JPS638551A - Microscope photoacoustic infrared spectroscopic analysis method and apparatus - Google Patents

Microscope photoacoustic infrared spectroscopic analysis method and apparatus

Info

Publication number
JPS638551A
JPS638551A JP61152300A JP15230086A JPS638551A JP S638551 A JPS638551 A JP S638551A JP 61152300 A JP61152300 A JP 61152300A JP 15230086 A JP15230086 A JP 15230086A JP S638551 A JPS638551 A JP S638551A
Authority
JP
Japan
Prior art keywords
infrared
photoacoustic
sample
optical system
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61152300A
Other languages
Japanese (ja)
Inventor
Tsutomu Masujima
努 升島
Seiji Nishizawa
西沢 誠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP61152300A priority Critical patent/JPS638551A/en
Publication of JPS638551A publication Critical patent/JPS638551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable non-destructive measurement of a sample substance, by employing a photoacoustic detection for a very small area of the sample with such a simple construction as to attach this apparatus to an interference type or dispersion type infrared spectroscope. CONSTITUTION:A microscope photoacoustic infrared spectroscopic analyzer focuses an interfering luminous flux or a monochromic light 1-1 leaving an infrared interference optical system or a dispersion type infrared spectroscopic optical system to 1mm or less in the diameter. For example, this apparatus has an infrared range condenser comprising a photoacoustic sample cell 1-4 in which is formed a sealed space (sample chamber) 1-7 surrounded by a solid wall made of metal or the like and an infrared transmitting window 1-6 and an elastic wave detecting element 1-8 leading to the sealed space of the photoacoustic sample cell 1-4 and irradiates a sample substance 1-3 with a focused luminous flux 1-1 to measure an infrared spectrum in a fine area with the diameter of 1mm or less by the photoacoustic detection method. To measure a 2-D spatial distribution, the photoacoustic sample cell 1-4 is placed on an X-Y axis 2-D mobile microstage 1-11 to be moved with an manual or automatic driving mechanism.

Description

【発明の詳細な説明】 又貝支l鯉 (産業上の利用分野) 本考案は顕微光音響赤外分光分析法及びg置に関し、特
に干渉型ないし分散型赤外分光器に付設され簡単な構成
で試料の微小域を光音響検出法を用いて非破壊的に測定
可能とする顕微光音響赤外分光分析法及び装置に関する
ものである。
[Detailed description of the invention] Also, carp (industrial application field) The present invention relates to microphotoacoustic infrared spectroscopy and g-setting, and in particular to a simple method that can be attached to an interference type or dispersion type infrared spectrometer. The present invention relates to a microphotoacoustic infrared spectroscopy method and apparatus that enables nondestructive measurement of a microscopic region of a sample using photoacoustic detection.

(従来の技術) 赤外分光分析において、微小域、微量サンプルの分子構
造に関する情報を知る手段として、最近ミクロ透過、お
よびミクロ反射法があり、実用化されるようになった。
(Prior Art) In infrared spectroscopy, micro-transmission and micro-reflection methods have recently been put into practical use as a means of obtaining information about the molecular structure of a minute region or a minute amount of a sample.

しかし、何れの方法も試料の状態に影響され、例えば透
過法では、厚くて光が透過しない場合、あるいは散乱性
試料の場合など適用出来ない。また反射法はその点では
優れているが、試料の形態によって赤外吸収スペクトル
の形状が変化するなどの問題があり、何れも、測定に際
しては試料を薄くしたり、あるいは平たくするなどの前
処理が必要である。従って、前処理が不要で、試料物質
そのままの形態で微小域の赤外分析が出来る手法の開発
が強く望まれている。
However, both methods are affected by the condition of the sample; for example, the transmission method cannot be applied when the sample is too thick to transmit light or when the sample is scattering. In addition, although the reflection method is excellent in this respect, it has problems such as the shape of the infrared absorption spectrum changing depending on the shape of the sample, and in both cases, pretreatment such as making the sample thin or flat is necessary for measurement. is necessary. Therefore, there is a strong demand for the development of a method that does not require pretreatment and can perform infrared analysis in a microscopic range using the sample material in its original form.

一方、試料の状態に影響されない光測定方法として、光
音響効果を利用した分析法が知られている。つまり、試
料に音響周波数で振幅強度変調した光束を照射すると、
試料から光の変調周波数に応じた弾性波が発生する。こ
の弾性波をマイクロホンや圧電素子など弾性波検知素子
(音響電気変換器)で検出することによって従来の分光
分析手法では測定困難な光吸収特性を測定することがで
きる。
On the other hand, an analysis method that utilizes the photoacoustic effect is known as an optical measurement method that is not affected by the state of the sample. In other words, when a sample is irradiated with a light beam modulated in amplitude and intensity at an acoustic frequency,
Elastic waves are generated from the sample according to the modulation frequency of the light. By detecting this elastic wave with an elastic wave detection element (acoustoelectric transducer) such as a microphone or piezoelectric element, it is possible to measure light absorption characteristics that are difficult to measure using conventional spectroscopic analysis techniques.

(発明が解決しようとする問題点) 本発明は以上の点を考慮に入れ、試料物質の形態にかか
わらずその実存状態のままで測れるという光音響検出法
の特徴を利用し、従来のミクロ透過およびミクロ反射法
における問題点を一挙に解決しようとするものである。
(Problems to be Solved by the Invention) Taking the above points into consideration, the present invention takes advantage of the feature of the photoacoustic detection method that it can measure the sample substance in its existing state regardless of its form, and utilizes the conventional micro-transmission method. The aim is to solve all the problems in the micro-reflection method and the micro-reflection method all at once.

すなわち本発明の目的は、三光束干渉型赤外分光光度計
の干渉光束あるいは分散型赤外分光光度計の単色光を高
効率で集光する1枚の非球面鏡あるいは1組の複合非球
面鏡集光器を用いた簡単な光学系により、試料物質の実
存状態のままでしかもその微小域のスペクトルが得られ
、微小域での深さ方向の解析を3¥破壊的に行え、しか
も2次元的なマツピング測定全可能とする顕微光音響赤
外分光分析法及び装置を堤供することにある。
That is, an object of the present invention is to provide one aspherical mirror or a set of composite aspherical mirrors that can collect the interference light beam of a three-beam interference infrared spectrophotometer or the monochromatic light of a dispersive infrared spectrophotometer with high efficiency. Using a simple optical system using an optical instrument, it is possible to obtain the spectrum of a minute region of the sample substance in its existing state, and it is possible to perform depth-direction analysis in a minute region in a destructive manner, as well as two-dimensionally. The purpose of this invention is to provide a microphotoacoustic infrared spectroscopy method and apparatus that enable complete mapping measurements.

li立l基 (問題点を解決するための手段) 上記の目的を達成するため、本発明による顕微光音響赤
外分光分析法は、赤外干渉光学系ないし分散型赤外分光
光学系より出た干渉光又は単色光を1組の赤外域集光器
で1)■径以下に集光し、弾性$を検知素子(例えば、
マイクロホンや圧電素子等)に通じ且つ例えば金属のよ
うな固体壁と赤外透過材窓で囲まれる密封空間を形成し
た光音響試料セル中においた試料物質に、その集光光束
を照射し、1m−径以下の微小域での赤外スペクトルを
赤外光音V検出法で測定することを特徴とするものであ
る。
Li stand l group (Means for solving the problem) In order to achieve the above object, the microphotoacoustic infrared spectroscopy method according to the present invention uses an infrared interference optical system or a dispersive infrared spectroscopic optical system. The interference light or monochromatic light is collected by a set of infrared concentrators to a diameter smaller than 1), and the elasticity is detected by a detection element (e.g.
The focused beam is irradiated onto a sample material placed in a photoacoustic sample cell, which has a sealed space surrounded by a solid wall such as metal and an infrared transmitting window, and is connected to a microphone, piezoelectric element, etc. This method is characterized by measuring an infrared spectrum in a minute region smaller than - diameter using an infrared photoacoustic V detection method.

また本発明による顕微光音響赤外分光分析装置は、赤外
干渉光学系ないし分散型赤外分光光学系より出た干渉光
束又は単色光を1龍径以下に集光する1組の赤外域集光
器、例えば金属のような固体壁と赤外透過材窓で囲まれ
る密封空間を形成した光音響試料セル、該光音響試料セ
ル中においた試料物質、及び光音響試料セルの密封空間
に通した弾性波検知素子(例えばマイクロホンや圧電素
子等)を備え、上記集光光束を試料物質に照射し1)1
径以下の微小域での赤外スペクトルを光音響検出法で測
定することを特徴とするものである。
Further, the microphotoacoustic infrared spectrometer according to the present invention has a set of infrared focusing units that collects the interference light flux or monochromatic light emitted from the infrared interference optical system or the dispersive infrared spectroscopic optical system into one diameter or less. An optical instrument, a photoacoustic sample cell forming a sealed space surrounded by a solid wall such as metal and an infrared transparent material window, a sample substance placed in the photoacoustic sample cell, and a photoacoustic sample cell that communicates with the sealed space of the photoacoustic sample cell. 1) 1
It is characterized by measuring the infrared spectrum in a microscopic region smaller than the diameter using photoacoustic detection method.

2次元的な空間分布の測定を行うため、好ましい実施例
では、光音響試料セルをX−Y軸の2次元移動マイクロ
・ステージにのせ、該マイクロ・ステージを例えばマイ
クロゲージによって手動で移動させるか、あるいはコン
ピュータ制御のパルス・モータによる自動駆動機構によ
って、試料平面上の各微小域の光音響赤外分光測定を可
能とする。
In order to measure a two-dimensional spatial distribution, in a preferred embodiment, the photoacoustic sample cell is placed on a two-dimensional moving microstage in the X-Y axes, and the microstage is manually moved using, for example, a microgauge. Alternatively, an automatic drive mechanism using a computer-controlled pulse motor enables photoacoustic infrared spectroscopy measurements of each minute region on the sample plane.

また焦点収差を軽減して照射光束を集光させるため、集
光器は1枚の非球面鏡あるいは1mの複合非球面鏡によ
る集光器とするのが好ましい。
Further, in order to reduce focal aberration and condense the irradiation light beam, it is preferable that the condenser is a condenser made of one aspherical mirror or a compound aspherical mirror with a length of 1 m.

さらに、試料面上の照射光束の照射点を測定者がモニタ
ーできるように好ましい実施例では、赤外分光光学系な
いし赤外干渉光学系と集光器との間の光路内に一定の角
度で必要に応じて入れられるようにした可視光用ハーフ
ミラ−を設け、この可視光用ハーフミラ−に対して試料
像の反射または透過方向に直視用モニタースコープを設
でし、且つその透過または反射方向に、即ちハーフ・ミ
ラーに対して該モニター・スコープの設置方向に対称方
向の位置に光音響試料セル内部を照明するための可視光
源を設置する。
Furthermore, in a preferred embodiment, in order to enable the measurer to monitor the irradiation point of the irradiation beam on the sample surface, a certain angle is set in the optical path between the infrared spectroscopic optical system or the infrared interference optical system and the condenser. A visible light half mirror that can be inserted as needed is provided, a direct viewing monitor scope is installed in the direction of reflection or transmission of the sample image, and a monitor scope is installed in the direction of reflection or transmission of the sample image with respect to this half mirror for visible light. That is, a visible light source for illuminating the inside of the photoacoustic sample cell is installed at a position symmetrical to the installation direction of the monitor scope with respect to the half mirror.

(実施例) 以下、本発明の実施例を図面を参照して詳しく説明する
。尚図面は、本発明の顕微光音響赤外分光分析装置を示
す一部断面側面図である。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. The drawing is a partially sectional side view showing the microphotoacoustic infrared spectrometer of the present invention.

本発明による顕微光音響赤外分光分析装置は従来の干渉
型ないし分散型赤外分光器に付設されて用いられ、それ
らの光学系及び電気処理系等は周知であるので、ここで
は特に説明しない0図中1−1が通常の赤外干渉光学系
ないし分散型赤外分光光学系(図示していない)より出
た干渉光束または単色光束であり、それらの光束振幅強
度は干渉光束では移動鏡の走査により、また単色光束で
は光束チョッパーによって音響周波数で変調されている
。第1図では左から右方向へ水平に進むこの測定光束1
−1が本装置に主構成要素である集光器(第1図におけ
る1−2および第2図における2−5)に入射し、そこ
で垂直下方に反射されるとともにl1m径以下ば集光さ
れて試料1−3に照射される。ここで焦点収差を軽減し
、1個で1■径以下の微小域に測定光を集光させるため
、集光器としては第1図に示されるl−2のような非球
面鏡を用いるのが好ましく、あるいはより集光率を高め
るために第2図2−5のように、複合非球面鏡による集
光器が有効である。
The microphotoacoustic infrared spectrometer according to the present invention is used attached to a conventional interference type or dispersive infrared spectrometer, and their optical system, electrical processing system, etc. are well known, so they will not be specifically explained here. In Figure 0, 1-1 is an interference light beam or a monochromatic light beam emitted from a normal infrared interference optical system or a dispersive infrared spectroscopic optical system (not shown), and the amplitude and intensity of these light beams is determined by the moving mirror. The monochromatic beam is modulated at the acoustic frequency by the beam chopper. In Figure 1, this measurement light beam 1 traveling horizontally from left to right
-1 enters the condenser (1-2 in Figure 1 and 2-5 in Figure 2), which is the main component of this device, where it is reflected vertically downward and condensed if the diameter is less than 11 m. sample 1-3. Here, in order to reduce focal aberration and focus the measurement light on a microscopic area with a diameter of less than 1 inch, it is recommended to use an aspherical mirror like l-2 shown in Figure 1 as the condenser. Preferably, or in order to further increase the light condensing efficiency, it is effective to use a condenser using a compound aspherical mirror as shown in FIG. 2 2-5.

集光器1−2または2−5の下方に光音響セル1−4が
配置されている。光音響セル1−4は例えば金属性等の
遮蔽板を成す固体壁1−5と、赤外透過材窓1−6とで
囲まれた試料室を成す密封空間1−7を有し、この密封
空間1−7中に試料物質1−3がおかれるとともに光音
響信号を得るための検出器を成すマイクロホン1−8が
設けられている。マイクロホンl−8は直接密封空間l
−7内に設けるかわりに、弾性波を伝播させる適当な通
路1−16を介してそれと空間的に連通ずるように構成
してもよい。尚、1−9はマイクロホン1−8からのリ
ード線であり、不図示の電気処理系に接続される。また
光音響セル1−4は、試料のセントを容易に行えるよう
に半分に分割可能に構成するのが好ましい。
A photoacoustic cell 1-4 is arranged below the light collector 1-2 or 2-5. The photoacoustic cell 1-4 has a sealed space 1-7 forming a sample chamber surrounded by a solid wall 1-5 forming a shielding plate made of metal or the like and an infrared transmitting material window 1-6. A sample substance 1-3 is placed in a sealed space 1-7, and a microphone 1-8 serving as a detector for obtaining a photoacoustic signal is provided. Microphone l-8 is directly connected to the sealed space l
-7, it may be arranged to be in spatial communication therewith via a suitable passage 1-16 for propagating elastic waves. Note that 1-9 is a lead wire from the microphone 1-8, which is connected to an electrical processing system (not shown). Moreover, it is preferable that the photoacoustic cell 1-4 is constructed so that it can be divided into halves so that the sample can be easily centrifuged.

上記のような光音響セル1−4内にセットした試料1−
3に、集光器1−2あるいは2−5で反射された光をl
 am径以下の大きさに集光し、赤外透過固体窓1−6
を通して照射する。赤外光を吸収した試f41−3は変
調周波数に応した熱を発生し、光音宙セルI−4内の気
体を伝送媒体として圧力波が伝達され、これをマイクロ
ホン1−8で検出し試料の微小域での赤外吸収スペクト
ルを光音響検出法で測定する。
Sample 1- set in the photoacoustic cell 1-4 as described above
3, the light reflected by the condenser 1-2 or 2-5 is
Infrared transmitting solid window 1-6 that condenses light to a size smaller than the am diameter
irradiate through. Test F41-3, which absorbed infrared light, generated heat corresponding to the modulation frequency, and a pressure wave was transmitted using the gas in photoacoustic space cell I-4 as a transmission medium, which was detected by microphone 1-8. The infrared absorption spectrum in a small region of the sample is measured using photoacoustic detection.

ここでw4微測定の空間的なサンプリング分解能は集光
器の精度で決まるが、それ以上の分解能が必要な時は、
集光器1−2あるいは2−5と光音ロセル1−4間に数
段階のアパチャー1−10を挿入し照射ビーム系を絞る
ことによって得る。アパチャー1−10は光束透過間口
径の異なる複数個の開口が連なった帯状のものであり、
そのうち測定に適した間口径のものを任意に選択できる
ように該帯状のものをスライド可能にした構造になって
いる。アパチャーの配置位置は図示のものに限られない
、また本実施例において、光音響試料セル1−4は平面
移動が可能なように、X−Yマイクロ・ステージ1−1
)に取付けられ、例えば付属マイクロゲージで手動によ
って、あるいはマイクロコンピュータ制御のモーター駆
動機構によってその二次元的移動が制御される。これに
より、例えば試料についである吸収特性バンドの空間的
分布の表示(マツピング)が可能となる。尚、X−Yマ
イクロ・ステージ1−1)の駆動機構は通常のものが使
用できるので特に示してない。
Here, the spatial sampling resolution of w4 micromeasurement is determined by the accuracy of the condenser, but when higher resolution is required,
This is obtained by inserting several stages of apertures 1-10 between the condenser 1-2 or 2-5 and the photoacoustic cell 1-4 to narrow down the irradiation beam system. The aperture 1-10 is a strip-shaped aperture in which a plurality of apertures having different diameters for transmitting light beams are connected.
The structure is such that the band-shaped parts are slidable so that one with a diameter suitable for measurement can be arbitrarily selected. The arrangement position of the aperture is not limited to that shown in the drawings, and in this embodiment, the photoacoustic sample cell 1-4 is placed on the X-Y microstage 1-1 so that it can be moved in a plane.
), and its two-dimensional movement is controlled, for example, manually with an attached microgauge or by a microcomputer-controlled motor drive mechanism. This makes it possible, for example, to display (map) the spatial distribution of absorption characteristic bands in a sample. Note that the drive mechanism for the X-Y microstage 1-1) is not particularly shown because a normal one can be used.

上記において測定点の位置決めは、試料観察用の切換鏡
1−12を図示のように旋回可能で必要に応じて光路途
中に挿入可能なように設けることによって可能になる。
In the above, positioning of the measurement point is made possible by providing the switching mirror 1-12 for sample observation so as to be rotatable as shown in the figure and insertable in the middle of the optical path if necessary.

例えば切換鏡1−12を半透鏡にしておいて、入射赤外
光束の光軸を通る赤外干渉光学系から来るガイド用レー
ザービームの試料上での照射点をモニター・スコープ1
−13で見ておこなう、すなわち、赤外分光光学系ない
し赤外干渉光学系と集光鏡1−2との間の光路内に一定
の角度で必要に応じて入れられるように可視光用半i3
鏡を設け、この可視光用半透鏡における試料像の反射方
向にもう一つの半透鏡1−14を挿入し、試料像の反射
方向で半透鏡1−14の透過方向に試料室1−7の内部
を照明するための光#、1−15を設置するとともに、
半i3鏡1−14の反射方向にモニター・スコープ1−
13を設置する゛。実際の♂II 定手順では、先ず切
換鏡1−12を光路中に入れ試料を観察しながら測定開
始点を設定した後、この切ta鏡1−12を測定光路か
ら外して所望の顕微赤外光音響測定をおこなう。
For example, by making the switching mirror 1-12 a semi-transparent mirror, the scope 1 monitors the irradiation point on the sample of the guide laser beam coming from the infrared interference optical system that passes through the optical axis of the incident infrared beam.
-13, that is, the visible light half is inserted at a certain angle into the optical path between the infrared spectroscopic optical system or the infrared interference optical system and the condenser mirror 1-2 as necessary. i3
A mirror is provided, and another semi-transparent mirror 1-14 is inserted in the direction in which the sample image is reflected by this visible light semi-transparent mirror, and the sample chamber 1-7 is inserted in the direction in which the sample image is reflected and in the transmission direction of the semi-transparent mirror 1-14. In addition to installing light #1-15 to illuminate the interior,
Monitor scope 1- in the reflection direction of semi-I3 mirror 1-14
Install 13゛. In the actual ♂II measurement procedure, first, the switching mirror 1-12 is placed in the optical path to set the measurement start point while observing the sample, and then the switching mirror 1-12 is removed from the measurement optical path to obtain the desired microscope infrared light. Perform photoacoustic measurements.

第2図に示される実施例は、入射赤外光束の高倍率集光
を可能にした装置構成のものである。実際的な装置では
、第1図に示された1枚の非球面鏡での集光では、光束
断面径縮少率で概そl/3程度が実用限界になり、より
高い縮少率を実現するには非球面鏡の複合が必要になる
。第2図に示される集光器2−5は、具体的には楕円面
鏡2−6と双極面鏡2−7との複合で構成されていて、
3次元収差が軽減された高縮少率1/22を実現してい
る。第2図に示される集光器2−5の具体的な非球面鏡
複台形式は他に幾つかあり、種々の形式の集光器が容易
に応用され得る。第2図に示される実施例について、赤
外干渉光学系ないし赤外分光光学系からの干渉光束ない
し単色光は、入射鏡2−1で平行光束に変換され、平面
鏡2−2で進行方向を曲げられた後に、比較的長い距離
を損失な(伝送される。平行光束は非球面鏡2−3で集
光されて、アパーチャー1−10で位置に焦点を結ぶよ
うに結像される。アパーチャーからの出射光は、高倍率
集光2S2−5に送られて、極めて小さな光束断面径を
もつ光束に集光されて光音否試料室l−7中に挿入され
た試料物質1−3上に投射される。集光器2−5の垂下
に光音響試料セル1−4が配置されている。光音響セル
I−4の構造は、第1図に示された実施例と基本的には
同様であり、例えば金属性の固体壁1−5と赤外透過材
窓1−6とで囲まれた試料室を成す密封空間5−7をを
し、この密封空間1−7中に試料物質1−3がおかれる
とともに検光音響信号を得るための検出器を成すマイク
ロフォン1−8が設けられている。
The embodiment shown in FIG. 2 has an apparatus configuration that enables high-magnification condensation of the incident infrared light flux. In a practical device, when condensing light with a single aspherical mirror shown in Figure 1, the practical limit of the beam cross-sectional diameter reduction rate is about 1/3, and a higher reduction rate is possible. This requires a combination of aspherical mirrors. Specifically, the condenser 2-5 shown in FIG. 2 is composed of a composite of an ellipsoidal mirror 2-6 and a dipole mirror 2-7.
It achieves a high reduction ratio of 1/22 with reduced three-dimensional aberrations. There are several other specific aspherical mirror multiple types of the condenser 2-5 shown in FIG. 2, and various types of condensers can be easily applied. In the embodiment shown in FIG. 2, the interference light flux or monochromatic light from the infrared interference optical system or the infrared spectroscopic optical system is converted into a parallel light flux by the input mirror 2-1, and the traveling direction is changed by the plane mirror 2-2. After being bent, it is transmitted over a relatively long distance without loss.The parallel light beam is condensed by an aspherical mirror 2-3 and imaged to be focused at a position at an aperture 1-10.From the aperture The emitted light is sent to the high-magnification condenser 2S2-5, where it is focused into a beam having an extremely small beam cross-sectional diameter, and is focused onto the sample material 1-3 inserted into the photoacoustic sample chamber l-7. A photoacoustic sample cell 1-4 is arranged under the condenser 2-5.The structure of the photoacoustic cell I-4 is basically the same as the embodiment shown in FIG. Similarly, for example, a sealed space 5-7 forming a sample chamber surrounded by a metallic solid wall 1-5 and an infrared transmitting material window 1-6 is provided, and a sample material is contained in this sealed space 1-7. A microphone 1-8 is provided which serves as a detector for obtaining an acoustic signal for analysis.

マイクロフォンl−8は弾性波の伝播通路1 ’−6を
介して試料室空間に連通している。尚l−98よ、マイ
クロフォンt−aからの光音響変換信号の電気的伝送線
であり、図には示されていない電気処理系に接続される
The microphone l-8 communicates with the sample chamber space via an elastic wave propagation path 1'-6. Note that 1-98 is an electrical transmission line for the photoacoustic conversion signal from the microphone ta, and is connected to an electrical processing system not shown in the figure.

光音IP jit 料セル1−4は、X−Yマイクロ・
ステージ1−1)に取付けられていて、マイクロゲージ
2−9によって手動的に、さらにコンピュータ制御のモ
ータ駆動機構2−8によって自動的に2次元的に任意に
走査される。従って、試#4物質の平面的分布測定が手
動または自動的に得られる。
Koon IP jit charge cell 1-4 is X-Y micro・
It is attached to a stage 1-1) and is arbitrarily scanned two-dimensionally manually by a micro gauge 2-9 and automatically by a computer-controlled motor drive mechanism 2-8. Therefore, planar distribution measurements of sample #4 material can be obtained manually or automatically.

測定点の位置決めは、試料観察用の切換鏡2−4を回に
示されるように必要に応じて光路途中に旋回して挿入す
ることによって行なわれる。光音響測定時には平面鏡が
置かれているがζ試料観察時にはレバー回転に連動され
て可視光用半i3鏡が挿入される。この半透鏡に対して
、その反射方向にはモニター・スコープ1−13が設置
され、その透過方向に試料室1−7の内部を照明するた
めの光[1−15が設置されている。第2図に示される
実施例では、試料物質表面を肉眼で直視するための実体
顕1ANU2−1o及びブラウン管上に画像を写し出す
ためのテレビ・カメラ2−1)が設置されている。
The measurement point is positioned by rotating and inserting the switching mirror 2-4 for sample observation into the optical path as required, as shown in FIG. During photoacoustic measurements, a plane mirror is placed, but when observing a ζ sample, a half-I3 mirror for visible light is inserted in conjunction with lever rotation. A monitor scope 1-13 is installed in the reflection direction of this semi-transparent mirror, and a light [1-15 for illuminating the inside of the sample chamber 1-7 is installed in the transmission direction. In the embodiment shown in FIG. 2, a stereoscopic microscope 1ANU2-1o for directly viewing the surface of a sample substance with the naked eye and a television camera 2-1 for projecting an image onto a cathode ray tube are installed.

実際の測定手順では、先ず切換鏡2−4を半透鏡の位置
にして、モニター・スコープ1−13で試料物質表面を
観察しながら測定開始点およびその測定に望まれる空間
分解能に適合したアパーチャー径を設定した後に、切換
鏡2−4を平面鏡の位置にして所望の顕微赤外光音響測
定が行われる。
In the actual measurement procedure, first, the switching mirror 2-4 is set to the semi-transparent mirror position, and while observing the surface of the sample material with the monitor scope 1-13, the aperture diameter is adjusted to the measurement starting point and the spatial resolution desired for the measurement. After setting, the desired microinfrared photoacoustic measurement is performed by setting the switching mirror 2-4 to the plane mirror position.

第2図に示された装置をフーリエ変換赤外分光光度計(
日本分光FT/IR−3)に付属して構成されたところ
の顕微光音響赤外分光装置によって測定された光音響吸
収スペクトル例を第3図。
The apparatus shown in Fig. 2 is equipped with a Fourier transform infrared spectrophotometer (
FIG. 3 shows an example of a photoacoustic absorption spectrum measured by a microphotoacoustic infrared spectrometer constructed as an accessory to JASCO Corporation FT/IR-3).

第4図(a及びb)に示す。第3図は、クリーンで金属
画面に微量の高分子膜が付着した試料の光音響赤外吸収
スペクトルであり、横軸波数(、J−10cm−1)に
対して光音響吸収強度を出力させたチャートである。高
分子材の赤外特性吸収バンドが明瞭に測定されている。
Shown in Figure 4 (a and b). Figure 3 shows the photoacoustic infrared absorption spectrum of a clean sample with a small amount of polymer film attached to the metal screen, and the photoacoustic absorption intensity is output against the horizontal axis wave number (J-10cm-1). This is a chart. The infrared characteristic absorption band of the polymer material is clearly measured.

第3図に示されたチャート紙には5本のスペクトルがa
bcdeの文字で区別されて重ね書きされている。それ
らはX−Yマイクロステージを100μm単位で順次走
査されて、測定起点における測定aから順に、100μ
m移動毎に、b −* c −e d −eの順で測定
された光音害赤外吸収スペクトルである。赤外特性吸収
バンド強度が赤外入射光束の照射位置によって系統的に
変化して行く様子が明瞭に認められる。即ち、金属面上
に付着した高分子材の空間的分布が明瞭に測定される。
The chart paper shown in Figure 3 has five spectra a
They are overwritten and distinguished by the characters bcde. They are sequentially scanned by the X-Y microstage in units of 100 μm, and in order from measurement a at the measurement starting point, 100 μm
This is a photoacoustic infrared absorption spectrum measured in the order b − * c − e d − e every m movement. It is clearly seen that the infrared characteristic absorption band intensity changes systematically depending on the irradiation position of the incident infrared beam. That is, the spatial distribution of the polymeric material deposited on the metal surface can be clearly measured.

第3図に示された赤外特性吸収バンドの中の1つ、例え
ば1245cI1)−’吸収バンドに着目して、そのバ
ンド強度をX軸およびY軸方向への移動距離に対してプ
ロットすると、第4図fatのようになる。
Focusing on one of the infrared characteristic absorption bands shown in FIG. 3, for example, the 1245cI1)-' absorption band, and plotting the band intensity against the moving distance in the X-axis and Y-axis directions, we get: It will look like Figure 4 fat.

即ち、第4図ta+はX−Yマイクロステージを2次元
(平面)走査して測定した時の光音響赤外吸収スペクト
ル強度の空間分布であり、試料物質である金属面上に付
着した高分子材の付着部分(分布)を明瞭に表現してい
る。第4図(blは、第4図(alをコンピュータ・シ
ステムの端末CRTに出力した画面であり、第4図+a
+と同じ内容を表現している。
That is, Fig. 4 ta+ is the spatial distribution of the photoacoustic infrared absorption spectrum intensity when measured by two-dimensional (plane) scanning with the The attachment area (distribution) of the material is clearly expressed. Figure 4 (bl is the screen outputting Figure 4 (al) to the terminal CRT of the computer system; Figure 4+a
Expresses the same content as +.

このように本発明で提供される顕微光音響赤外分光分析
法及びその装置例は、従来困難であった微小域での非破
壊赤外分光分析に有力な手法を提供するものである。
As described above, the microphotoacoustic infrared spectroscopy method and the example device thereof provided by the present invention provide an effective method for non-destructive infrared spectroscopy in a microscopic area, which has been difficult in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明による顕微光音響赤外分
光装置装置の例を示す一部切断側面図である。第3図は
マイクロ・ステージをX軸方向に自動送りさせて、その
笠間M !3動毎に測定された顕微光音響赤外吸収スペ
クトルの一例である。X軸方向に自動送りした時の該赤
外吸収スペクトルの吸収強度はa、b、c、d、eの順
に変化し、X軸方向に試料物質の濃度変化のあることが
明瞭に観測されている。第4図+alおよび第4図(b
lは、第3図に示された顕微光音響赤外吸収スペクトル
において、例えば1245cm−’近傍の吸収バンド強
度に着目して、X−Y軸方向の移動距離に対して該吸収
バンド強度を記録紙上及びコンピュータシステムのCR
7画面上1の出力させたものである。 1−1  赤外干渉光学系または分光光学系からの干渉
光束または単色光束 1−2 非球面集光鏡 1−3  試料物質 1−4  光音響セル 1−5  固体鏡 1−6 赤外透過材窓 1−7 1射突間(試料室) 1−8  光音響変換検知器 1−9 光音響変換信号伝送ケーブル 1−10 入射光束断面制限器(アパーチャー)1−1
I  X−’Yマイクロ・ステージ1−12 試料観察
用切換鏡 1−13 モニター・スコープ(実体顕微鏡またはテレ
ビ・カメラ) 1−14 固定半i3鏡 1−15 試料観察用照明光源 1−16 弾性波伝播路 2−1  干渉光または単色先入射鏡 2−2 平面鏡 2−3 非球面鏡 2−4 赤外光束入射光路と試料観察光路との切換機構 2 5  Burch型高倍率型光倍 率集光器2円面鏡 2−7 双極面鏡 2−8 自動送り機構(ステンビング・モータおよびシ
フト・ダウン・ギア) 2−9 手動送りマイクロ・ゲージ(X軸、Y軸及びZ
軸連結) 2−10  テレビ・カメラ 2−1) 実体顕微鏡 出   願   人   日本分光工業株式会社代  
   理     人     丸    山    
幸    雄笠  1  図 第  3シ1 一―%p替磁幅襖 第   4   図  ((1) X蛇r頗n#動距鼠
1 and 2 are partially cutaway side views showing an example of a microphotoacoustic infrared spectroscopy apparatus according to the present invention. Figure 3 shows the Kasama M! by automatically moving the micro stage in the X-axis direction. This is an example of a microphotoacoustic infrared absorption spectrum measured every three movements. The absorption intensity of the infrared absorption spectrum when automatically fed in the X-axis direction changes in the order of a, b, c, d, and e, and it is clearly observed that there is a concentration change of the sample substance in the X-axis direction. There is. Figure 4+al and Figure 4(b)
In the microphotoacoustic infrared absorption spectrum shown in FIG. 3, for example, focusing on the absorption band intensity near 1245 cm-', record the absorption band intensity against the moving distance in the X-Y axis direction. CR on paper and computer systems
This is the output of 1 on the 7 screen. 1-1 Interference light flux or monochromatic light flux from an infrared interference optical system or spectroscopic optical system 1-2 Aspherical condenser mirror 1-3 Sample substance 1-4 Photoacoustic cell 1-5 Solid mirror 1-6 Infrared transmitting material Window 1-7 Single shot projection (sample chamber) 1-8 Photoacoustic conversion detector 1-9 Photoacoustic conversion signal transmission cable 1-10 Incident beam cross-section limiter (aperture) 1-1
I Propagation path 2-1 Interference light or monochromatic first incident mirror 2-2 Plane mirror 2-3 Aspherical mirror 2-4 Switching mechanism between infrared beam incidence optical path and sample observation optical path 2 5 Burch type high magnification type light magnification condenser 2 Circular mirror 2-7 Bipolar mirror 2-8 Automatic feed mechanism (stenbing motor and shift down gear) 2-9 Manual feed micro gauge (X-axis, Y-axis and Z-axis)
Shaft connection) 2-10 Television/Camera 2-1) Stereo microscope Applicant: JASCO Corporation representative
Professor Maruyama
Sachi Yukasa 1 Figure 3 1 1-%p replacement magnetic width sliding door Figure 4 ((1)

Claims (6)

【特許請求の範囲】[Claims] (1)赤外干渉光学系ないし分散型赤外分光光学系より
出た干渉光束または単色光束を一組の赤外域集光器で1
mm径以下に集光し、弾性波検知素子(例えば、マイク
ロフォンや圧電素子等)に通じ且つ例えば金属のような
固体壁と赤外透過材窓で囲まれる密封空間を形成した光
音響試料セル中においた試料物質に、その集光光束を照
射し、1mm径以下の微小域での赤外スペクトルを赤外
光音響検出法で測定することを特徴とする赤外分光分析
法。
(1) The interference light flux or monochromatic light flux emitted from the infrared interference optical system or the dispersive infrared spectroscopic optical system is collected by a set of infrared concentrators.
In a photoacoustic sample cell that focuses light to a diameter of mm or less, communicates with an acoustic wave detection element (e.g., a microphone, a piezoelectric element, etc.), and forms a sealed space surrounded by a solid wall such as metal and an infrared transmitting window. 1. An infrared spectroscopic analysis method characterized by irradiating a sample substance that has a smell with the condensed light beam, and measuring an infrared spectrum in a micro region with a diameter of 1 mm or less using an infrared photoacoustic detection method.
(2)赤外干渉光学系ないし分散型赤外分光光学系より
出た干渉光束または単色光光束を1mm径以下に集光す
る1組の赤外域集光器、例えば金属のような固体壁と赤
外透過材窓で囲まれる密封空間を形成した光音響試料セ
ル、該光音響試料セル中においた試料物質、及び光音響
試料セルの密封空間に通じた弾性波検知素子(例えばマ
イクロホンや圧電素子等)を備え、上記集光光束を試料
物質に照射し1mm径以下の微小域での赤外スペクトル
を光音響検出法で測定することを特徴とする顕微光音響
赤外分光分析装置。
(2) A set of infrared concentrators that condense the interference light flux or monochromatic light flux emitted from the infrared interference optical system or the dispersive infrared spectroscopic optical system into a diameter of 1 mm or less, such as a solid wall such as a metal. A photoacoustic sample cell forming a sealed space surrounded by an infrared transmitting material window, a sample substance placed in the photoacoustic sample cell, and an elastic wave detection element (e.g., a microphone or a piezoelectric element) that communicates with the sealed space of the photoacoustic sample cell. etc.), and measures an infrared spectrum in a micro region with a diameter of 1 mm or less by a photoacoustic detection method by irradiating a sample substance with the above-mentioned condensed light beam.
(3)上記光音響試料セルをX−Y軸の2次元移動マイ
クロ・ステージにのせ、該マイクロ・ステージを手動(
例えばマイクロ・ゲージ)あるいは外付のモータ駆動(
例えば、コンピュータ制御のパルス・モータによる駆動
機構)によって移動させ、試料平面上の各微小域の光音
響赤外分光測定を可能としたことを特徴とする特許請求
の範囲第2項記載の顕微光音響赤外分光分析装置。
(3) Place the photoacoustic sample cell on a two-dimensional moving microstage along the X-Y axes, and move the microstage manually (
e.g. micro gauge) or external motor drive (
The microscopic light according to claim 2, wherein the microscopic light is moved by a drive mechanism using a computer-controlled pulse motor (for example, a drive mechanism using a computer-controlled pulse motor), thereby enabling photoacoustic infrared spectroscopy measurement of each microscopic area on a sample plane. Acoustic infrared spectrometer.
(4)上記集光器を一枚の非球面鏡あるいは一組の複合
非球面鏡集光器としたことを特徴とする特許請求の範囲
第2項記載の顕微光音響赤外分光分析装置。
(4) The microphotoacoustic infrared spectrometer according to claim 2, wherein the condenser is a single aspherical mirror or a set of composite aspherical mirror condensers.
(5)上記赤外分光光学系ないし赤外干渉光学系と集光
器との間の光路内に一定の角度で必要に応じて入れられ
るようにした可視光用ハーフミラーを設け、この可視光
用ハーフミラーに対して試料像の反射または透過方向に
直視用モニタースコープを設置し、且つその透過または
反射方向に、即ちハーフ・ミラーに対して該モニター・
スコープの設置方向に対称な方向の位置に光音響試料セ
ル内部を照明するための可視光源を設置したことを特徴
とする特許請求の範囲第2項記載の顕微光音響赤外分光
分析装置。
(5) A visible light half mirror that can be inserted at a certain angle as needed in the optical path between the infrared spectroscopic optical system or infrared interference optical system and the condenser is provided, and the visible light A direct viewing monitor scope is installed in the reflection or transmission direction of the sample image with respect to the half mirror, and the monitor scope is placed in the transmission or reflection direction, that is, with respect to the half mirror.
3. The microphotoacoustic infrared spectrometer according to claim 2, further comprising a visible light source for illuminating the inside of the photoacoustic sample cell at a position symmetrical to the installation direction of the scope.
(6)赤外分光光学系ないし赤外干渉光学系を近赤外領
域(12000−4000cm^−^1)、中赤外領域
(4800−400cm^−^1)および遠赤外領域(
650−10cm^−^1)とする特許請求の範囲第2
項記載の顕微光音響赤外分光分析装置。
(6) Infrared spectroscopic optical system or infrared interference optical system in near-infrared region (12000-4000cm^-^1), mid-infrared region (4800-400cm^-^1) and far-infrared region (
650-10cm^-^1) Claim 2
The microphotoacoustic infrared spectrometer described in 1.
JP61152300A 1986-06-28 1986-06-28 Microscope photoacoustic infrared spectroscopic analysis method and apparatus Pending JPS638551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61152300A JPS638551A (en) 1986-06-28 1986-06-28 Microscope photoacoustic infrared spectroscopic analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61152300A JPS638551A (en) 1986-06-28 1986-06-28 Microscope photoacoustic infrared spectroscopic analysis method and apparatus

Publications (1)

Publication Number Publication Date
JPS638551A true JPS638551A (en) 1988-01-14

Family

ID=15537508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61152300A Pending JPS638551A (en) 1986-06-28 1986-06-28 Microscope photoacoustic infrared spectroscopic analysis method and apparatus

Country Status (1)

Country Link
JP (1) JPS638551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288101A (en) * 2008-05-29 2009-12-10 Mitsubishi Heavy Ind Ltd Ultrasonic inspection device, and nondestructive inspection method of nuclear power plant
CN112945851A (en) * 2021-01-29 2021-06-11 大连理工大学 Device capable of reducing external interference and detachably fixing photoacoustic cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365718A (en) * 1976-11-23 1978-06-12 Ibm Sound wave generator
JPS57161517A (en) * 1981-03-31 1982-10-05 Toshiba Corp Optoacoustic spectrum measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365718A (en) * 1976-11-23 1978-06-12 Ibm Sound wave generator
JPS57161517A (en) * 1981-03-31 1982-10-05 Toshiba Corp Optoacoustic spectrum measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288101A (en) * 2008-05-29 2009-12-10 Mitsubishi Heavy Ind Ltd Ultrasonic inspection device, and nondestructive inspection method of nuclear power plant
CN112945851A (en) * 2021-01-29 2021-06-11 大连理工大学 Device capable of reducing external interference and detachably fixing photoacoustic cell
CN112945851B (en) * 2021-01-29 2023-10-13 大连理工大学 Device for reducing external interference and detachably fixing photoacoustic cell

Similar Documents

Publication Publication Date Title
US4195930A (en) Optical Raman microprobe with laser
US4411525A (en) Method of analyzing an object by use of scattering light
EP0458601B1 (en) Method of and apparatus for measuring spectral absorption in opaque specimens and method of and apparatus for measuring microscopic absorption distribution
US4594509A (en) Infrared spectrometer
US6274871B1 (en) Method and system for performing infrared study on a biological sample
JPH0226177B2 (en)
US7595873B1 (en) Rapid spatial averaging over an extended sample in a Raman spectrometer
CN104698068B (en) High-spatial resolution laser biaxial differential confocal spectrum-mass spectrometry microimaging method and device
JP5116014B2 (en) Small-angle wide-angle X-ray measurement system
US20050069090A1 (en) Optical alignment of X-ray microanalyzers
CN111175282A (en) Raman spectrometer based on objective signal acquisition
JPS6315793Y2 (en)
JPS6342211B2 (en)
CN111855639B (en) Spectrum acquisition system and spectrum acquisition method
HUT62098A (en) Method for testing transparent and/or reflective objects placed in the near filed by means of microscope, as well as scanning microscope
CN115046933B (en) Micro-area circular dichroism spectrum and circular polarized luminescence testing device
CN208188021U (en) MICRO-BEAM XRF ANALYSIS system based on X-ray array combination refractor
JPS638551A (en) Microscope photoacoustic infrared spectroscopic analysis method and apparatus
CA2596076A1 (en) Method and apparatus for variable-field illumination
JPH11511587A (en) Precisely controlled slit mechanism for electron microscope
US3446562A (en) Apparatus for photometric analysis
KR102077071B1 (en) Inspection module and inspection apparatus for agricultural products and livestock products
JP2001174708A (en) Infrared microscope
JPH0427844A (en) Method and apparatus for measuring microscopic absorption distribution of opaque sample
JP3597887B2 (en) Scanning optical tissue inspection system