having no metal plating layer formed thereon. In the region adjacent to the heating element, no fibers are mixed into the heating element or the amount of fibers mixed therein is reduced, and the end face is cut by machining within the range of the adjacent region. The intake air heating device used.
JP15394782U 1982-10-13 1982-10-13 Intake air heating device using polymer heating element Granted JPS5958767U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15394782U JPS5958767U (en) 1982-10-13 1982-10-13 Intake air heating device using polymer heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15394782U JPS5958767U (en) 1982-10-13 1982-10-13 Intake air heating device using polymer heating element

Publications (2)

Publication Number Publication Date
JPS5958767U JPS5958767U (en) 1984-04-17
JPS638848Y2 true JPS638848Y2 (en) 1988-03-16

Family

ID=30340441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15394782U Granted JPS5958767U (en) 1982-10-13 1982-10-13 Intake air heating device using polymer heating element

Country Status (1)

Country Link
JP (1) JPS5958767U (en)

Also Published As

Publication number Publication date
JPS5958767U (en) 1984-04-17

Similar Documents

Publication Publication Date Title
US5057674A (en) Self limiting electric heating element and method for making such an element
CA1188941A (en) Fuel line heater feedthrough
US11959663B2 (en) Electrical heater device, in particular having a PTC effect
JPH0485976A (en) Laminated type piezoelectric element
JPS638848Y2 (en)
US4593670A (en) Fuel evaporator for internal combustion engine
DE19823531C2 (en) Heated transport device for media
CA1250338A (en) Air-fuel mixture heating device for use with engine
US20210298132A1 (en) Electric Heating Device and Method of Manufacturing the Same
JPS632595Y2 (en)
JPS606060A (en) Heating device
JP2962605B2 (en) PTC heating element
JPH0589952A (en) Manufacture of planar heating element
JPH0433039Y2 (en)
JPS6240394Y2 (en)
JPH0552629B2 (en)
JPS6231987Y2 (en)
JPH0128559Y2 (en)
JPS6319587Y2 (en)
JPH0621202Y2 (en) Conductive polymer PTC resistance element
JP3075964B2 (en) Anti-fog mirror
JPH0127595Y2 (en)
JP2559963Y2 (en) Planar heating element
JPS636868Y2 (en)
JPH0345602U (en)