JPS6388167A - Production of methallylsulfonate - Google Patents

Production of methallylsulfonate

Info

Publication number
JPS6388167A
JPS6388167A JP23375686A JP23375686A JPS6388167A JP S6388167 A JPS6388167 A JP S6388167A JP 23375686 A JP23375686 A JP 23375686A JP 23375686 A JP23375686 A JP 23375686A JP S6388167 A JPS6388167 A JP S6388167A
Authority
JP
Japan
Prior art keywords
dimethylacetamide
methallyl sulfonate
dichloromethane
sulfur trioxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23375686A
Other languages
Japanese (ja)
Other versions
JPH0710824B2 (en
Inventor
Osamu Hizawa
樋沢 修
Zenichi Usui
臼井 善一
Masatoshi Takahashi
正利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP23375686A priority Critical patent/JPH0710824B2/en
Publication of JPS6388167A publication Critical patent/JPS6388167A/en
Publication of JPH0710824B2 publication Critical patent/JPH0710824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled colorless and high-purity compound, by sulfonating isobutylene with sulfur trioxide dimethylacetamide complex in dichloromethane solvent, distilling away the above-mentioned solvent, neutralizing the residue and crystallizing the resultant slurry. CONSTITUTION:Isobutylene is reacted with sulfur trioxide dimethylacetamide complex in dichloromethane solvent and the above-mentioned solvent is then distilled from the reaction mixture. The resultant mixture is neutralized with an aqueous solution of an alkali to prepare a dimethylacetamide water mixture slurry containing >=25wt% titled compound. The above-mentioned mixed slurry is simultaneously heated at 40-120 deg.C temperature to dissolve the titled compound. The formed solution is then cooled to crystallize the titled compound. Thereby side reaction is suppressed and formation of by-products having similar solubility is minimized to readily obtain the titled compound of high purity (>=99.9%) useful as a dyeing modifier for acrylic fibers.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、メタリルスルホン酸塩の製造方法に関するも
のであって、更に詳しくはイソブチレンをジクロルメタ
ン溶媒中において三酸化硫黄・ジメチルアセトアミド錯
体でスルホン化した後中和して得られるスラリーを晶析
して無色で高純度のメタリルスルホン酸塩を製造する方
法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for producing methallyl sulfonate, and more specifically, the present invention relates to a method for producing methallyl sulfonate, and more specifically, the present invention relates to a method for producing methallyl sulfonate, and more specifically, after sulfonating isobutylene with a sulfur trioxide/dimethylacetamide complex in a dichloromethane solvent. The present invention relates to a method for producing colorless and highly pure methallyl sulfonate by crystallizing a slurry obtained by neutralization.

〔従来技術〕[Prior art]

メタリルスルホン酸塩は、アクリル繊維の染着性改質剤
として広く利用されているものであり、工業的には水分
以外の不純物を含まない99.9%以上の高純度品が要
求されている。
Methallyl sulfonate is widely used as a dyeability modifier for acrylic fibers, and industrially it is required to have a high purity product of 99.9% or higher, containing no impurities other than water. There is.

従来、このようなメタリルスルホン酸塩の合成法として
は、メタリルクロライドと亜硫酸ナトリウムを原料とし
、これらをストレッカー反応に供する方法が一般的に知
られている。
Conventionally, as a method for synthesizing such a methallyl sulfonate, a method is generally known in which methallyl chloride and sodium sulfite are used as raw materials and these are subjected to a Strecker reaction.

しかしながら、このストレッカー法は1反応生成物中に
多量に共存する塩化ナト1ノウム、亜硫酸ナトリウム、
硫酸ナトリウム等の無機塩類を分離N製するための高度
の精製技術と複雑な装置を必要とする上原料として用い
るメタリルクロライドが高価であることからその製造コ
ストが高くなるという欠点がある。
However, in this Strecker method, large amounts of sodium chloride, sodium sulfite, and
The drawback is that the manufacturing cost is high because methallyl chloride, which is used as the upper raw material, is expensive and requires sophisticated purification technology and complicated equipment to separate and produce inorganic salts such as sodium sulfate.

これらの欠点を解消する方法として、安価なインブチレ
ンを原料として、このものを三酸化硫黄の錯体により直
接スルホン化してメタリルスルホン酸塩を合成する方法
が提案されている。
As a method to overcome these drawbacks, a method has been proposed in which methallyl sulfonate is synthesized by using inexpensive imbutylene as a raw material and directly sulfonating it with a sulfur trioxide complex.

例えば、特公昭48−35249号公報には、N、N−
シア。
For example, in Japanese Patent Publication No. 48-35249, N, N-
Shea.

ルキル置換カルボンアミド、N−アルキル置換ラクタム
等の錯体形成剤とこれと化学量論量の三酸化硫黄とから
得られる錯化合物を不活性ハロゲンアルカンに溶解させ
、ついでこの溶液にイソブチレンを長時間(60〜12
0分)にわたって添加した後、−20〜+60℃の温度
で反応させ、次いで塩基で中和することによりメタリル
スルホン酸塩を製造する方法が開示されている。
Complexing agents such as alkyl-substituted carbonamides, N-alkyl-substituted lactams, and complexes obtained from complexing agents and stoichiometric amounts of sulfur trioxide are dissolved in inert halogen alkanes, and isobutylene is then added to this solution for an extended period of time ( 60-12
A method is disclosed for producing methallylsulfonate by reacting at a temperature of -20 to +60°C, followed by neutralization with a base.

この製造方法は副生する無機塩が少ないという利点を有
するものの、多岐に亘る好ましくない副反応が起こり、
溶解性の類似した種々の化合物が副生ずる。しかも、反
応に使用した高価な錯体形成剤は減圧蒸留あるいは噴霧
乾燥により回収しているために、メタリルスルホン酸塩
の結晶中に残存したり、熱履歴により劣化する。このた
め、晶析精製におけるメタリルスルホン酸塩の歩留りや
、錯体形成剤の歩留りが低下し、工業的に有利でないと
いう欠点を有する。
Although this production method has the advantage of producing fewer inorganic salts, it also causes a wide variety of undesirable side reactions.
Various compounds with similar solubility are produced as by-products. Moreover, since the expensive complex forming agent used in the reaction is recovered by vacuum distillation or spray drying, it may remain in the crystals of the methallyl sulfonate or deteriorate due to thermal history. For this reason, the yield of methallyl sulfonate and the yield of the complex forming agent in crystallization purification are reduced, which is disadvantageous in that it is not industrially advantageous.

〔目   的〕〔the purpose〕

本発明は、前記従来技術の欠陥を克服し、副反応を極度
に抑制することができると共に、溶解性の類似した副生
成物量も極めて少ない高純度のメタリルスルホン酸塩を
高収率で得ることのできる工業的に有利なメタリルスル
ホン酸塩の製造方法を提供することにある。
The present invention overcomes the deficiencies of the prior art, suppresses side reactions to an extreme extent, and obtains high-purity methallyl sulfonate in high yield with an extremely small amount of by-products having similar solubility. The object of the present invention is to provide an industrially advantageous method for producing methallyl sulfonate.

〔構  成〕〔composition〕

本発明によれば、イソブチレンと三酸化硫黄・ジメチル
アセトアミド錯体とをジクロルメタン溶媒中で反応させ
、得られた反応混合物をアルカリ水溶液で中和してメタ
リルスルホン酸塩を製造する方法において、 (a)中和工程に先立って反応混合物から反応溶媒であ
るジクロルメタンを留去させ、 (b)次いで、アルカリ性水溶液で中和してメタリルス
ルホン酸塩を25重量%以上含有するジメチルアセトア
ミド・水混合スラリーを調製すると共に、(c)該混合
スラリーを40〜120℃に加熱してメタリルスルホン
酸塩を溶解させ、 (d)続いて、冷却してメタリルスルホン酸塩を晶析さ
せる、 ことを特徴とするメタリルスルホン酸塩の製造方法が提
供される。
According to the present invention, in the method for producing methallyl sulfonate by reacting isobutylene and a sulfur trioxide/dimethylacetamide complex in a dichloromethane solvent and neutralizing the resulting reaction mixture with an aqueous alkali solution, ) Dichloromethane, which is a reaction solvent, is distilled off from the reaction mixture prior to the neutralization step, and (b) it is then neutralized with an alkaline aqueous solution to create a dimethylacetamide/water mixed slurry containing methallylsulfonate at 25% by weight or more. and (c) heating the mixed slurry to 40 to 120°C to dissolve the methallyl sulfonate, and (d) subsequently cooling to crystallize the methallyl sulfonate. A method for producing a characterized methallyl sulfonate is provided.

一般に、イソブチレンと三酸化硫黄の反応は、下記の反
応式に示されるように、イソブチレンのβ−サルトンを
経由して各種の副生成物が生成することが知られている
(特開昭49−36623号、特公昭53−47094
号)。
In general, it is known that the reaction between isobutylene and sulfur trioxide produces various byproducts via the β-sultone of isobutylene, as shown in the reaction formula below (Japanese Unexamined Patent Application Publication No. 49/1989). No. 36623, Special Publication No. 53-47094
issue).

(ジスルホンl 即ち、インブチレンのスルホン化反応においては、目的
物であるメタリルスルホン酸以外に、ヒドロキシスルホ
ン酸、Δ1モノスルホン酸、ジスルホン酸、ポリマース
ルホン酸が副生ずる。これらの副生成物のうちメタリル
スルホン酸塩より溶解性の高いΔ、モノスルホン酸塩や
ヒドロキシスルホン酸塩は比較的に容易に分離できるも
のの、メタリルスルホン酸塩より溶解性の低い、ジスル
ホン酸塩等をその反応混合物から完全に除去することは
極めて困難である。
(Disulfone l In other words, in the sulfonation reaction of imbutylene, hydroxysulfonic acid, Δ1 monosulfonic acid, disulfonic acid, and polymer sulfonic acid are produced as by-products in addition to the target product, methallylsulfonic acid. Of these, Δ, monosulfonate, and hydroxysulfonate, which have higher solubility than methallylsulfonate, can be separated relatively easily, but disulfonate, etc., which have lower solubility than methallylsulfonate, can be separated by the reaction. It is extremely difficult to completely remove it from the mixture.

これら副生成物特にジスルホン酸の生成量は、使用する
錯体形成剤及び溶剤の種類更には反応方法や反応条件等
によって著しく左右される。
The amount of these by-products, particularly disulfonic acid, greatly depends on the type of complex forming agent and solvent used, as well as the reaction method and reaction conditions.

本発明者らは、錯体形成剤としてジメチルアセトアミド
を、溶媒としてジクロルメタンを用い、三酸化硫黄とジ
メチルアセトアミドの錯体とインブチレンを反応させ、
(a)得られた反応混合物から中和工程に先立って反応
溶媒であるジクロルメタン及び過剰のイソブチレンを留
去させ、(b)次いで、アルカリ性水溶液で中和してメ
タリルスルホン酸塩を25重貴石以上含有するジメチル
アセトアミド・水混合スラリーを調製すると共に、(c
)該混合スラリーを40〜120℃に加熱してメタリル
スルホン酸塩を溶解させ、(d)続いて、冷却してメタ
リルスルホン酸塩を晶析させるという特定の合成条件を
選定した場合には、ジスルホン酸をはじめとする前記副
生物の生成量を極めて少なくすることができ、経済的に
有利にアクリル繊維の染着性改質剤として優れた作用効
果を奏する高純度のメタリルスルホン酸塩が得られるこ
とを見出し、本発明を完成するに到ったものである。
The present inventors reacted a complex of sulfur trioxide and dimethylacetamide with imbutylene using dimethylacetamide as a complex forming agent and dichloromethane as a solvent,
(a) Prior to the neutralization step, the reaction solvent dichloromethane and excess isobutylene are distilled off from the resulting reaction mixture, and (b) the reaction mixture is then neutralized with an alkaline aqueous solution to remove methallyl sulfonate from 25 precious stones. While preparing a dimethylacetamide/water mixed slurry containing the above, (c
) If specific synthesis conditions are selected, such as heating the mixed slurry to 40-120°C to dissolve the methallyl sulfonate, and (d) subsequently cooling to crystallize the methallyl sulfonate. is a high-purity methallylsulfonic acid that can extremely reduce the amount of the above-mentioned by-products, including disulfonic acid, and exhibits excellent effects as an economically advantageous dyeing property modifier for acrylic fibers. It was discovered that a salt can be obtained, and the present invention was completed.

つぎに1本発明を更に詳細に説明する。Next, one aspect of the present invention will be explained in more detail.

本発明においては、錯体形成剤としてジメチルアセトア
ミドを用いて、三酸化硫黄の錯体を形成する。三酸化硫
黄に対するジメチルアセトアミドの使用量は副生成物で
あるジスルホン酸等の生成量に著しく影響し、本発明で
は、遊離のジメチルアセトアミドが少ない程好ましい結
果を与えることから、その使用量は三酸化硫黄1モル当
り1.0〜2.0モル、好ましくは1.02〜1.5モ
ルにする必要がある。
In the present invention, dimethylacetamide is used as a complex forming agent to form a complex of sulfur trioxide. The amount of dimethylacetamide used relative to sulfur trioxide significantly affects the amount of by-products such as disulfonic acid produced, and in the present invention, the smaller the amount of free dimethylacetamide, the better the result. It is necessary to use 1.0 to 2.0 mol, preferably 1.02 to 1.5 mol, per mol of sulfur.

上記錯体は反応溶媒であるジクロルメタンとジメチルア
セトアミドとの混合液に三酸化硫黄を添加することによ
り得ることができるが、この際、着色およびジメチルア
セトアミドの分解を抑制するためにジメチルアセトアミ
ドの使用量はジクロルメタン1重量部に対し0.65重
量部以下にする必要がある。
The above complex can be obtained by adding sulfur trioxide to a mixture of dichloromethane and dimethylacetamide, which are reaction solvents. It is necessary to limit the amount to 0.65 parts by weight or less per 1 part by weight of dichloromethane.

また、三酸化硫黄の添加温度は40℃以下で、好ましく
は着色およびジメチルアセトアミドの分解を抑えるため
に20℃以下とする。
Further, the temperature at which sulfur trioxide is added is 40°C or lower, preferably 20°C or lower in order to suppress coloring and decomposition of dimethylacetamide.

また、三酸化硫黄の添加後、更に10から30分程度激
しく撹拌して錯体形成反応を完結させることが望ましい
Further, after addition of sulfur trioxide, it is desirable to further stir vigorously for about 10 to 30 minutes to complete the complex formation reaction.

つぎに、本発明においては、前記三酸化硫黄とジメチル
アセトアミドとの錯体を用いてイソブチレンのスルホン
化反応をジクロルメタン溶媒中で行う。
Next, in the present invention, a sulfonation reaction of isobutylene is carried out in a dichloromethane solvent using the complex of sulfur trioxide and dimethylacetamide.

本発明における溶媒であるジクロルメタンの使用量は、
三酸化硫黄1重量部に対し5重量部以上、ジスルホン酸
塩の副生量の抑制効果及び経済性の点から、好ましくは
7〜20重量部である。
The amount of dichloromethane used as a solvent in the present invention is:
The amount is 5 parts by weight or more per 1 part by weight of sulfur trioxide, and preferably 7 to 20 parts by weight from the viewpoint of suppressing the amount of disulfonate by-product and economical efficiency.

このスルホン化反応における原料の混合順序に特別の制
限はなく、たとえば、三酸化硫黄・ジメチルアセトアミ
ド錯体のジクロルメタン溶液に、イソブチレンを添加す
る方法、あるいはその逆にインブチレンに三酸化硫黄・
ジメチルアセトアミド錯体を含有するジクロルメタン溶
液を添加する方法、更にはイソブチレンと三酸化硫黄・
ジメチルアセトアミド錯体のジクロルメタン溶液とを一
定のモル比で連続的に添加する方法等のいずれの方法も
採用することができる。
There is no particular restriction on the order of mixing the raw materials in this sulfonation reaction. For example, isobutylene is added to a dichloromethane solution of sulfur trioxide/dimethylacetamide complex, or vice versa, sulfur trioxide/dimethylacetamide is added to inbutylene.
A method of adding a dichloromethane solution containing dimethylacetamide complex, and a method of adding isobutylene and sulfur trioxide.
Any method can be employed, such as a method of continuously adding a dichloromethane solution of a dimethylacetamide complex at a fixed molar ratio.

インブチレンの使用量は、三酸化硫黄1モルに対し1.
5モル以上、副生成物の抑制効果及び経済性の点から、
好ましくは1.8〜3.0モルである。
The amount of inbutylene used is 1.
5 mol or more, from the viewpoint of suppressing by-products and economic efficiency,
Preferably it is 1.8 to 3.0 mol.

このスルホン化反応の反応温度は40℃以下、好ましく
は5〜30℃である640℃を超えると副生成物の生成
量が多くなるので望ましくない。また、その反応時間は
5〜90分とするのが適当である。
The reaction temperature of this sulfonation reaction is 40° C. or lower, preferably 5 to 30° C. If it exceeds 640° C., the amount of by-products produced increases, which is not desirable. Moreover, it is appropriate that the reaction time is 5 to 90 minutes.

続いて、本発明においては1反応生成物中の残存してい
るβ−サルトンを加熱してメタリルスルホン酸に異性化
させる。異性化温度は40〜60”Cである。60℃を
越えるとメタリルスルホン酸が劣化するので望ましくな
い。また、反応時間は20〜60分とするのが適当であ
る。
Subsequently, in the present invention, the remaining β-sultone in one reaction product is isomerized to methallylsulfonic acid. The isomerization temperature is from 40 to 60''C. If it exceeds 60C, the methallylsulfonic acid deteriorates, which is undesirable.The reaction time is preferably from 20 to 60 minutes.

スルホン化反応および異性化反応が完了すると、得られ
た反応混合物はまず蒸留に付され、ジクロルメタンおよ
び未反応のイソブチレンが反応混合物より留去される。
When the sulfonation reaction and the isomerization reaction are completed, the resulting reaction mixture is first subjected to distillation to remove dichloromethane and unreacted isobutylene from the reaction mixture.

この際蒸留温度は80’C以下、好ましくはメタリルス
ルホン酸の安定性の点がら60℃以下である。
In this case, the distillation temperature is 80'C or lower, preferably 60C or lower in view of the stability of methallylsulfonic acid.

本発明においては、ジクロルメタン及び過剰のインブチ
レンを中和工程の前に留去する構成を採ることにより、
これらの成分に、水分が混入することを防止できるので
、脱水せずにジクロルメタンおよびインブチレンを再使
用することができ、また、反応混合物中における芒硝、
ヒドロキスルホン酸等の副生成物の量が少なくなるとい
う良好な結果を与える。
In the present invention, by adopting a configuration in which dichloromethane and excess imbutylene are distilled off before the neutralization step,
Since it is possible to prevent water from entering these components, dichloromethane and imbutylene can be reused without dehydration, and it is also possible to prevent sodium sulfate from being mixed into the reaction mixture.
This gives good results in that the amount of by-products such as hydroxysulfonic acid is reduced.

つぎに、ジクロルメタンおよび過剰のイソブチレンの留
去された反応混合物をアルカリ性水溶液で中和し、メタ
リルスルホン酸塩を25重量%以上(メタリルスルホン
酸塩の室温での飽和溶解度は25重量%である)を含有
するジメチルアセトアミド・水混合スラリーが調製され
る。
Next, the reaction mixture from which dichloromethane and excess isobutylene have been distilled off is neutralized with an alkaline aqueous solution, and the methallyl sulfonate is dissolved at 25% by weight or more (the saturated solubility of methallylsulfonate at room temperature is 25% by weight). A dimethylacetamide/water mixed slurry is prepared.

メタリルスルホン酸を中和する際に用いられるアルカリ
としては、アルカリ金属の水酸化物1重炭酸塩および炭
酸塩が挙げられるが、経済性、汎用性の点からナトリウ
ムおよびカリウムの水酸化物、重炭酸塩および炭酸塩が
好適に用いられる。
Examples of the alkali used to neutralize methallylsulfonic acid include alkali metal hydroxide monobicarbonate and carbonate, but from the viewpoint of economy and versatility, sodium and potassium hydroxides, Bicarbonates and carbonates are preferably used.

アルカリ水溶液の濃度は17重量2以上、好ましくはメ
タリルスルホン酸塩の晶析効率および経済性の点から2
0〜48重量%である。
The concentration of the alkaline aqueous solution is 17% by weight or more, preferably 2% from the viewpoint of crystallization efficiency and economical efficiency of methallyl sulfonate.
It is 0 to 48% by weight.

続いて、本発明は、メタリルスルホン酸塩のジメチルア
セトアミド・水混合スラリーを40〜120℃まで加熱
して、析出しているメタリルスルホン酸塩を溶解させた
後冷却して晶析を行う。晶析時の温度は0〜25℃であ
る。好ましくは晶析効率および経済性の点から5〜15
℃である。
Next, in the present invention, a dimethylacetamide/water mixed slurry of methallyl sulfonate is heated to 40 to 120°C to dissolve the precipitated methallyl sulfonate, and then cooled to perform crystallization. . The temperature during crystallization is 0 to 25°C. Preferably 5 to 15 from the point of view of crystallization efficiency and economical efficiency.
It is ℃.

つぎに、晶析されたメタリルスルホン酸塩を含むジメチ
ルアセトアミド・水混合スラリーを遠心分離あるいは吸
引濾過によりメタリルスルホン酸塩と母液に分離する。
Next, the dimethylacetamide/water mixed slurry containing the crystallized methallyl sulfonate is separated into the methallyl sulfonate and the mother liquor by centrifugation or suction filtration.

この際、濾過ケーキに残存した副反応生成物およびジメ
チルアセトアミドを含む母液を除去するために濾過ケー
キを洗浄する。
At this time, the filter cake is washed to remove side reaction products remaining in the filter cake and mother liquor containing dimethylacetamide.

洗浄液としてはメタリルスルホン酸塩の溶解による歩留
り低下を防ぐためにメタリルスルホン酸塩の飽和水溶液
を使用することが好ましい。メタリルスルホン酸塩飽和
水溶液の使用量は濾過ケーキに対して同重量程度で十分
である。
As the cleaning liquid, it is preferable to use a saturated aqueous solution of methallyl sulfonate in order to prevent a decrease in yield due to dissolution of methallyl sulfonate. It is sufficient that the amount of the methallylsulfonate saturated aqueous solution used is about the same weight as that of the filter cake.

濾過ケーキを引き続き、必要に応じ、メタノールあるい
はアセトン等の溶剤で洗浄し、水分を除去すれば高純度
のメタリルスルホン酸を得ることができる。
If the filter cake is subsequently washed with a solvent such as methanol or acetone as necessary to remove water, highly pure methallylsulfonic acid can be obtained.

また、分離された母液は水分を留去後、遠心分離あるい
は吸引濾過によりメタリルスルホン酸塩とジメチルアセ
トアミドとに分離されるが、前者は晶析前の中和スラリ
ーに戻され、また後者のジメチルアセトアミドは蒸留さ
れて錯体形成剤として再使用される。
After water is distilled off, the separated mother liquor is separated into methallyl sulfonate and dimethylacetamide by centrifugation or suction filtration, but the former is returned to the neutralized slurry before crystallization, and the latter is Dimethylacetamide is distilled off and reused as a complexing agent.

〔効  果〕〔effect〕

本発明は、前記構成からなるので、次に述べるような顕
著な作用効果を奏するものである。
Since the present invention has the above-mentioned configuration, it exhibits remarkable effects as described below.

(1)副反応が抑制され、溶解性の類似した副生成物の
生成量を極めて少なくできるため、晶析等の精製操作に
より容易に99.9%以上の高純度のメタリルスルホン
酸塩を得ることができる。
(1) Side reactions are suppressed and the amount of by-products with similar solubility can be extremely reduced, making it easy to produce methallyl sulfonate with a purity of 99.9% or higher through purification operations such as crystallization. Obtainable.

(2)色調、臭気の著しく良好なメタリルスルホン酸塩
が得られるため、脱色、脱臭操作が省略できる。
(2) Since a methallyl sulfonate with extremely good color tone and odor can be obtained, decolorization and deodorization operations can be omitted.

(3)ストレッカー反応を利用する方法に比べ、設備や
工程管理が簡略化できる。
(3) Equipment and process management can be simplified compared to methods that utilize the Strecker reaction.

(4)ジメチルアセトアミドの熱劣化がなく、シかもメ
タリルスルホン酸塩が結晶化しているために濾過ケーキ
中の残存量も少ないことから、高価なジメチルアセトア
ミドを高収量で回収することができる。濾過性(速度)
も良好である。
(4) There is no thermal deterioration of dimethylacetamide, and since the metalyl sulfonate is crystallized, the amount remaining in the filter cake is small, so expensive dimethylacetamide can be recovered in high yield. Filterability (speed)
is also good.

(5)中和スラリーをそのまま、昇温後、晶析させるの
で、晶析液を改めて調製したり、濃縮する必要がなく、
省力化、燃費の節約ができる。
(5) Since the neutralized slurry is directly crystallized after heating, there is no need to prepare or concentrate the crystallization solution again.
It saves labor and fuel consumption.

従って、本発明のメタリルスルホン酸塩の合成法は、従
来法に比し、高純度のメタリルスルホン酸塩を容易に得
ることができることから、工業的に極めて有利なメタリ
ルスルホン酸塩の製造方法ということができる。
Therefore, the method for synthesizing methallyl sulfonate of the present invention is industrially extremely advantageous because it can easily obtain high-purity methallyl sulfonate compared to conventional methods. It can be called a manufacturing method.

〔実施例〕〔Example〕

つぎに、実施例により本発明を更に詳細に説明する。な
お、メタリルスルホン酸塩、Δ1スルホン酸塩及びヒド
ロキシスルホン酸塩の定量分析はXL・200FT−N
MR(Varfan社製)を用い、またジスルホン酸塩
の定量分析は高速液体クロマトグラフLC−3A(島津
製作所製)を用いた。
Next, the present invention will be explained in more detail with reference to Examples. In addition, quantitative analysis of methallyl sulfonate, Δ1 sulfonate, and hydroxysulfonate is performed using XL・200FT-N.
MR (manufactured by Varfan) was used, and a high performance liquid chromatograph LC-3A (manufactured by Shimadzu Corporation) was used for quantitative analysis of the disulfonate.

実施例1 ジクロルメタン(2500g)とジメチルアセトアミド
(300g、三酸化硫黄に対して1.1倍m01)の混
合物を5℃で撹拌しながら、液体の三酸化硫黄(250
g)を滴下した。
Example 1 While stirring a mixture of dichloromethane (2500 g) and dimethylacetamide (300 g, 1.1 times m01 relative to sulfur trioxide) at 5°C, liquid sulfur trioxide (250
g) was added dropwise.

つぎに、得られた三酸化硫黄・ジメチルアセトアミド錯
体溶液を4Qオートクレーブに仕込み窒素置換後300
mmHg、15℃の条件下に液体のインブチレン(5℃
、350g、三酸化硫黄に対して2倍m01)を30秒
間導入した。
Next, the obtained sulfur trioxide/dimethylacetamide complex solution was charged into a 4Q autoclave, and after purging with nitrogen,
Liquid inbutylene (5℃) was added under mmHg and 15℃ conditions.
, 350 g, 2 times m01 relative to sulfur trioxide) were introduced for 30 seconds.

15〜30℃の温度で30分間反応させた後、45℃に
昇温しで更に30分間撹拌した。
After reacting at a temperature of 15 to 30°C for 30 minutes, the temperature was raised to 45°C and stirring was continued for an additional 30 minutes.

反応完結後、蒸留を行ないイソブチレンおよびジクロル
メタンを除いてから20重量%力性ソーダ水溶液で中和
した。
After the reaction was completed, the mixture was distilled to remove isobutylene and dichloromethane, and then neutralized with a 20% by weight aqueous sodium hydroxide solution.

上記スラリーを60℃に加熱して、透明液体とした後、
撹拌しながら、室温まで放冷した。
After heating the slurry to 60°C to make it a transparent liquid,
While stirring, the mixture was allowed to cool to room temperature.

上記の晶析スラリーを遠心分離(5000rpm、10
分)後、メタリルスルホン酸ソーダ飽和水溶液200g
で濾過ケーキを洗浄した。引き続き遠心分離(5000
rp■、10分)して脱水した濾過ケーキの性状を調べ
た。その結果を表−1に示す。
The above crystallization slurry was centrifuged (5000 rpm, 10
minutes), 200g of saturated aqueous solution of sodium methallylsulfonate
The filter cake was washed with Continue centrifugation (5000
The properties of the dehydrated filter cake were examined. The results are shown in Table-1.

実施例2 実施例1に準じて、スルホン化及び異性化反応を行い、
得られる反応混合物から蒸留によりジクロルメタン及び
インブチレンを除いたメタリルスルホン酸(400g)
とジメチルアセトアミドとの混合物を調製した。これに
実施例1で副生じた母液を減圧下に脱水後、濾過して回
収したメタリルスルホン酸ソーダ450gおよび水13
0gを加え、この混合物を20%力性ソーダ水溶液で中
和した。
Example 2 Sulfonation and isomerization reactions were carried out according to Example 1,
Methallylsulfonic acid (400 g) from which dichloromethane and imbutylene were removed by distillation from the resulting reaction mixture.
A mixture of and dimethylacetamide was prepared. In addition to this, 450 g of sodium methallylsulfonate and 13 g of water recovered by dehydration of the mother liquor produced as a by-product in Example 1 by filtration were added.
0 g was added and the mixture was neutralized with 20% aqueous sodium hydroxide solution.

この高濃度スラリーを加熱溶解後、実施例1に準じ晶析
、遠心濾過、洗浄および脱水して得た濾過ケーキの性状
を調べた。その結果を表−1に示す。
After heating and dissolving this highly concentrated slurry, the properties of the obtained filter cake were examined by crystallization, centrifugal filtration, washing and dehydration in accordance with Example 1. The results are shown in Table-1.

実施例3 実施例1に準じてスルホン化及び異性化反応を行い、得
られる反応混合物からイソブチレン及びジクロルメタン
を蒸留留去して調製したメタリルスルホン酸(400g
)とジメチルアセトアミドとの混合物に実施例2で副生
じた母液を減圧下に脱水後。
Example 3 Methallylsulfonic acid (400 g) was prepared by carrying out sulfonation and isomerization reactions according to Example 1 and distilling off isobutylene and dichloromethane from the resulting reaction mixture.
) and dimethylacetamide, the mother liquor produced as a by-product in Example 2 was dehydrated under reduced pressure.

濾過して回収したメタリルスルホン酸ソーダおよび水1
30gを加えた。この混合物を20重量%力性ソーダ水
溶液で中和後、加熱溶解した。引き続き実施例1に準じ
て晶析後、洗浄脱水した濾過ケーキの性状を調べた。そ
の結果を表−1に示す。
Sodium methallylsulfonate and water recovered by filtration 1
Added 30g. This mixture was neutralized with a 20% by weight aqueous sodium hydroxide solution and then heated and dissolved. Subsequently, the properties of the filter cake which had been crystallized, washed and dehydrated in accordance with Example 1 were examined. The results are shown in Table-1.

比較例1 実施例1に準じてスルホン化及び異性化反応を行い、得
られた反応混合物を直接20重量%力性ソーダ水溶液で
中和した。つぎにメタリルスルホン酸ソーダ450gを
含む同スラリーをトッピングフラスコに入れ、15〜2
0mm11gの減圧下、油浴温度98℃で2時間、ジク
ロルメタン、水およびジメチルアセトアミドを留去後、
残留物の性状を調べた。その結果を表−1に示す。
Comparative Example 1 Sulfonation and isomerization reactions were carried out according to Example 1, and the resulting reaction mixture was directly neutralized with a 20% by weight aqueous sodium hydroxide solution. Next, put the same slurry containing 450 g of sodium methallyl sulfonate into the topping flask, and add 15 to 2
After distilling off dichloromethane, water and dimethylacetamide under reduced pressure of 0 mm and 11 g at an oil bath temperature of 98°C for 2 hours,
The properties of the residue were investigated. The results are shown in Table-1.

Claims (1)

【特許請求の範囲】[Claims] (1)イソブチレンと三酸化硫黄・ジメチルアセトアミ
ド錯体とをジクロルメタン溶媒中で反応させ、得られた
反応混合物をアルカリ水溶液で中和してメタリルスルホ
ン酸塩を製造する方法において、(a)中和工程に先立
って反応混合物から反応溶媒であるジクロルメタンを留
去させ、 (b)次いで、アルカリ性水溶液で中和してメタリルス
ルホン酸塩を25重量%以上含有するジメチルアセトア
ミド・水混合スラリーを調製すると共に、(c)該混合
スラリーを40〜120℃に加熱してメタリルスルホン
酸塩を溶解させ、 (d)続いて、冷却してメタリルスルホン酸塩を晶析さ
せる、 ことを特徴とするメタリルスルホン酸塩の製造方法。
(1) In a method for producing methallyl sulfonate by reacting isobutylene with a sulfur trioxide/dimethylacetamide complex in a dichloromethane solvent and neutralizing the resulting reaction mixture with an aqueous alkali solution, (a) neutralization Prior to the step, dichloromethane as a reaction solvent is distilled off from the reaction mixture, and (b) then neutralized with an alkaline aqueous solution to prepare a dimethylacetamide/water mixed slurry containing 25% by weight or more of methallylsulfonate. and (c) heating the mixed slurry to 40 to 120°C to dissolve the methallyl sulfonate, and (d) subsequently cooling to crystallize the methallyl sulfonate. Method for producing methallyl sulfonate.
JP23375686A 1986-10-01 1986-10-01 Method for producing methallyl sulfonate Expired - Lifetime JPH0710824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23375686A JPH0710824B2 (en) 1986-10-01 1986-10-01 Method for producing methallyl sulfonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23375686A JPH0710824B2 (en) 1986-10-01 1986-10-01 Method for producing methallyl sulfonate

Publications (2)

Publication Number Publication Date
JPS6388167A true JPS6388167A (en) 1988-04-19
JPH0710824B2 JPH0710824B2 (en) 1995-02-08

Family

ID=16960086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23375686A Expired - Lifetime JPH0710824B2 (en) 1986-10-01 1986-10-01 Method for producing methallyl sulfonate

Country Status (1)

Country Link
JP (1) JPH0710824B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130688A (en) * 2013-02-17 2013-06-05 中国石油化工股份有限公司 Preparing method of 2-acrylamide alkyl sulfonic acid
JP2013248614A (en) * 2013-07-23 2013-12-12 Mitsubishi Chemical Engineering Corp Solvent recovery unit and solvent recovery method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130688A (en) * 2013-02-17 2013-06-05 中国石油化工股份有限公司 Preparing method of 2-acrylamide alkyl sulfonic acid
CN103130688B (en) * 2013-02-17 2017-05-17 中国石油化工股份有限公司 Preparing method of 2-acrylamide alkyl sulfonic acid
JP2013248614A (en) * 2013-07-23 2013-12-12 Mitsubishi Chemical Engineering Corp Solvent recovery unit and solvent recovery method

Also Published As

Publication number Publication date
JPH0710824B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
KR101595747B1 (en) Method for preparing of nafamostat mesilate
JPS6388167A (en) Production of methallylsulfonate
JP2011098975A (en) Chiral pure n-(trans-4-isopropyl-cyclohexylcarbonyl)-d-phenylalanine and method for producing crystal structure transformation product thereof
US3291822A (en) Salts of sulfosulfinic acids and a process for their preparation
JP3962531B2 (en) Method for producing 1,3-di (2-p-hydroxyphenyl-2-propyl) benzene
US2986581A (en) Production of aromatic disulfides
US7105694B2 (en) O-isopropyl isourea salt and production method thereof
SU1384572A1 (en) Method of producing alkaline salts of 5-sulfoisophthalic acid
JPH06306042A (en) Productionof sulfobetaine
US3277161A (en) Production of cyclohexylammonium-n-cyclohexylsulfamate free of cyclohexylamine sulfate
JPH026348B2 (en)
US4382896A (en) Process for producing 4,4'-diphenyldisulfonic acid and its monopotassium salt
JPS6351368A (en) Production of methallylsulfonate
US4338261A (en) Process for the preparation of 1-naphthylamine-4,6-disulphonic acid and 1-naphthylamine-2,4,6-trisulphonic acid
JPH0656758A (en) Production of 2-naphthol-6-sulfonate
JP3061494B2 (en) Process for producing glycidyl aryl sulfonates
CN117285446A (en) Synthesis method of 4-sulfamoyl butyric acid
KR950002837B1 (en) Process for the preparation of 3-amino-4-methoxyacteanilide
KR910003639B1 (en) Process for the preparation of 3-dialkylamino methanesulfon anilide
JPH0470311B2 (en)
US731139A (en) Sulfo-acid of aromatic aldehyde and process of making same.
RU1436456C (en) Process for producing potassium 2,5-dioxybenzene sulfonate
KR100198829B1 (en) Process for preparation of 4-aminophenyl-2-acetoxyethylsulfone
KR0185127B1 (en) Process for preparation of n-(2-amino-3,5-dibromobenzoyl)-n'-(alkansulfonyl)hydrazide
JP2601708B2 (en) Method for producing N-alkanoylcysteine