JPS6387740A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6387740A
JPS6387740A JP23362686A JP23362686A JPS6387740A JP S6387740 A JPS6387740 A JP S6387740A JP 23362686 A JP23362686 A JP 23362686A JP 23362686 A JP23362686 A JP 23362686A JP S6387740 A JPS6387740 A JP S6387740A
Authority
JP
Japan
Prior art keywords
layer
type
conductivity type
epitaxial layer
concentration layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23362686A
Other languages
Japanese (ja)
Other versions
JPH0715940B2 (en
Inventor
Susumu Oi
進 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61233626A priority Critical patent/JPH0715940B2/en
Publication of JPS6387740A publication Critical patent/JPS6387740A/en
Publication of JPH0715940B2 publication Critical patent/JPH0715940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent characteristics of a semiconductor device from being deteriorated, by forming a conductivity-type high-concentration layer as a channel stopper on the bottom of grooves for element isolation and interposing a conductivity-type epitaxial layer between this high concentration layer and a reverse conductivity-type high-concentration layer as a sub-collector layer. CONSTITUTION:A p-type high-concentration layer 7 forming a channel stopper is formed on part of a p-type silicon substrate 1, and a p-type epitaxial layer 2 is formed thereon. A n type sub-collector layer 3 is formed in the p-type epitaxial layer 2 and a n-type epitaxial layer 4 is formed on the p-type epitaxial layer 2. Grooves 15 for element isolation, on which a silicon oxidizing film 8 is formed, are formed ranging from the surface of the n-type epitaxial layer 4 to the p-type high-concentration layer 7. Polycrystal silicon 9 is buried into these grooves 15. Therefore, an increase in capacity does not occur in the p-type high-concentration layer 7 and the n-type sub-collector layer 3, and besides thermal diffusion is generated in the p-type high-concentration layer 7, so that no crystal defect occurs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係わり、特に素子間の絶縁分離と
して絶縁物を含む溝を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a groove containing an insulator as insulation separation between elements.

〔従来の技術〕[Conventional technology]

従来、素子間の絶縁分離は選択酸化法によって形成され
た厚い酸化膜によって行なわれていたが、この方法では
、選択酸化の際の酸化膜の素子領域への喰い込みによっ
て絶縁分離領域が広くなり半導体装置の高集積化の妨げ
になっていた。このなめシリコン基板に溝を形成し、そ
の溝内に絶縁材料や多結晶シリコンを埋設する方法が、
近年用いられるようになった。特にバイポーラ型半導体
装置では、厚いエピタキシャル層とサブコレクタ層とを
分離しなければならないので、涌分離法の採用が急務で
ある。
Conventionally, insulation isolation between elements has been achieved using a thick oxide film formed by selective oxidation, but with this method, the insulation isolation area becomes wider due to the oxide film digging into the element area during selective oxidation. This has been a hindrance to higher integration of semiconductor devices. This method involves forming a groove in the silicon substrate and burying insulating material or polycrystalline silicon in the groove.
It has come into use in recent years. Particularly in bipolar semiconductor devices, since it is necessary to separate a thick epitaxial layer and a sub-collector layer, there is an urgent need to adopt the water separation method.

しかしながらバイポーラ型素子を分離する場合は、溝の
底部には高濃度のサブコレクタ層が近接する為、溝の底
部には、比較的高濃度のチャンネル・ストッパー層を形
成する必要があった。以下図面を用いて説明する。
However, when bipolar elements are to be separated, a highly doped sub-collector layer is located close to the bottom of the trench, so it is necessary to form a relatively highly doped channel stopper layer at the bottom of the trench. This will be explained below using the drawings.

第4図(a>(b)は、従来の湧分g!構造を用いた半
導体装置の製造方法を説明するための工程順に示した半
導体チップ断面図である。
FIG. 4 (a>(b)) is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a method of manufacturing a semiconductor device using a conventional g! structure.

まず、第4図(a>に示す様にp型シリコン基板1上に
選択的にn′型ササ13122層3形成し、更にn型エ
ピタキシャル層4を形成する6次に、全面にシリコン酸
化膜10.シリコン窒化膜3゜を形成し、フォトレジス
ト12をマスクにシリコン酸化膜10.シリコン窒化膜
30及びp型シリコン基板1のエツチングを行い溝15
を設け、イオン注入法によってチャンネル・ストッパー
層7Aを形成する。
First, as shown in FIG. 4 (a), an n' type layer 13122 layer 3 is selectively formed on a p type silicon substrate 1, and an n type epitaxial layer 4 is further formed.6 Next, a silicon oxide film is formed on the entire surface. 10. A silicon nitride film 3° is formed, and using the photoresist 12 as a mask, the silicon oxide film 10. The silicon nitride film 30 and the p-type silicon substrate 1 are etched to form grooves 15.
A channel stopper layer 7A is formed by ion implantation.

次に第4図(b)に示すように、満15の表面にシリコ
ン酸化膜8を形成したのち、多結晶シリコン9を埋設し
更に多結晶シリコン表面に酸化膜10を形成したのち、
素子形成領域にベース層5゜エミッタ層6.Ae電極1
1を形成しバイポーラ型半導体装置を完成させていた。
Next, as shown in FIG. 4(b), after forming a silicon oxide film 8 on the surface of the polycrystalline silicon, a polycrystalline silicon 9 is buried and an oxide film 10 is further formed on the surface of the polycrystalline silicon.
Base layer 5. emitter layer 6. in the element formation region. Ae electrode 1
1 and completed a bipolar semiconductor device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来の半導体装置の構造では、
イオン注入で形成したチャンネル・ストッパー層7Aは
、溝15の底部だけでなく、満15の側壁下部にも形成
され、高濃度のサブコレクタ層3とチャンネル・ストッ
パー層7A間の接合容量が増加し、素子の特性が劣化し
たり1.イオン注入のダメージに起因した結晶欠陥が発
生し半導体装置の製造歩留を低下させるという欠点があ
る。
However, in the structure of the conventional semiconductor device described above,
The channel stopper layer 7A formed by ion implantation is formed not only at the bottom of the groove 15 but also at the bottom of the sidewall of the trench 15, increasing the junction capacitance between the highly doped subcollector layer 3 and the channel stopper layer 7A. , the characteristics of the element may deteriorate or 1. There is a drawback that crystal defects occur due to damage caused by ion implantation, reducing the manufacturing yield of semiconductor devices.

本発明の目的は、特性の劣化が少く、製造歩留りの向上
した半導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device with less deterioration of characteristics and improved manufacturing yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、一導電型半導体基板上の少くと
も一部に形成された一導電型高濃度層と、一導電型高濃
度層を含む全面に形成された一導電型エビタキシャル層
と、一導電型エピタキシャル層内に形成された逆導電型
高濃度層と、逆導電型高濃度層を含む全面に形成された
逆導電型エピタキシャル層と、逆導電型エピタキシャル
層表面より前記一導電型高濃度層の内部に達し表面に絶
縁 ・膜が形成された溝と、溝中に埋込まれた多結晶シ
リコン又は絶縁物とを含んで構成される。
The semiconductor device of the present invention includes a high concentration layer of one conductivity type formed on at least a portion of a semiconductor substrate of one conductivity type, and an epitaxial layer of one conductivity type formed on the entire surface including the high concentration layer of one conductivity type. , an opposite conductivity type high concentration layer formed in the one conductivity type epitaxial layer, an opposite conductivity type epitaxial layer formed on the entire surface including the opposite conductivity type high concentration layer, and the one conductivity type from the surface of the opposite conductivity type epitaxial layer. It consists of a groove that reaches inside the high concentration layer and has an insulating film formed on its surface, and polycrystalline silicon or an insulator embedded in the groove.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.

第1図において、p型シリコン基板1の一部には、チャ
ンネル・ストッパーを形成するp壁高濃度層7が形成さ
れている。そしてその上面にはp型エピタキシャル層2
が形成されており、このp型エピタキシャル層2内には
n型サブコレクタ層3が形成されている。そしてこのp
型エピタキシャル層2上にはn型エピタキシャル層4が
形成されている。
In FIG. 1, a p-wall high concentration layer 7 forming a channel stopper is formed in a part of a p-type silicon substrate 1. A p-type epitaxial layer 2 is formed on the upper surface of the p-type epitaxial layer 2.
is formed, and within this p-type epitaxial layer 2, an n-type sub-collector layer 3 is formed. And this p
An n-type epitaxial layer 4 is formed on the type epitaxial layer 2 .

更にn型エピタキシャル層4表面からp壁高濃度層7に
達し表面にシリコン酸化JIi8が形成された素子分離
用の満15が形成されており、この満15中には多結晶
シリコン9が埋込まれている。
Further, a layer 15 for element isolation is formed which reaches from the surface of the n-type epitaxial layer 4 to the p-wall high concentration layer 7 and has silicon oxide JIi 8 formed on the surface, and polycrystalline silicon 9 is embedded in this layer 15. It is rare.

尚、素子形成領域のn型エピタキシャル層4内にはベー
ス層5.エミツタ層6及びAf電極11からなるバイポ
ーラトランジスタが形成されている。
Note that a base layer 5. A bipolar transistor consisting of an emitter layer 6 and an Af electrode 11 is formed.

このように構成された第1の実施例においては、満15
の底部はp壁高濃度層7内に含まれるため、溝底部の界
面におけるチャンネルの形成を防ぐことができる。又p
壁高濃度層7とn型サブコレクタ層3間には低濃度のp
型エピタキシャル層12が介在する為に、イオン注入に
よって形成された従来構造でのチャンネル・ストッパー
層であるp壁高濃度層7とn型サブコレクタ層3との容
量増大もなく、更にp壁高濃度層7は、熱拡散で形成さ
れる為に、結晶欠陥の発生等の問題も生じない。
In the first embodiment configured in this way, up to 15
Since the bottom of the groove is included in the p-wall high concentration layer 7, formation of a channel at the interface of the groove bottom can be prevented. Also p
A low concentration p layer is formed between the wall high concentration layer 7 and the n-type sub-collector layer 3.
Since the type epitaxial layer 12 is present, there is no increase in the capacitance of the p-wall high concentration layer 7 and the n-type sub-collector layer 3, which are channel stopper layers in the conventional structure formed by ion implantation, and the p-wall height is also reduced. Since the concentration layer 7 is formed by thermal diffusion, problems such as generation of crystal defects do not occur.

第2図は本発明の第2の実施例の断面図であり、第1図
の第1の実施例と異なる所は、p壁高濃度層7がp型シ
リコン基板1の全面に形成されていることである。
FIG. 2 is a sectional view of a second embodiment of the present invention, which differs from the first embodiment shown in FIG. It is that you are.

次に、第1図に示した第1の実施例の製造方法の一例を
第3図(a)〜(d)を用いて説明する。
Next, an example of the manufacturing method of the first embodiment shown in FIG. 1 will be explained using FIGS. 3(a) to 3(d).

まず第3図(a>に示すようにp型シリコン基板1上に
選択的に形成したシリコン酸化膜20をマスクにp壁高
濃度層7を形成する。
First, as shown in FIG. 3(a), a p-wall high concentration layer 7 is formed using a silicon oxide film 20 selectively formed on a p-type silicon substrate 1 as a mask.

次に第3図(b)に示すように全面に、p型エピタキシ
ャル層2を成長させた後、n型不純物を導入し高濃度の
n型エピタキシャル層3を選択的に形成する。
Next, as shown in FIG. 3(b), after growing a p-type epitaxial layer 2 over the entire surface, an n-type impurity is introduced to selectively form a highly concentrated n-type epitaxial layer 3.

次に第3図(c)に示すように、全面にn型エピタキシ
ャル層4を成長させる。
Next, as shown in FIG. 3(c), an n-type epitaxial layer 4 is grown over the entire surface.

次に第3図(d)に示すように、選択的にn型エピタキ
シャルM4.n型エピタキシャル層2をエツチングし、
p工高濃度層7内に道連する満15を形成する。その後
満15の壁を酸化してシリコン酸化膜8を形成したのち
、多結晶シリコンを7i415内に埋設後多結晶シリコ
ン表面を酸化する。
Next, as shown in FIG. 3(d), the n-type epitaxial M4. Etching the n-type epitaxial layer 2,
A conductive layer 15 is formed in the p-type high concentration layer 7. Thereafter, the walls of the silicon oxide layer 8 are oxidized to form a silicon oxide film 8, and after burying polycrystalline silicon in the 7i 415, the surface of the polycrystalline silicon is oxidized.

多結晶シリコンの代りにS i 02等の絶縁物を埋設
してもよい。
An insulator such as S i 02 may be buried instead of polycrystalline silicon.

以下通常の方法でベース層5.エミツタ層6゜Af配線
を形成する事によって第1図に示した第1の実施例が完
成する。
Base layer 5. The first embodiment shown in FIG. 1 is completed by forming the emitter layer 6°Af wiring.

尚、第2図に示した第2の実施例は、第3図(a)にお
いて、p型シリコン基板1の全面にp壁高濃度層7を形
成すればよく、この場合第1の実施例に比ベシリコン酸
化膜20の形成とそのパターニング工程が不要となる利
点がある。
In addition, in the second embodiment shown in FIG. 2, the p-wall high concentration layer 7 may be formed on the entire surface of the p-type silicon substrate 1 in FIG. 3(a), and in this case, the second embodiment shown in FIG. Compared to this, there is an advantage that the formation of the silicon oxide film 20 and its patterning process are unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、素子分離用の清の底部に
チャンネル・ス)・ツバ−となる一導電型高濃度層が形
成され、又、この高濃度層とサブコレクタ層である逆導
電型高濃度層との間には一導電型のエピタキシャル層が
あるので、従来構造の半導体装置におけるチャンネル・
ストッパー層とサブコレクタ層との接触による容量増加
もなく、チャンネル・ストッパー形成の際の欠陥発生も
ない、従って、半導体装置の特性劣化が少なく、製造歩
留りが向上するという効果がある。
As explained above, in the present invention, a high concentration layer of one conductivity type is formed at the bottom of a channel for element isolation, and this high concentration layer and a subcollector layer of an opposite conductivity type are formed. Since there is an epitaxial layer of one conductivity type between the type and the high concentration layer, the channel and
There is no increase in capacitance due to contact between the stopper layer and the sub-collector layer, and there is no occurrence of defects during formation of the channel stopper.Therefore, the characteristics of the semiconductor device are less degraded and the manufacturing yield is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1及び第2の実施例の断
面図、第3図(a)〜(d)は本発明の第1の実施例の
製造方法を説明する為の工程順に示した半導体チップの
断面図、第4図(a)(b)は従来の半導体装置の製造
方法を説明するための□半導体チップの断面図である。 1・・・p型シリコン基板、2・・・p型エピタキシャ
ル層、3・・・n型サブコレクタ層、4・・・n型エピ
タキシャル層、5・・・ベース層、6・・・エミツタ層
、7・・・p型窩濃度層、7A・・・チャンネル・スト
ッパー層、8,10.20.20A・・・シリコン酸化
膜、9・・・多結晶シリコン、11・・・AF主電極1
2・・・フオトレジス1−130・・・シリコン窒化膜
1 and 2 are cross-sectional views of the first and second embodiments of the present invention, and FIGS. 3(a) to 3(d) are cross-sectional views for explaining the manufacturing method of the first embodiment of the present invention. 4(a) and 4(b) are cross-sectional views of a semiconductor chip for explaining a conventional method of manufacturing a semiconductor device. DESCRIPTION OF SYMBOLS 1...p-type silicon substrate, 2...p-type epitaxial layer, 3...n-type subcollector layer, 4...n-type epitaxial layer, 5...base layer, 6...emitter layer , 7... P-type cavity concentration layer, 7A... Channel stopper layer, 8, 10.20.20A... Silicon oxide film, 9... Polycrystalline silicon, 11... AF main electrode 1
2... Photoresist 1-130... Silicon nitride film.

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板上の少くとも一部に形成された一
導電型高濃度層と、該一導電型高濃度層を含む全面に形
成された一導電型エピタキシャル層と、該一導電型エピ
タキシャル層内に形成された逆導電型高濃度層と、該逆
導電型高濃度層を含む全面に形成された逆導電型エピタ
キシャル層と、該逆導電型エピタキシャル層表面より前
記一導電型高濃度層の内部に達し表面に絶縁膜が形成さ
れた溝と、該溝中に埋込まれた多結晶シリコン又は絶縁
物とを含むことを特徴とする半導体装置。
A high concentration layer of one conductivity type formed on at least a portion of a semiconductor substrate of one conductivity type, an epitaxial layer of one conductivity type formed on the entire surface including the high concentration layer of one conductivity type, and an epitaxial layer of one conductivity type formed on the entire surface including the high concentration layer of one conductivity type. an opposite conductivity type high concentration layer formed within the opposite conductivity type high concentration layer, a reverse conductivity type epitaxial layer formed on the entire surface including the opposite conductivity type high concentration layer, and one conductivity type high concentration layer formed from the surface of the opposite conductivity type epitaxial layer 1. A semiconductor device comprising: a trench that reaches inside and has an insulating film formed on its surface; and polycrystalline silicon or an insulator embedded in the trench.
JP61233626A 1986-09-30 1986-09-30 Method for manufacturing semiconductor device Expired - Fee Related JPH0715940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233626A JPH0715940B2 (en) 1986-09-30 1986-09-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233626A JPH0715940B2 (en) 1986-09-30 1986-09-30 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6387740A true JPS6387740A (en) 1988-04-19
JPH0715940B2 JPH0715940B2 (en) 1995-02-22

Family

ID=16957993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233626A Expired - Fee Related JPH0715940B2 (en) 1986-09-30 1986-09-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0715940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508701A (en) * 2004-07-28 2008-03-21 クォンタム セミコンダクター リミテッド ライアビリティ カンパニー Layout for integrated integration of CMOS and stacked photoactive layers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124153A (en) * 1982-12-29 1984-07-18 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPS60154626A (en) * 1984-01-25 1985-08-14 Hitachi Ltd Deposition in groove and equipment thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124153A (en) * 1982-12-29 1984-07-18 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
JPS60154626A (en) * 1984-01-25 1985-08-14 Hitachi Ltd Deposition in groove and equipment thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508701A (en) * 2004-07-28 2008-03-21 クォンタム セミコンダクター リミテッド ライアビリティ カンパニー Layout for integrated integration of CMOS and stacked photoactive layers

Also Published As

Publication number Publication date
JPH0715940B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JP2503460B2 (en) Bipolar transistor and manufacturing method thereof
JP3014012B2 (en) Method for manufacturing semiconductor device
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
JPH0548936B2 (en)
JPH05206151A (en) Semiconductor device
JPS6159852A (en) Manufacture of semiconductor device
KR100314347B1 (en) Semiconductor device and its manufacturing method
JP2615646B2 (en) Manufacturing method of bipolar transistor
US4819055A (en) Semiconductor device having a PN junction formed on an insulator film
KR100498503B1 (en) Bipolar junction transistor and method for fabricating the same
JP2654607B2 (en) Method for manufacturing semiconductor device
KR950001146B1 (en) Poly silicon self-align bipolar device and manufacturing method thereof
JP3107806B2 (en) Method for manufacturing semiconductor device
JPS6387740A (en) Semiconductor device
JPS6324672A (en) Manufacture of semiconductor device
KR900003616B1 (en) Manufacture of semiconductor device
JP3257523B2 (en) Method for manufacturing semiconductor device
KR0137568B1 (en) Method of making a bipolar transistor
JP2003243407A (en) Method of manufacturing heterojunction bipolar transistor
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP3707978B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP2536616B2 (en) Semiconductor device
JPH0653310A (en) Semiconductor device and its manufacture method
JPH05335329A (en) Semiconductor device and its manufacture
JPH0712054B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees