JPS6384804A - Thermal expansion absorption chuck - Google Patents

Thermal expansion absorption chuck

Info

Publication number
JPS6384804A
JPS6384804A JP22621386A JP22621386A JPS6384804A JP S6384804 A JPS6384804 A JP S6384804A JP 22621386 A JP22621386 A JP 22621386A JP 22621386 A JP22621386 A JP 22621386A JP S6384804 A JPS6384804 A JP S6384804A
Authority
JP
Japan
Prior art keywords
thermal expansion
collet
chucking
chuck
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22621386A
Other languages
Japanese (ja)
Inventor
Masanobu Yoshida
吉田 公信
Shunichi Mizuno
俊一 水野
Akio Shiomi
塩見 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22621386A priority Critical patent/JPS6384804A/en
Publication of JPS6384804A publication Critical patent/JPS6384804A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01884Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Gripping On Spindles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent the change of a chucking condition due to thermal expansion by providing a spring for energizing a chucking claw to converge toward the inner side of a chuck for holding a glass rod and the like via the shift of a collet having a plurality of chucking claws in an axial direction. CONSTITUTION:Even when a normal temperature condition has changed to a high temperature condition and the whole of a chucked workpiece, a chuck proper 11, a collet 12 and the like has given thermal expansion, thereby forming a gap between the tapered surface 15 of a chucking claw 14 and the chuck proper 11, the chucking claw 14 is pushed upward with a thermal expansion absorption spring 16 and, therefore, a chucking condition is properly maintained. Thereafter, in transition from high temperature to low temperature, thermal expansion takes place. As a removable spring 17 on the rear end of the collet 12 tends to lower the collet 12, however, the force of the thermal expansion absorption spring 16 is released by rotating and loosening a rotary member 13. And the collet 12 is pushed downward and the chucking claw 14 expands toward the outside, thereby preventing the occurrence of an excessive chucking force.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は被把持体を含めチャック全体が高温になる環境
下に置かれても、把持状態を変化させずに一定状態に保
つことを可能とするチャックに関し、本発明の適用され
る分野は特に限定されるものではないが、−例としては
光フアイバ母材の製造装置において、回転している心材
の外周に多孔質ガラス微粒子を堆積させ軸方向に成長さ
せる外付は工程で、心材の多孔質ガラス微粒子堆積部分
の振れ回りをな(し、中心部を偏心させずに光フアイバ
母材を作製できる光フアイバ母材の製造装置に本発明は
適用できるものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention makes it possible to maintain the gripping state in a constant state without changing even if the entire chuck including the object to be gripped is placed in a high temperature environment. Regarding the chuck, the field to which the present invention is applied is not particularly limited. For example, in an optical fiber base material manufacturing device, porous glass particles are deposited on the outer periphery of a rotating core material. External growth in the axial direction is a process in which the part of the core where the porous glass particles are deposited is rotated (this is a process that allows the optical fiber base material to be manufactured without eccentrically centering the core material. The invention is applicable.

〈従来の技術〉 光フアイバ母材の製造方法として従来から気相軸付法(
以下、VAD法という)、肉付は法(以下、MCVD法
という)、外付は法などが知られている。このうち、V
AD法による光フアイバ母材製造法は、 の 光フアイバ母材の中心部になる部分を、燃焼バーナ
から噴出する酸水素炎中にガラス物質を入れ火炎加水分
解させて、生成するガラス微粒子を堆積させ、これを脱
水・透明化処理してガラスロッドとし、得られたガラス
ロッドの外周に石英ガラスチューブを外挿させて、石英
ガラスチューブとガラスロッドとを一体化するコラプス
工程を経て製造する場合と、 O反応容器内において、回転しているガラス棒心材の外
周に酸水素炎を噴出させると共に酸水素炎中にガラス原
料物質を供給して火炎加水分解させ、生成するガラス微
粒子をガラス棒心材の多局に堆積させつつ、ガラス棒心
材を軸方向に移動しながら、ガラス微粒子体を軸方向に
成長させる外付は工程を経てから、得られたガラス棒を
脱水・透明化処理して製造する場合とがある。
<Conventional technology> The vapor phase shafting method (
Known methods include the VAD method (hereinafter referred to as the VAD method), the fleshing method (hereinafter referred to as the MCVD method), and the external method. Of these, V
The optical fiber base material production method using the AD method involves placing a glass substance in an oxyhydrogen flame ejected from a combustion burner and flame hydrolyzing the central part of the optical fiber base material, depositing the generated glass particles. This is then dehydrated and made transparent to form a glass rod, and a quartz glass tube is inserted around the outer periphery of the resulting glass rod to integrate the quartz glass tube and the glass rod. In the O reaction vessel, an oxyhydrogen flame is ejected around the outer periphery of the rotating glass rod core material, and a frit material is supplied into the oxyhydrogen flame to cause flame hydrolysis, and the resulting glass fine particles are attached to the glass rod core material. The glass rod core material is moved in the axial direction while the glass particles are grown in the axial direction while being deposited at multiple locations. There are cases where it is done.

上述した外付は工程はVAD法以外の他の光フアイバ母
材の製造方法にも適用することができる。従来の光フア
イバ母材製造方法における外付は工程について第4図(
a) (b)を参照して説明する。両図に示すように反
応容@!!2内に石英ガラスロッド6を鉛直下方に垂下
し、かつ一定方向・一定速度で回転させながら、石英ガ
ラスロッド6の外周に燃焼バーナ3から酸水素炎を噴出
させると共に酸水素炎中にガラス物質を導入して火炎加
水分解、生成するガラス微粒子を石英ガラスルラド6の
外周に堆積させ多孔質ガラス体7を成長させていた。す
なわち、 ■ 石英ガラスロッド6を反応容器2内に鉛直下方に垂
下するように、反応容器2外上部に回転チャック1で把
持すると共に石英ガラスロッド6の下端部分(全長の約
l/3)を多孔質ガラス体成長部5に設定しておく。
The above-described external attachment process can also be applied to other optical fiber base material manufacturing methods other than the VAD method. The process for external attachment in the conventional optical fiber base material manufacturing method is shown in Figure 4 (
a) Explain with reference to (b). As shown in both figures, the reaction volume @! ! A quartz glass rod 6 is suspended vertically downward in the quartz glass rod 6, and while rotating at a constant speed in a constant direction, an oxyhydrogen flame is ejected from the combustion burner 3 around the outer periphery of the quartz glass rod 6, and a glass substance is injected into the oxyhydrogen flame. was introduced and subjected to flame hydrolysis, and the resulting glass particles were deposited on the outer periphery of the silica glass RURADO 6 to grow the porous glass body 7. That is, (1) Hold the quartz glass rod 6 at the outside upper part of the reaction vessel 2 with the rotary chuck 1 so that it hangs vertically downward into the reaction vessel 2, and also hold the lower end portion of the quartz glass rod 6 (approximately 1/3 of the total length). It is set in the porous glass growth section 5 in advance.

■ 外付は作業は、反応容器2の下部において石英ガラ
スロッド6外周に噴出口を向けて燃焼バーナ3を配置し
、燃焼バーナ3上部に排気管4を配置してお(。
■ For external installation, the combustion burner 3 is placed in the lower part of the reaction vessel 2 with the spout facing the outer periphery of the quartz glass rod 6, and the exhaust pipe 4 is placed in the upper part of the combustion burner 3 (.

■ この状態において、燃焼バーナ3にHガスおよび0
2ガスを供給して酸水素炎を発生させると共に図示外の
ガラス原料源からガス状ガラス原料物質を酸水素炎中に
供給して火炎加水分解させ、生成するガラス微粒子を多
孔質ガラス成長部5に堆積させながら、図示外の引上機
により回転チャック1を上方に移動し、多孔質ガラス成
長部5に多孔質ガラス体7を軸方向に成長させるもので
あった。
■ In this state, H gas and zero
2 gas is supplied to generate an oxyhydrogen flame, and at the same time, gaseous frit material is supplied into the oxyhydrogen flame from a frit source not shown to cause flame hydrolysis, and the resulting glass fine particles are transferred to the porous glass growth section 5. The rotary chuck 1 was moved upward by a pulling machine not shown, and the porous glass body 7 was grown in the axial direction in the porous glass growth area 5.

〈発明が解決しようとする間層点〉 前述した従来の外付は工程によると、回転チャック1の
回転中心と石英ガラスロッド6の中心軸が一致しておれ
ば、多孔質ガラス体7は石英ガラスロッド6を中心とし
て軸方向に成長する筈であるが、一般には石英ガラスロ
ッド6の中心軸と回転チャック1の回転中心軸とは一致
せず、石英ガラスロッド6および多孔質ガラス成長部5
も振れ回る。この結果、多孔質ガラス成長部5が多孔質
ガラス体7の中心軸部に位置しないこととなり、光フア
イバ母材を線引きし光フアイバ化したときにコアの偏心
が生じる欠点があった。石英ガラスロッド6が振れ回る
原因としては、回転チャック1による振れ回りと、石英
ガラスウッド6に対する回転チャック1の把持角による
もの等が考えられる。このうち、回転チャック1に起因
する振れ回りは回転チャック1の加工・組立精度に依存
しているから、これらを改善することにより低減させる
ことができる。一方、石英ガラスロッド6に対する回転
チャック1の把持角によるもの等に起因する振れ回りに
対しては回転チャック1を含め、振れ回り量を測定し、
例えば石英ガラスロッド6自体を加熱軟化させることに
よし石英ガラスウッド6の中心軸を基準とする回転チャ
ック1の回転中心軸に合致する様修正することができる
<Interlayer point to be solved by the invention> According to the process of the conventional external mounting described above, if the center of rotation of the rotary chuck 1 and the central axis of the quartz glass rod 6 coincide, the porous glass body 7 becomes a quartz glass rod. Although it is supposed to grow in the axial direction around the glass rod 6, generally the central axis of the quartz glass rod 6 and the central axis of rotation of the rotary chuck 1 do not coincide, and the quartz glass rod 6 and the porous glass growth section 5 do not coincide with each other.
It also swings around. As a result, the porous glass growth part 5 is not located at the central axis of the porous glass body 7, which has the drawback of causing eccentricity of the core when the optical fiber base material is drawn to form an optical fiber. Possible causes for the quartz glass rod 6 to swing around include swinging by the rotary chuck 1 and the gripping angle of the rotary chuck 1 with respect to the quartz glass wood 6. Of these, the whirling caused by the rotary chuck 1 depends on the machining and assembly accuracy of the rotary chuck 1, so it can be reduced by improving these. On the other hand, for whirling caused by the gripping angle of the rotary chuck 1 with respect to the quartz glass rod 6, the whirling amount including the rotary chuck 1 is measured,
For example, by heating and softening the quartz glass rod 6 itself, it can be corrected so that the central axis of rotation of the rotary chuck 1 matches the central axis of the rotary chuck 1 with the central axis of the quartz glass wood 6 as a reference.

しかしながら、上述の修正を施しても、石英ガラスロッ
ド6上に多孔質ガラス体を外付けすると酸水素炎により
石英ガラスロッド6をはじめ回転チャツク1全体も加熱
されるため回転チャツク1自体が熱膨張し石英ガラスロ
ッド6を把持する状態が変化し、この結果石英ガラスロ
ッド6の中心軸が回転チャック1の回転中心軸よりズし
て再び振れ回りが発生するという問題があった。これは
修正後0.05陣程度であった振れ量が外付は開始後1
〜4鵬程度まで増大するというものであった。ファイバ
化したときのコアの偏心の原因は、他工程にも存在して
おり、外付は工程と1:1の対応はしていないが、外付
は工程の影響としては、振れ回り量500μmがコア傷
心E最大1%程度生じる可能性がある。特に、シングル
モードファイバの場合は、コアの傷心の少ない光ファイ
バが求められるから、上述した程度の振れ回りがあると
きは、シングルモードファイバの形成が難かしくなる。
However, even with the above modification, when a porous glass body is attached externally to the quartz glass rod 6, the entire rotary chuck 1 including the quartz glass rod 6 is heated by the oxyhydrogen flame, so the rotary chuck 1 itself expands thermally. However, the state in which the quartz glass rod 6 is gripped changes, and as a result, the central axis of the quartz glass rod 6 deviates from the central axis of rotation of the rotary chuck 1, causing whirling to occur again. This is because the amount of deviation was about 0.05 degrees after the correction, but the amount of deviation was 1 after the start of the external connection.
It was said that it would increase to about 4. The cause of the eccentricity of the core when it is made into a fiber also exists in other processes, and the external part does not have a 1:1 correspondence with the process, but the external part has a whirling amount of 500 μm as a result of the process. However, core wound E may occur in up to 1% of cases. In particular, in the case of a single-mode fiber, an optical fiber with few core flaws is required, so when the above-mentioned amount of whirling occurs, it becomes difficult to form a single-mode fiber.

本発明は、特に回転する心材の外周にガラス微粒子を堆
積し軸方向に成長させる外付は工程において、心材の多
孔質ガラス成長部分の振れ回りをな(シ、光フアイバ母
材の中心軸部に偏心することなく多孔質ガラス体を成長
させることができる光フアイバ母材の製造装置用として
の熱膨張吸収チャックを提供す斯かる目的を達成する本
発明の構成は、円筒状のチャック本体に対し、複数の把
持爪を有するコレットを挿入して軸方向に移動させるこ
とによ抄、前記把持爪を内径方向に収束させて棒状の被
把持体を把持するコレットチャックにおいて、前記把持
爪を内径方向に収束させる方向に付勢する熱膨張吸収用
ばねを設けたことを特徴とするものである。
In particular, in the process of externally depositing glass particles on the outer periphery of a rotating core material and growing them in the axial direction, the central axis of the optical fiber base material is To provide a thermal expansion absorbing chuck for use in an optical fiber preform manufacturing apparatus, which is capable of growing a porous glass body without eccentricity, the structure of the present invention achieves the above object. On the other hand, in a collet chuck in which a collet having a plurality of gripping claws is inserted and moved in the axial direction, and the gripping claws are converged in the inner diameter direction to grasp a rod-shaped object, the gripping claws are The present invention is characterized in that a thermal expansion absorbing spring is provided that biases in the direction of convergence.

く作   用〉 高温雰囲気下において、被把持体、チャック本体、コレ
ット等は熱膨張するが、それらの熱膨張差のためこれら
の間にガタが生じやすい。しかし、本発明では熱膨張吸
収用ばねが把持爪を内径方向に収束させる方向に付勢し
ているため、熱膨張差によるガタを吸収して被把持体の
把持状態が確実に維持されることとなる。
Function> In a high-temperature atmosphere, the object to be gripped, the chuck body, the collet, etc. expand thermally, but play is likely to occur between them due to the difference in thermal expansion. However, in the present invention, since the thermal expansion absorbing spring biases the gripping claws in the direction of converging in the inner diameter direction, the looseness due to the difference in thermal expansion is absorbed and the gripping state of the gripped object is reliably maintained. becomes.

く実 施 例〉 以下、本発明の実施例について図面を参照して詳細に説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図に本発明の第1の実施例を示す。同図に示すよう
に、円筒状のチャック本体11は駆動回転する中空スピ
ンドル10の先端に収り付けられると共に複数の把持爪
14を有するコレット12がチャック本体11内に摺動
自在に嵌合されている。ここで、コレット12は円筒体
をなすと共にその先端部に複数の切れ込み溝20を刻設
して把持爪14を形成したものであり、各把持爪14の
外周部分はテーパ面15となっている。このテーパ面1
5はチャック本体11の先端内周と接触しており、従っ
てコレット12を図中上方へ引き上げると、テーパ面1
5の模作用により、把持爪14は弾性変形して内径側に
収束することとなる。コレット12の内側には被把持体
(図示省略)が差し込まれるようになっており、このよ
うに把持爪14が収束すると被把持体が把持されること
となる。
FIG. 1 shows a first embodiment of the present invention. As shown in the figure, a cylindrical chuck body 11 is housed at the tip of a hollow spindle 10 that rotates, and a collet 12 having a plurality of gripping claws 14 is slidably fitted into the chuck body 11. ing. Here, the collet 12 has a cylindrical body and has a plurality of grooves 20 carved in its tip to form gripping claws 14, and the outer peripheral portion of each gripping claw 14 has a tapered surface 15. . This tapered surface 1
5 is in contact with the inner periphery of the tip of the chuck body 11, so when the collet 12 is pulled upward in the figure, the tapered surface 1
5, the gripping claws 14 are elastically deformed and converge toward the inner diameter side. A gripped object (not shown) is inserted into the inside of the collet 12, and when the gripping claws 14 converge in this manner, the gripped object is gripped.

一方、チャック本体11の先端部外周には円環状の回転
部材13が螺合すると共にこの回転部材13の先端小径
部と前記把持爪14との間に熱膨張吸収用ばね16が圧
装されている。更に、コレット12の後端とチャック本
体11との間にも取外用ばね17が圧装されてお9、こ
の取外用ばね17のばね定数は熱膨張吸収用ばね16の
それよりも小さくなっている。従って、回転部材13を
ねじ込んで図中上昇させると、取外用ばね17のばね力
に抗してコレット12が上昇すると共に熱膨張吸収用ば
ね16により把持爪14が図中上方、即ち内径方向に収
束する方向に付勢されることとなる。このため、常温状
態から高温状態へ移行することにより、被把持体、チャ
ック本体11.コレット12等チャック全体が熱膨張し
、それらの熱膨張差により、例えば把持爪14のテーパ
面15とチャック本体11との間に隙間が生じても、熱
膨張吸収用ばね16により把持爪14が上方に押し込ま
れるため、把持状態が確実に維持されることとなる。
On the other hand, an annular rotating member 13 is screwed onto the outer periphery of the tip of the chuck body 11, and a thermal expansion absorbing spring 16 is press-fitted between the small diameter portion of the tip of the rotating member 13 and the gripping claw 14. There is. Furthermore, a removal spring 17 is also press-fitted between the rear end of the collet 12 and the chuck body 11, and the spring constant of this removal spring 17 is smaller than that of the thermal expansion absorption spring 16. There is. Therefore, when the rotating member 13 is screwed in and raised in the figure, the collet 12 rises against the spring force of the removal spring 17, and the gripping claws 14 are moved upward in the figure, that is, in the inner radial direction by the thermal expansion absorbing spring 16. It will be biased in the direction of convergence. Therefore, by transitioning from the room temperature state to the high temperature state, the gripped object, the chuck body 11. Even if the entire chuck, such as the collet 12, expands thermally and a gap is created between the tapered surface 15 of the gripping claw 14 and the chuck body 11 due to the difference in thermal expansion, the gripping claw 14 is Since it is pushed upward, the gripping state is reliably maintained.

この後、高温状態から常温状態へと移行する際、チャッ
ク全体が熱収縮することとなるが、把持爪14の把持力
が過大となって被把特休の脱着が困難となることはない
。それは、コレット12の後端側に設けられる取外用ば
ね17がコレット12を図中下方に押し下げようとする
ため、回転部材13を回転させて緩めると、熱膨張吸収
用ばね16のばね力が開放されると共にコレット12が
図中下方に押し下げられて把持爪14が外径方向に広が
るからである。
Thereafter, when transitioning from a high temperature state to a normal temperature state, the entire chuck will undergo thermal contraction, but the gripping force of the gripping claws 14 will not become excessive and it will be difficult to attach and detach the gripped special leave. This is because the removal spring 17 provided at the rear end of the collet 12 tries to push the collet 12 downward in the figure, so when the rotating member 13 is rotated and loosened, the spring force of the thermal expansion absorption spring 16 is released. This is because the collet 12 is pushed down in the figure and the gripping claws 14 are expanded in the outer radial direction.

次に、本発明の第2の実施例について第2図を参照して
説明する。本実施例は、回転部材13に関し取り扱いを
簡素化したものである。即ち、回転部材13をチャック
本体11に螺合するのではなく、チャック本体11に回
転自在に嵌着したものであり、チャック本体11に突設
された複数の位置決めピン19を回転部材13に刻設さ
れた5字状の位置決め溝18に係合している。従って、
回転部材13を押し込んで回転させるだけで、被把持体
を把持した状態を維持できることとなる。
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, handling of the rotating member 13 is simplified. That is, the rotating member 13 is not screwed into the chuck body 11, but is rotatably fitted onto the chuck body 11, and a plurality of positioning pins 19 protruding from the chuck body 11 are carved into the rotating member 13. It engages with a five-shaped positioning groove 18 provided therein. Therefore,
By simply pushing in and rotating the rotating member 13, the state in which the object to be gripped can be maintained.

尚、その他の構成は前述した実施例と同様であり、同一
機能を有する部分には同一符号を付して説明を省略する
Note that the other configurations are the same as those of the above-described embodiment, and parts having the same functions are designated by the same reference numerals and description thereof will be omitted.

上記実施例では、熱膨張吸収ばね16は把持爪14の前
方に配置していたが、本発明はこのようなものに限定さ
れるものではない。
In the above embodiment, the thermal expansion absorbing spring 16 was arranged in front of the gripping claw 14, but the present invention is not limited to this.

例えば、第3図に示す、第3の実施例のように、把持爪
14の後方におけるチャック本体11内に#1w!張吸
収用ばね16全圧装し、把持爪14のテーパ面15に接
触するテーパブロック21を押し下げるようにして、把
持爪14を内径方向に収束するように付勢しても良い。
For example, as in the third embodiment shown in FIG. 3, #1w! The tension absorbing spring 16 may be fully loaded to push down the taper block 21 that contacts the tapered surface 15 of the gripping claw 14, thereby urging the gripping claw 14 to converge in the inner radial direction.

本発明は前述した外付は工程におけろ回転チャックとし
て利用でき、石英ガラスロッドの振れ回り量を測定した
結果を表−1に示すように、把持状態が変化しないため
、高温状態に移行しても振れ回り量が増大しないことが
判る。
In the present invention, the above-mentioned external attachment can be used as a rotating chuck in the process, and as shown in Table 1, the gripping state does not change, and the quartz glass rod does not shift to a high temperature state as shown in Table 1. It can be seen that the amount of whirl does not increase even if

表−1 〈発明の効果〉 以上、実施例に基づいて具体的に説明したように本発明
は熱膨張吸収用ばねが把持爪を収束する方向に付勢する
ので、チャック本体。
Table 1 <Effects of the Invention> As specifically explained above based on the embodiments, in the present invention, the thermal expansion absorbing spring biases the gripping claws in the direction of convergence.

コレット等に熱膨張の差が生じても、その差を吸収して
常に一定の把持状態を維持できる。
Even if a difference in thermal expansion occurs in the collet or the like, the difference can be absorbed and a constant gripping state can be maintained at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は各々本発明の第1゜第2.第
3の実施例を示す断面図、第4図は従来の光フアイバ製
造方法の外付工程に係り、同図(a)は工程開始前、同
図(blは工程終了後を各々示す説明図である。 図面中、 1は回転チャック、 2は反応容器、 3は燃焼バーナ、 4は排気管、 5は多孔質ガラス体の成長部、 6は石英ガラスロッド、 7は多孔質ガラス体、 10は中空スピンドル、 11はチャック本体、 12はコレット、 13は回転部材、 14は把持爪、 15はチー′パ面、 16は熱膨張吸収用ばね、 17は取外用ばね、 18は位置決め溝、 19は位置決めピン、 20は切り込み溝、 21はテーパブロックである。 AJ1図     第2図 第3図 第4図
1, 2, and 3 are the first and second sections of the present invention, respectively. A cross-sectional view showing the third embodiment, and FIG. 4 relate to the external attaching process of a conventional optical fiber manufacturing method, in which (a) is an explanatory diagram showing before the start of the process, and the same figure (bl is an explanatory diagram showing after the process is finished, respectively). In the drawings, 1 is a rotating chuck, 2 is a reaction vessel, 3 is a combustion burner, 4 is an exhaust pipe, 5 is a growth part of a porous glass body, 6 is a quartz glass rod, 7 is a porous glass body, 10 11 is a hollow spindle, 11 is a chuck body, 12 is a collet, 13 is a rotating member, 14 is a gripping claw, 15 is a tipper surface, 16 is a thermal expansion absorption spring, 17 is a removal spring, 18 is a positioning groove, 19 is a positioning pin, 20 is a cut groove, and 21 is a taper block.AJ1 Figure Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 円筒状のチャック本体に対し、複数の把持爪を有するコ
レットを挿入して軸方向に移動させることにより、前記
把持爪を内径方向に収束させて棒状の被把持体を把持す
るコレットチャックにおいて、前記把持爪を内径方向に
収束させる方向に付勢する熱膨張吸収用ばねを設けたこ
とを特徴とする熱膨張吸収チャック。
In the collet chuck in which a collet having a plurality of gripping claws is inserted into a cylindrical chuck body and moved in the axial direction, the gripping claws are converged in an inner radial direction to grip a rod-shaped object to be gripped. A thermal expansion absorbing chuck characterized by being provided with a thermal expansion absorbing spring that biases the gripping claws in a direction to converge in the inner diameter direction.
JP22621386A 1986-09-26 1986-09-26 Thermal expansion absorption chuck Pending JPS6384804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22621386A JPS6384804A (en) 1986-09-26 1986-09-26 Thermal expansion absorption chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22621386A JPS6384804A (en) 1986-09-26 1986-09-26 Thermal expansion absorption chuck

Publications (1)

Publication Number Publication Date
JPS6384804A true JPS6384804A (en) 1988-04-15

Family

ID=16841668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22621386A Pending JPS6384804A (en) 1986-09-26 1986-09-26 Thermal expansion absorption chuck

Country Status (1)

Country Link
JP (1) JPS6384804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137632B2 (en) 2003-10-27 2006-11-21 Hardinge Inc. Force limiting workpiece holding device
JP2016069199A (en) * 2014-09-26 2016-05-09 株式会社フジクラ Optical fiber spinning device, optical fiber spinning method and optical fiber preform support tool
JP2016212426A (en) * 2011-08-30 2016-12-15 オプセンス インコーポレイテッド Interface connector handle for disposable guidewire optical connection
WO2018150780A1 (en) 2017-02-15 2018-08-23 古河電気工業株式会社 Horizontal lathe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137632B2 (en) 2003-10-27 2006-11-21 Hardinge Inc. Force limiting workpiece holding device
JP2016212426A (en) * 2011-08-30 2016-12-15 オプセンス インコーポレイテッド Interface connector handle for disposable guidewire optical connection
JP2016069199A (en) * 2014-09-26 2016-05-09 株式会社フジクラ Optical fiber spinning device, optical fiber spinning method and optical fiber preform support tool
WO2018150780A1 (en) 2017-02-15 2018-08-23 古河電気工業株式会社 Horizontal lathe
US11511357B2 (en) 2017-02-15 2022-11-29 Furukawa Electric Co., Ltd. Horizontal lathe

Similar Documents

Publication Publication Date Title
CA2054873C (en) Method of making polarization retaining fiber
JP2000128559A (en) Welding method
KR20040024598A (en) The Method for fabricating a low polarization mode dispersion optical fiber
JPS62260727A (en) Method and apparatus for upper layer cladded optical fiber mother material
JP2919752B2 (en) Optical fiber forming method and apparatus
JPS6384804A (en) Thermal expansion absorption chuck
KR900002526B1 (en) Preparation method of optical fiber preform
JP3855174B2 (en) Apparatus for holding cane assembly and method for depositing soot on cane assembly
KR20010051283A (en) Device and method for the manufacture of a quartz glass body
US20040123630A1 (en) Preform fabrication process
JP3836583B2 (en) Manufacturing method of optical fiber preform
JP4236090B2 (en) Method for producing hollow cylinder from quartz glass and apparatus for carrying out the production method
US20020157425A1 (en) Method for producing a quartz glass body
US5672192A (en) Method of making optical fiber using a plasma torch fiber-drawing furnace
KR20050093710A (en) Method for extending optical fiber preform
US20070079635A1 (en) Apparatus and method for preparing optical fiber preform having desired cone shape
US20070125128A1 (en) Optical fiber perform cone shaping or preparation method
JP2001089173A (en) Rotary holding implement for glass rod working
JP3524209B2 (en) Method for producing glass preform for optical fiber
JPH05147964A (en) Structure for connecting optical fiber base material
JP2004091304A (en) Aligning method for optical fiber preform
JP3788503B2 (en) Manufacturing method and manufacturing apparatus for glass preform for optical fiber
KR102077174B1 (en) Apparatus for fabricating optical fiber preform
JPS62158131A (en) Production of optical fiber base material
JP4221553B2 (en) Manufacturing method of glass tube