JPS6385327A - Light pulse tester - Google Patents

Light pulse tester

Info

Publication number
JPS6385327A
JPS6385327A JP23191186A JP23191186A JPS6385327A JP S6385327 A JPS6385327 A JP S6385327A JP 23191186 A JP23191186 A JP 23191186A JP 23191186 A JP23191186 A JP 23191186A JP S6385327 A JPS6385327 A JP S6385327A
Authority
JP
Japan
Prior art keywords
light
acousto
optical fiber
measured
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23191186A
Other languages
Japanese (ja)
Inventor
Yukihisa Setoriyama
世取山 幸寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP23191186A priority Critical patent/JPS6385327A/en
Publication of JPS6385327A publication Critical patent/JPS6385327A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To enhance the response characteristic of an acousto-optical switch, to shorten a dead zone when mask operation is performed and to enhance accuracy, by condensing the return light from the interior of an optical fiber to be measured to introduce the same into an acousto-optical element. CONSTITUTION:The light pulse from a light source 31 is allowed to be incident to an acousto-optical element 21 by a lens 23 through an optical fiber 22 and allowed to pass through a lens 26 to be incident to the optical fiber 27 and optical connector 32 in machinery and the optical fiber 33 to be measured outside the machinery. At this time, Fresnel reflected light due to a break point returned from the optical fiber 33 to be measured is converged to the center in the acousto-optical element 21 through the lens 26. Further, light is deflected by applying an ultrasonic wave to be received by light receiving systems 28, 29, 34. By this method, the response characteristic of the acousto-optical element can be enhanced and a dead zone when mask operation is performed is shortened to make it possible to enhance measuring accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば被測定光ファイバの破断点探索及び単
位長さ当りの損失、被測定光ファイバ同志の接続損失等
を測定する音響光学スイッチを用いた光パルス試験器の
改良に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an acousto-optic switch that searches for a break point in an optical fiber to be measured, measures loss per unit length, splice loss between optical fibers to be measured, etc. This paper relates to the improvement of an optical pulse tester using

(従来の技術) 従来から被測定光ファイバの破断点等を検索するための
測定機器が開発されている。この機器の測定原理は、第
5図に示すように光パルス発光源(以下、光源と指称す
る)1から送出した光パルスを方向性結合器2の内部で
直進させて被測定光ファイバ3に入射し、このとき被測
定光ファイバ3の後方レイリー散乱および破断点あるい
は光コネクタ等による接続端で生じるフレネル反射など
の散乱光や反射光すなわち、戻り光が被測定光ファイバ
3を通って戻ってくる。この戻り光は被測定光ファイバ
3から戻って方向性結合器2に入り、ここで入射光路と
分離されて受光系4で受光されることになる。従って、
この測定原理は光パルスの送出時から戻り光の受光時ま
での時間差を測定し被測定光ファイバ3の破断点、接続
端、単位長さ当りの損失等を標定するものである。
(Prior Art) Measuring instruments for searching for break points and the like in optical fibers to be measured have been developed. The measurement principle of this device is that, as shown in Fig. 5, a light pulse sent out from a light pulse emission source (hereinafter referred to as a light source) 1 is made to travel straight inside a directional coupler 2 and then connected to an optical fiber 3 to be measured. At this time, scattered light such as backward Rayleigh scattering of the optical fiber 3 to be measured and Fresnel reflection occurring at the break point or the connection end of an optical connector, etc., or reflected light, that is, return light, returns through the optical fiber 3 to be measured. come. This returned light returns from the optical fiber 3 to be measured and enters the directional coupler 2, where it is separated from the incident optical path and is received by the light receiving system 4. Therefore,
The principle of this measurement is to measure the time difference from the time of sending out the optical pulse to the time of receiving the returned light, and to locate the break point, connection end, loss per unit length, etc. of the optical fiber 3 to be measured.

ところで、従来、前記方向性結合器2として、第6図に
示すようなビームスプリッタまたはハーフミラ−2aを
用いたもの、あるいは第7図に示すような光偏向機能を
持つ音響光学スイッチ2bを用いたものがある。但し、
音響光学スイッチ2bには音響光学素子とトランスジュ
ーサとを含むものとする。
By the way, conventionally, as the directional coupler 2, a beam splitter or a half mirror 2a as shown in FIG. 6 was used, or an acousto-optic switch 2b having an optical deflection function as shown in FIG. 7 was used. There is something. however,
It is assumed that the acousto-optic switch 2b includes an acousto-optic element and a transducer.

(発明が解決しようとする問題点) しかし、前者のビームスプリッタ−またはハーフミラ−
2aを用いたものは、光源1からの光パルスがビームス
プリッタ−等を通過する際に図示点線矢印(イ)方向に
3dB程度の反射損失を生じ、同様に被測定ファイバ3
内部から戻ってくる反射光も3dB程度の透過損失を生
じる。従って、全体として6dB程度の損失が有り、こ
のためダイナミックレンジを広くとることができない。
(Problem to be solved by the invention) However, the former beam splitter or half mirror
2a, when the optical pulse from the light source 1 passes through a beam splitter etc., a reflection loss of about 3 dB occurs in the direction of the dotted arrow (A) in the figure, and similarly, the fiber under test 3
Reflected light returning from inside also causes a transmission loss of about 3 dB. Therefore, there is a loss of about 6 dB as a whole, and therefore a wide dynamic range cannot be achieved.

つまり、被測定光ファイバ3の測定距離が長くなるにつ
れて反射光の受光レベルが減衰し、かつ、これに6dB
の損失があると実質的な1l11定可能距離が短くなっ
てしまう。また、第8図は被測定光ファイバ中に破断点
あるいは接続端等のフレネル反射を生じる部分が存在し
た場合のもので、破断点等の近傍における後方散乱光と
フレネル反射光の受光レベルを示したものである。この
図から明らかなように、被測定光ファイバ3のある部分
に第1の破断点等(ロ)が有るとこの部分から強いフレ
ネル反射が生じ、このフレネル反射光により受光系4が
飽和状態となり、このため送信光パルスが消失した場合
でも電気的な裾引きが生じ、いわゆるデッドゾーン(D
ead  Zone)と称する測定不能距離を作り出し
、後方に存在する第2の破断点等(ハ)を高精度に測定
できない問題点がある。同様に7Ill定器と被測定光
ファイバとの光コネクタの接続部分においてもフレネル
反射が生じ、デッドゾーンが生じる問題がある。
In other words, as the measurement distance of the optical fiber 3 to be measured becomes longer, the received level of the reflected light is attenuated, and the level of the received reflected light is attenuated by 6 dB.
If there is a loss, the actual distance that can be determined by 1l11 will be shortened. Figure 8 shows the case where there is a break point or a part that causes Fresnel reflection, such as a connection end, in the optical fiber to be measured, and shows the received level of backscattered light and Fresnel reflected light in the vicinity of the break point, etc. It is something that As is clear from this figure, if there is a first break point (b) in a certain part of the optical fiber 3 to be measured, strong Fresnel reflection will occur from this part, and this Fresnel reflected light will saturate the light receiving system 4. Therefore, even if the transmitted optical pulse disappears, electrical trailing occurs, creating the so-called dead zone (D
There is a problem in that it creates an unmeasurable distance called "ead zone" and makes it impossible to measure the second breaking point etc. (c) located at the rear with high precision. Similarly, there is a problem in that Fresnel reflection occurs at the connection portion of the optical connector between the 7Ill meter and the optical fiber to be measured, resulting in a dead zone.

一方、後者の音響光学スイッチを用いたモジュールは、
具体的には第9図に示すように3ポートを持った音響光
学スイッチ2bが使用され、光源11、光ファイバ12
およびレンズ13より成る光パルス送出系から平行光束
を出射して音響光学スイッチ2bに入射する。このとき
、超音波非印加時つまり音響光学スイッチ2bのオフ時
、前記平行光束は音響光学スイッチ2bの内部を直進し
レンズ14を通って機器内部の光ファイバ15に入射さ
れる。この直進光は光ファイバ15を通って当該機器外
部の被測定光ファイバ(図示せず)に入射され、あるい
は光ファイバ15を用いずに光コネクタ等により直接波
測定光ファイバを接続させることも可能である。被測定
光ファイバの後方散乱光と破断点あるいは接続端等で生
じるフレネル反射光が戻ってくる被測定光ファイバに破
断点等があればその箇所より後方散乱やフレネル反射が
生じて反射光が戻ってくる。このとき、音響光学スイッ
チ用駆動部16およびトランスジューサ17を用いて音
響光学スイッチ2bに超音波を印加すると、前記被測定
光ファイバ内部から戻ってきた反射光は音響光学スイッ
チ2bによって偏向され、レンズ18.光ファイバ19
および受光器(図示せず)等から成る受光系で受光され
る。
On the other hand, the latter module using an acousto-optic switch is
Specifically, as shown in FIG. 9, an acousto-optic switch 2b with three ports is used, and a light source 11, an optical fiber 12
A parallel light beam is emitted from a light pulse sending system consisting of a lens 13 and a lens 13, and enters the acousto-optic switch 2b. At this time, when no ultrasonic waves are applied, that is, when the acousto-optic switch 2b is off, the parallel light beam travels straight through the acousto-optic switch 2b, passes through the lens 14, and enters the optical fiber 15 inside the device. This straight light passes through the optical fiber 15 and enters an optical fiber to be measured (not shown) outside the device, or it is also possible to connect the direct wave measurement optical fiber with an optical connector or the like without using the optical fiber 15. It is. Backscattered light of the optical fiber under test and Fresnel reflected light generated at a break point or connection end return.If there is a break point in the optical fiber to be measured, backscattered light or Fresnel reflection occurs from that point, and the reflected light returns. It's coming. At this time, when ultrasonic waves are applied to the acousto-optic switch 2b using the acousto-optic switch driver 16 and the transducer 17, the reflected light returning from inside the optical fiber to be measured is deflected by the acousto-optic switch 2b, and the lens 18 .. optical fiber 19
The light is received by a light receiving system consisting of a light receiver (not shown), and a light receiver (not shown).

ところで、この音響光学スイッチ2bを用いたものは、
ビームスプリッタ等2aの場合に生じる受光系4の飽和
状態を無くすために、フレネル反射光等の生じるタイミ
ング(すなわち、通常の後方散乱光よりも強く、受光系
を飽和させる光の生じるタイミング)見計らって音響光
学スイッチ2bの光路を一時的に切り換えて反射光を受
光しないようにするマスク制御手段が採用されている。
By the way, the one using this acousto-optic switch 2b is
In order to eliminate the saturation state of the light receiving system 4 that occurs in the case of the beam splitter 2a, etc., the timing of occurrence of Fresnel reflected light, etc. (that is, the timing of occurrence of light that is stronger than normal backscattered light and saturates the light receiving system) is carefully selected. A mask control means is employed that temporarily switches the optical path of the acousto-optic switch 2b so that reflected light is not received.

しかし、このようなマスク制御手段を採用したものは、
音響光学スイッチ2bの応答特性が問題となってくる。
However, those that adopt such mask control means,
The response characteristics of the acousto-optic switch 2b become a problem.

因みに、音響光学スイッチ2bの応答時間つまり立上り
時間t「および立下り時間trは次式で表わすことがで
きる。
Incidentally, the response time, that is, the rise time t' and the fall time tr of the acousto-optic switch 2b can be expressed by the following equation.

tr、tr−α(ω0/■)   ・・・(1)但し、
αは媒質による比例定数、ω0は光ビーム径、■は媒質
中の音速である。従って、媒質が決まるとα、■が決ま
り、tr、trはω0に依存することになる。しかし、
従来のこの種の装置においては試験を行う観点から平行
光束を用いて戻り光を測定しているが、この平行光束で
は光ビーム径ω0が大きく、音響光学スイッチ2bの立
上り時間tr、立下り時間trが遅い。その結果、11
JII定光フアイバからの戻り光の受光タイミング時に
受光系の受光を無くするマスク動作を行うと、第10図
に示すようにマスクによる受光系側の立上り(ニ)およ
び立下り(ホ)の受光レベルが緩慢な点線曲線となり、
デートゾーンが長くなって前述と同様に第2の破断点等
(ハ)を高精度に検索できない問題点がある。
tr, tr-α(ω0/■)...(1) However,
α is a proportionality constant depending on the medium, ω0 is the optical beam diameter, and ■ is the speed of sound in the medium. Therefore, once the medium is determined, α and ■ are determined, and tr and tr depend on ω0. but,
In conventional devices of this type, the returned light is measured using a parallel light beam from the viewpoint of testing, but in this parallel light beam, the light beam diameter ω0 is large, and the rise time tr and fall time of the acousto-optic switch 2b are tr is slow. As a result, 11
When a mask operation is performed to eliminate light reception by the light receiving system at the timing of receiving the return light from the JII constant light fiber, the rising (d) and falling (e) light receiving levels on the light receiving system side due to the mask are as shown in Figure 10. becomes a slow dotted curve,
As the date zone becomes longer, there is a problem that the second breaking point etc. (c) cannot be searched with high precision as described above.

本発明は上記実情に鑑みてなされたもので、音響光学ス
イッチの応答特性を向上させ得るとともに、マスク動作
を行ったときのデッドゾーンを短くして所要とする測定
を高精度に行う光パルス試験器を提供することを目的と
する。
The present invention has been made in view of the above-mentioned circumstances, and is capable of improving the response characteristics of an acousto-optic switch, as well as a light pulse test that shortens the dead zone when performing a mask operation and performs required measurements with high precision. The purpose is to provide equipment.

(問題点を解決するための手段) 本発明による光パルス試験器は、光パルス発光源から送
出された光パルスをレンズで平行光束光に変換して出力
する光パルス送出系と、この光パルス送出系か、ら出力
された光束の直進方向に設けられた被測定光ファイバと
、この被AD1定光ファイバと前記第1のレンズの間に
配置され、超音波非印加時に前記光束を直進させ、超音
波印加時に前記被測定光ファイバから戻ってくる戻り光
を偏向して取出す音響光学スイッチと、この音響光学ス
イッチと前記被測定光ファイバの間で、かつ、被測定光
ファイバから出射された反射光が音響光学スイッチの内
部で集光するような位置に配置させたレンズと、前記音
響光学スイッチにより偏向された戻り光を受光する受光
系とを備え、前記レンズの集光作用により前記音響光学
スイッチの応答時間を速くしてデッドゾーンを短くする
ものである。
(Means for Solving the Problems) The optical pulse tester according to the present invention includes an optical pulse sending system that converts an optical pulse sent from an optical pulse emission source into a parallel beam of light using a lens, and outputs the parallel beam of light, and this optical pulse an optical fiber to be measured that is provided in a direction in which the light flux outputted from the transmission system travels straight; and an optical fiber to be measured that is disposed between the AD1 constant optical fiber and the first lens, and causes the light flux to travel straight when no ultrasound is applied; an acousto-optic switch that deflects and extracts the return light that returns from the optical fiber to be measured when applying ultrasonic waves, and a reflection emitted from the optical fiber to be measured between the acousto-optic switch and the optical fiber to be measured; A lens disposed at a position such that light is focused inside the acousto-optic switch, and a light receiving system that receives return light deflected by the acousto-optic switch, and the acousto-optic This speeds up the response time of the switch and shortens the dead zone.

(作用) 従って、以上のような手段とすることにより、被all
定光ファイバ内部から戻ってくる戻り光をレンズで集光
させて音響光学素子に導入すれば、音響光学スイッチの
応答時間が速くなり、このため被測定光ファイバ内部の
破断点等で生じる反射光が音響光学スイッチに到達する
タイミングを見計らって受光系への受光を停止するマス
ク動作を行ってもそのマスク動作完了後に速やかに本来
の戻り光レベルに戻りデッドゾーンを短くすることがで
きる。
(Operation) Therefore, by using the above-mentioned means, all
If the return light that returns from inside the constant optical fiber is focused by a lens and introduced into the acousto-optic element, the response time of the acousto-optic switch will be faster, and the reflected light generated at the break point inside the optical fiber to be measured will be reduced. Even if a masking operation is performed to stop light reception to the light receiving system at the timing when the light reaches the acousto-optic switch, the return light level can be quickly returned to the original level after the completion of the masking operation, and the dead zone can be shortened.

(実施例) 以下、本発明の一実施例について第1図及び第2図を参
照して説明する。第1図は本発明による光パルス試験器
の概略構成図、第2図はレンズによる集光作用を説明す
る図である。これらの図で音響光学素子21.トランス
デユーサ24を合せて音響光学スイッチと呼び、ここで
の音響光学スイッチは3ポートを持っている。その1つ
のポート側には光パルス送出系つまり光源(図示せず)
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram of the configuration of an optical pulse tester according to the present invention, and FIG. 2 is a diagram illustrating the light focusing effect of a lens. In these figures, the acousto-optic element 21. The transducer 24 is collectively called an acousto-optic switch, and the acousto-optic switch here has three ports. On the one port side is an optical pulse sending system, that is, a light source (not shown).
.

光ファイバ22およびレンズ23等が配置され、光源か
ら送出した光パルスが光ファイバ22およびレンズ23
の順序で通って音響光学素子21に入射される。なお、
光ファイバ22を用いずに光源から送出された光パルス
を直接レンズ23により音響光学素子21に入射させる
ことも可能である。
An optical fiber 22, a lens 23, etc. are arranged, and the optical pulse sent from the light source is transmitted through the optical fiber 22 and the lens 23.
The light passes in this order and enters the acousto-optic element 21. In addition,
It is also possible to make the optical pulse sent out from the light source directly enter the acousto-optic element 21 through the lens 23 without using the optical fiber 22.

前記音響光学素子21にはトランスデユーサ24および
音響光学素子用駆動部25が接続され、この駆動部25
から高周波信号を出力してトランスデユーサ24を駆動
して音響光学索子21に超音波を印加するようになって
いる。この駆動部25およびトランスデユーサ24によ
る音響光学素子21の駆動は通常50%のデユーティで
行う。
A transducer 24 and an acousto-optic element drive unit 25 are connected to the acousto-optic element 21, and the drive unit 25
A high frequency signal is output from the transducer 24 to drive the transducer 24 and apply ultrasonic waves to the acousto-optic cable 21. The driving section 25 and the transducer 24 drive the acousto-optic element 21 with a duty of 50%.

この音響光学素子21への超音波非印加時、光パルス送
出系からの光束は音響光学素子21の内部を直進して別
のポートより出射される。このポートから出射された光
束の直進方向にはレンズ26、機器内部の光ファイバ2
7および機器外部の被測定光ファイバ(図示せず)の順
序で配置されている。従って、当該ポートから出射され
た光束はレンズ26を通って光ファイバ27及び機器外
部の被測定光ファイバに入射される。なお、本発明機器
においてはレイズとファイバの位置関係が重要なポイン
トである。しかし、光コネクタ等により披4Ilj定光
ファイバとレンズの位置関係が第2図(b)を再現する
ことが可能であれば機器内部のファイバ27はなくても
よい。
When no ultrasonic waves are applied to the acousto-optic element 21, the light beam from the optical pulse sending system travels straight through the acousto-optic element 21 and is emitted from another port. In the straight direction of the light beam emitted from this port, there is a lens 26 and an optical fiber 2 inside the device.
7 and an optical fiber to be measured (not shown) outside the device. Therefore, the light beam emitted from the port passes through the lens 26 and enters the optical fiber 27 and the optical fiber to be measured outside the device. In addition, in the device of the present invention, the positional relationship between the laser beam and the fiber is an important point. However, if the positional relationship between the fixed optical fiber and the lens can be reproduced as shown in FIG. 2(b) using an optical connector or the like, the fiber 27 inside the device may be omitted.

一方、音響光学素子21への超音波印加時、被測定光フ
ァイバからの反射光は超音波の印加によって偏向されて
更に他の別ポートから出射され、レンズ28.光ファイ
バ29および受光器(図示せず)で受光されるようにな
っている。
On the other hand, when applying ultrasonic waves to the acousto-optic element 21, the reflected light from the optical fiber to be measured is deflected by the application of the ultrasonic waves and is further emitted from another port, and is emitted from the lens 28. The light is received by an optical fiber 29 and a light receiver (not shown).

次に、前記レンズ26の配置位置について第2図を参照
して説明する。レンズの焦点距離をfとすると、一般的
には (1/A)+ (1/B)−1/f  ・・・(2)で
表わせる。ところで、従来の機器では第2図に示すよう
に、光ファイバ27から出射された反射光はレンズ26
で平行光束に変換されて音響光学素子21に導入されて
いる(第9図−参照)。従って、光ファイバ27とレン
ズ26の位置関係は(2)式においてB−oo(平行光
束光)であり、A−aとすればf−aとなる。このこと
は光ファイバ27とレンズ26との距離は常にレンズ2
6の焦点距離にある。
Next, the arrangement position of the lens 26 will be explained with reference to FIG. 2. If the focal length of the lens is f, it can generally be expressed as (1/A)+(1/B)-1/f (2). By the way, in conventional equipment, as shown in FIG. 2, the reflected light emitted from the optical fiber 27 passes through the lens 26.
The light is converted into a parallel light beam and introduced into the acousto-optic element 21 (see FIG. 9). Therefore, the positional relationship between the optical fiber 27 and the lens 26 is B-oo (parallel light beam) in equation (2), and if A-a, then fa. This means that the distance between the optical fiber 27 and the lens 26 is always
It has a focal length of 6.

これに対し、第2図(b)に示すように光ファイバ27
とレンズ26の距離を移動させた場合、tl/ (a+
δa)l + (1/b)=1/a・・・・・・・・・
・・・・・・(3)となり、この式からbについて解く
と、b−(a2/δa)+a      −(4)とな
る。このことはδaの値を変えればレンズ  。
On the other hand, as shown in FIG. 2(b), the optical fiber 27
When the distance between the lens 26 and the lens 26 is moved, tl/(a+
δa)l + (1/b)=1/a・・・・・・・・・
...(3), and when this equation is solved for b, it becomes b-(a2/δa)+a-(4). This means that if you change the value of δa, you can change the lens.

26を用いて戻り光の集束位置を任意に設定することが
できる。従って、本発明機器は以上のような説明に基づ
いて反射光が音響光学索子21の内部で集光するような
位置にレンズ26を配置し、(1)式の光ビーム径ω0
を小さくするものである。
26 can be used to arbitrarily set the focusing position of the returned light. Therefore, based on the above explanation, the device of the present invention arranges the lens 26 at a position where the reflected light is focused inside the acousto-optic cable 21, and sets the light beam diameter ω0 in equation (1).
This is to make the size smaller.

従って、以上のような実施例の構成であれば、被測定光
ファイバから戻ってくる戻り光を音響光学素子21の内
部で集光するような位置にレンズ26を設定した後、第
3図に具体的に示すように光源31から光パルスを送出
すると光ファイバ22を通ってレンズ23により音響光
学素子21に入射される。この光束は超音波非印加時に
音響光学索子21の内部を直進してレンズ26に入射さ
れ、ここで光束が集光されて機器内部の光ファイバ27
.光コネクタ32及び機器外部の被測定光ファイバ33
に入射される。このとき、被測定光ファイバ33の後方
散乱光と、破断点あるいは接続端等が存在する場合は、
そこからのフレネル反射光等が宵れば、被測定光ファイ
バ33から戻ってきてレンズ26に入射される。このレ
ンズ26は前述するように予め戻り光が音響光学素子2
1の内部で集光するような位置に設定されているので、
レンズ26からの戻り光は音響光学素子21のほぼ中央
位置で集束するとともに、超音波の印加により偏向され
て取り出され受光系により受光される。
Therefore, in the configuration of the embodiment described above, after setting the lens 26 at a position where the return light returning from the optical fiber to be measured is focused inside the acousto-optic element 21, as shown in FIG. As specifically shown, when a light pulse is sent out from the light source 31, it passes through the optical fiber 22 and enters the acousto-optic element 21 through the lens 23. When no ultrasound is applied, this light beam travels straight through the acousto-optic cable 21 and enters the lens 26, where it is condensed and connected to the optical fiber 27 inside the device.
.. Optical connector 32 and optical fiber to be measured 33 outside the device
is incident on the At this time, if there is a backscattered light of the optical fiber 33 to be measured and a break point or connection end,
When the Fresnel reflected light etc. from there cool down, it returns from the optical fiber 33 to be measured and enters the lens 26. As described above, this lens 26 allows the returned light to pass through the acousto-optic element 2 in advance.
Since the position is set so that the light is focused inside 1,
The returned light from the lens 26 is focused at approximately the center of the acousto-optic element 21, is deflected by the application of ultrasonic waves, is extracted, and is received by the light receiving system.

ところで、音響光学スイッチの応答時間は前記(1)式
で表わされるが、レンズ26の集光作用により反射光の
ビーム径が小さくなっているので、当該式から音響光学
スイッチの応答時間が非常に速くなり、ひいては前記受
光器34に入射する戻り光の受光の応答特性が急峻にな
る。このため、例えば音響光学スイッチで偏向された強
い戻り光を受光したときに生じる受光系の飽和状態を回
避するために、戻り光が受光器34に到達する時間を見
計らって例えば音響光学索子21への超音波印加を停止
させるなどして受光動作を一時的に停止するマスク制御
を行ったとき、第4図に示すようにマスク動作時音響光
学スイッチの立上り(へ)及び立下がり(ト)時間が速
く、その分だけデッドゾーンが短くなるので第2の破断
点等(ハ)から生じる戻り光のレベルを正確に測定でき
ることになる。また、例えば機器と被測定光ファイバと
の間の光コネクタ等の接続部分におけるフレネル反射に
ついては発生位置が分っているので、予めマスク機能を
作動させることが可能である。そして、この場合につい
てもデッドゾーンを短くすることができる。
By the way, the response time of the acousto-optic switch is expressed by the above equation (1), but since the beam diameter of the reflected light is small due to the condensing action of the lens 26, the response time of the acousto-optic switch is very large from this equation. As a result, the response characteristic of receiving the returned light incident on the light receiver 34 becomes steeper. For this reason, in order to avoid saturation of the light receiving system that occurs when strong return light deflected by an acousto-optic switch is received, for example, the acousto-optic cable 21 When mask control is performed to temporarily stop light receiving operation by, for example, stopping the application of ultrasonic waves to Since the time is fast and the dead zone is correspondingly shortened, the level of the return light generated from the second breaking point etc. (c) can be accurately measured. Further, since the occurrence position of Fresnel reflection at a connection portion such as an optical connector between the device and the optical fiber to be measured is known, it is possible to activate the mask function in advance. Also in this case, the dead zone can be shortened.

なお、上記実施例は主として機器外部の被測定ファイバ
33の破断点等の探索について述べたが、測定光ファイ
バ33の破断点の検索に限られるものではなく、要は光
パルスを送出しその戻り光を検出する測定全般に適用で
きるものである。その他、本発明はその要旨を逸脱しな
い範囲で種々変形して実施できるものである。
Although the above embodiment mainly describes the search for the break point of the fiber under test 33 outside the device, the search is not limited to the search for the break point of the measurement optical fiber 33. It can be applied to all measurements that detect light. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

(発明の効果) 以上詳記したように本発明によれば、被測定光ファイバ
から戻ってくる戻り光が音響光学素子内部で集光するよ
うな位置にレンズを設定したので、音響光学素子の応答
特性を向上させ得るとともに、マスク動作を行ったとき
のデッドゾーンを短くして所要とする測定を高精度に行
う光パルス試験器を提供できる。
(Effects of the Invention) As detailed above, according to the present invention, the lens is set at a position where the return light returning from the optical fiber to be measured is focused inside the acousto-optic element. It is possible to provide an optical pulse tester that can improve response characteristics, shorten the dead zone when performing a mask operation, and perform required measurements with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明に係わる光パルス試験器の
一実施例を説明するために示したもので、第1図は本発
明機器の概略構成図、第2図は被測定光ファイバ側のレ
ンズの設定位置を説明する図、第3図は本発明機器の内
外部の接続状態を示す図、第4図は本発明機器を用いた
場合の戻り光の応答特性を説明する図、第5図ないし第
10図は従来機器を説明するために示したもので、第5
図は従来機器の模式的な構成図、第6図及び第7図は第
5図の方向性結合器の2つの実施態様図、第8図は戻り
光の受光特性を示す図、第9図は音響光学素子を用いた
従来機器の構成図、第10図はマスク動作を行ったとき
の動作特性を示す図である。 21・・・音響光学素子、22・・・光ファイバ、23
・・・レンズ、24・・・トランスデユーサ、25・・
・音響光学素子用駆動部、26・・・レンズ、27・・
・機器内部の光ファイバ(被測定光ファイバ)、28・
・・レンズ、29・・・光ファイバ、31・・・光源、
32・・・光コネクタ、33・・・機器外部の被測定光
ファイバ、34・・・受光器。 出願人代理人 弁理士 鈴江武彦 第3図 飛4図 月6図
Figures 1 to 4 are shown to explain an embodiment of the optical pulse tester according to the present invention. 3 is a diagram illustrating the internal and external connection state of the device of the present invention, and FIG. 4 is a diagram illustrating the response characteristics of returned light when using the device of the present invention. Figures 5 to 10 are shown to explain conventional equipment.
The figure is a schematic configuration diagram of a conventional device, Figures 6 and 7 are diagrams of two embodiments of the directional coupler of Figure 5, Figure 8 is a diagram showing the light reception characteristics of returned light, and Figure 9 1 is a block diagram of a conventional device using an acousto-optic element, and FIG. 10 is a diagram showing operating characteristics when performing a mask operation. 21... Acousto-optic element, 22... Optical fiber, 23
...Lens, 24...Transducer, 25...
・Acousto-optic element drive unit, 26...Lens, 27...
・Optical fiber inside the device (optical fiber to be measured), 28・
...Lens, 29...Optical fiber, 31...Light source,
32... Optical connector, 33... Optical fiber to be measured outside the device, 34... Light receiver. Applicant's agent Patent attorney Takehiko Suzue Figure 3, Figure 4, Figure 6

Claims (1)

【特許請求の範囲】[Claims] 光パルス発光源から送出された光パルスを光束に変換し
て出力する光パルス送出系と;この光パルス送出系から
出力された光束の直進方向に設けられた被測定光ファイ
バと;この被測定光ファイバと前記光パルス送出系の間
に配置され、超音波非印加時に前記光束を直進させ、超
音波印加時に前記被測定光ファイバの後方散乱光および
破断点等によるフレネル反射光等の戻り光を偏向して取
り出す音響光学スイッチと;この音響光学スイッチと前
記被測定光ファイバの間で、かつ、被測定光ファイバか
ら出射された戻り光が音響光学スイッチの内部で集光す
るような位置に配置させたレンズと;前記音響光学スイ
ッチにより偏向された戻り光を受光する受光系とを備え
;前記レンズの集光作用により前記音響光学スイッチの
応答時間を速くして測定可能距離を拡大したことを特徴
とする光パルス試験器。
an optical pulse sending system that converts the optical pulse sent out from the optical pulse emission source into a luminous flux and outputs it; an optical fiber to be measured installed in the straight direction of the luminous flux output from this optical pulse transmitting system; It is arranged between an optical fiber and the optical pulse sending system, and allows the light beam to travel straight when no ultrasound is applied, and when ultrasound is applied, returns light such as backscattered light of the optical fiber to be measured and Fresnel reflected light due to a break point, etc. an acousto-optic switch that deflects and takes out the acousto-optic switch; located between the acousto-optic switch and the optical fiber to be measured, and at a position such that the return light emitted from the optical fiber to be measured is focused inside the acousto-optic switch; and a light-receiving system that receives the returned light deflected by the acousto-optic switch; the response time of the acousto-optic switch is increased by the light focusing action of the lens, and the measurable distance is expanded. An optical pulse tester featuring:
JP23191186A 1986-09-30 1986-09-30 Light pulse tester Pending JPS6385327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23191186A JPS6385327A (en) 1986-09-30 1986-09-30 Light pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23191186A JPS6385327A (en) 1986-09-30 1986-09-30 Light pulse tester

Publications (1)

Publication Number Publication Date
JPS6385327A true JPS6385327A (en) 1988-04-15

Family

ID=16930987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23191186A Pending JPS6385327A (en) 1986-09-30 1986-09-30 Light pulse tester

Country Status (1)

Country Link
JP (1) JPS6385327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062704A (en) * 1990-04-25 1991-11-05 Tektronix, Inc. Optical time domain reflectometer having pre and post front panel connector testing capabilities

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062704A (en) * 1990-04-25 1991-11-05 Tektronix, Inc. Optical time domain reflectometer having pre and post front panel connector testing capabilities

Similar Documents

Publication Publication Date Title
US7356207B2 (en) Method and system for adjusting the sensitivity of optical sensors
JP2954871B2 (en) Optical fiber sensor
US4893931A (en) Method for the detection of polarization couplings in a birefringent optical system and application of this method to the assembling of the components of an optical system
JP3206168B2 (en) Optical pulse tester
US4212537A (en) System for testing optical fibers
CN108802756B (en) All-fiber laser Doppler velocity measurement system based on acousto-optic zero coupler
CN107064539A (en) A kind of big visual field photon Doppler speed measuring device and method
JPS6385327A (en) Light pulse tester
JPS63277903A (en) Optical receiver for laser interferometer
JP2008032592A (en) Optical fiber air route surveillance system
JPS5948668A (en) Optical fiber speedometer
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JPH0130097B2 (en)
JPH06273273A (en) Optical pulse test device displaying raman scattered light
JPS60173429A (en) Method and device for measuring dispersion of polarized wave
JPH0282133A (en) Method and instrument for measuring strain of optical fiber
JPS6150036A (en) Light splitting circuit
JPS63313030A (en) Optical fiber testing device
US5004911A (en) Time multiplexed fiber optic sensor
JP2538569B2 (en) Acousto-optic switch
JPH06174589A (en) Optical pulse tester
JPS6157567B2 (en)
JPH0588216A (en) Acoustooptic optical switch and distribution type optical fiber sensor
JPS61260228A (en) Acoustooptical switch
JPS6154421A (en) Light pulse testing instrument