JPS638418A - Production of heat-resistant polymer derived from aromatic diamine - Google Patents

Production of heat-resistant polymer derived from aromatic diamine

Info

Publication number
JPS638418A
JPS638418A JP14959086A JP14959086A JPS638418A JP S638418 A JPS638418 A JP S638418A JP 14959086 A JP14959086 A JP 14959086A JP 14959086 A JP14959086 A JP 14959086A JP S638418 A JPS638418 A JP S638418A
Authority
JP
Japan
Prior art keywords
aromatic
wet cake
aromatic diamine
compound
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14959086A
Other languages
Japanese (ja)
Inventor
Toshihiko Aya
綾 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14959086A priority Critical patent/JPS638418A/en
Publication of JPS638418A publication Critical patent/JPS638418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To produce the titled polymer at a low production cost without necessitating particular environmental countermeasure for dust treatment, by reacting wet cake of a specific aromatic diamine with a bifunctional aromatic acidic compound. CONSTITUTION:An aromatic dinitro compound or an aromatic mononitroamino compound is dissolved in a polar solvent inert to inhibit polymerization reaction (e.g. N,N-dimethylacetamide), subjected to catalyst reduction in the presence of a heterogeneous hydrogenation catalyst (e.g. platinum) preferably at 20-200 deg.C, filtered and cooled to precipitate crystal of an aromatic diamine and obtain a wet cake having a solvent content of 3-70wt%. The wet cake and equimolar amount of a bifunctional aromatic acidic compound (e.g. aromatic dicarboxylic acid) are mixed to a polar solvent and made to react with each other e.g. at <=100 deg.C to obtain the objective polymer.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、芳香族ジアミンを一原料成分とする耐熱性重
合体の製造方法の改善に関するものであり、特に製造工
程の安全性を高めることを目的としている。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an improvement in a method for producing a heat-resistant polymer containing an aromatic diamine as a raw material component, and in particular to improving the safety of the production process. It is an object.

〈従来の技術〉 芳香族ジアミン類は耐熱性高分子製造用の必須成分とし
て広く実用化されている。最近先端産業技術分野におい
ては高性能高分子材料の必要性が急速に高まっており、
その−翼を担っているのが各種の耐熱性高分子群である
。その意味で芳香族ジアミン類の産業界における重要性
は一段と高まっている。
<Prior Art> Aromatic diamines have been widely put into practical use as essential components for the production of heat-resistant polymers. Recently, the need for high-performance polymer materials has been rapidly increasing in the field of advanced industrial technology.
The wings are played by various heat-resistant polymer groups. In this sense, aromatic diamines are becoming increasingly important in industry.

耐熱性高分子類は、一般には、アミド系極性溶媒中、無
水条件下、室温で芳香族ジアミン類と二官能性芳香族酸
性化合物、たとえばピロメリット酸二無水物、無水トリ
メリット酸モノクロリド、テレフタル酸ジクロリド、イ
ソフタル酸ジクロリドなどを反応させることにより合成
される。
Heat-resistant polymers are generally prepared by combining aromatic diamines and bifunctional aromatic acidic compounds such as pyromellitic dianhydride, trimellitic anhydride monochloride, etc. in an amide polar solvent under anhydrous conditions at room temperature. It is synthesized by reacting terephthalic acid dichloride, isophthalic acid dichloride, etc.

従来から、芳香族ジアミノ類の製造には芳香族ジニトロ
化合物を極性溶媒中、接触水素還元し、次いで加熱/熱
濾過後、必要に応じて濃縮し、晶析させて単離した後、
乾燥する方法が広く行なわれてきた。たと又は、英国特
許第1、228.738号、特開昭56−22.752
号公報、特開昭57−176.935号公報など。
Traditionally, aromatic diamino compounds have been produced by subjecting aromatic dinitro compounds to catalytic hydrogen reduction in a polar solvent, followed by heating/hot filtration, concentration as necessary, crystallization, and isolation.
Drying methods have been widely used. Totaka, British Patent No. 1, 228.738, JP 56-22.752
No. 57-176.935, etc.

そして芳香族ジアミン類は工業的には、乾燥した粉末ま
たはフレークの形状で供給されてきtこ。
Industrially, aromatic diamines are supplied in the form of dry powder or flakes.

〈発明が解決しようとする問題点〉 ところが、芳香族レアミノ類は一般に変異原生陽性(発
癌懸念性)の物質であるため取扱い作業には特別に厳重
な環境対策が必要である。
<Problems to be Solved by the Invention> However, since aromatic rare aminos are generally mutagen-positive (cancer-causing substances), special environmental measures are required when handling them.

しかし、取扱い形状が粉末またはフレーク状であること
に関係してどうしても微細粉塵の発生があり、環境対策
にも自と限界があった。芳香族ンアミンの利用者がこの
問題を手取り早く解決する方法は、芳香族ジアミン製造
業者に、芳香族レアミンを重合用の溶媒に溶解してもら
い、芳香族レアミンを溶液として入手することであった
。しかし、この方法は、芳香族ジアミノ製造業者が芳香
族ジアミンを単離/乾燥して取扱う限り、粉塵取扱い作
業を利用者側から製造業者側へ転嫁したtごけて、根本
的な解決策にはならないことは明白である。
However, since it is handled in the form of powder or flakes, it inevitably generates fine dust, and there are limits to environmental measures. A quick way for users of aromatic amines to solve this problem was to have aromatic diamine manufacturers dissolve aromatic diamines in polymerization solvents and obtain aromatic diamines as a solution. . However, as long as aromatic diamine manufacturers handle aromatic diamines by isolating and drying them, this method does not provide a fundamental solution as it shifts the dust handling work from the user side to the manufacturer side. It is clear that this should not be the case.

この問題を解決するための手法の一つとして、芳香族ジ
ニトロ体を重合用溶媒中で接触還元した後、溶液状態で
副生水を除去して得られる芳香族ジアミン溶液をそのま
ま重合工程に活用するという方法が提案されている(た
とえば、特開昭60−210630号公報など)。この
方法は、芳香族ジアミン粉体の取扱いがなくなるという
点では環境対策上、有効である。しかし、この方法の場
合、芳香族ンアミンの精製工程がカットされるため、低
沸および高沸不純物が残留してその品位が低下するとい
う問題がある。
One method to solve this problem is to catalytically reduce the aromatic dinitro compound in a polymerization solvent and then remove the by-product water in the solution state, and use the resulting aromatic diamine solution as it is in the polymerization process. A method has been proposed (for example, Japanese Patent Laid-Open No. 60-210630). This method is effective in terms of environmental protection because it eliminates the need to handle aromatic diamine powder. However, in the case of this method, since the purification step of the aromatic amine is cut, there is a problem that low-boiling and high-boiling impurities remain and the quality is degraded.

また、ジアミン製造工場と重合工場が離れている場合、
貯蔵コストおよび輸送コストが高くつくという問題もあ
る。
Also, if the diamine manufacturing factory and polymerization factory are far apart,
There is also the problem of high storage and transportation costs.

このように、これまでに提案された方法では芳香族ジア
ミンの環境対策とコスト/パフォーマンスの両立がむず
かしかったため、芳香族ジアミンから誘導される耐熱性
重合体の製造は意外にコスト高につくことが多かった。
As described above, it has been difficult to achieve both environmental protection and cost/performance for aromatic diamines with the methods proposed so far, so the production of heat-resistant polymers derived from aromatic diamines can be surprisingly expensive. There were many.

そこで本発明者らは、芳香族ジアミンの環境対策とコス
ト/パフォーマンスε両立させ、その結果として耐熱性
重合体の製造コストを低下させることを目的として鋭意
検討した結果、本発明に到達した。
Therefore, the present inventors have conducted intensive studies aimed at achieving both environmental protection and cost/performance ε of aromatic diamines, and as a result, reducing the manufacturing cost of heat-resistant polymers, and as a result, they have arrived at the present invention.

く問題点を解決するための手段〉 すなわち、本発明は重合反応阻害性のない中−t$;¥
−極性溶媒中、不均一系水添触媒の存在下に芳香族レニ
トロ化合物または芳香族モノニトロアミノ化合物を接触
還元した後、不均一系水添触媒を口過回収し、次に番肴
すキ芳香族ジアミノを晶析させて溶媒含有率3〜70M
量%のウェットケーク状に単離することによって調製し
た芳香族レアミンウエットケークと二官能性芳香族酸性
化合物をアミド系極性溶媒中で反応させることを特徴と
する芳香族レアミンから誘導される耐熱性重合体の製造
方法を提供するものである。
Means for Solving the Problems〉 That is, the present invention provides medium-t$;
- After catalytic reduction of an aromatic renitro compound or an aromatic mononitroamino compound in the presence of a heterogeneous hydrogenation catalyst in a polar solvent, the heterogeneous hydrogenation catalyst is recovered by mouth, and then the plate is prepared. Aromatic diamino is crystallized and the solvent content is 3 to 70M.
Heat resistance derived from aromatic reamin, which is characterized by reacting an aromatic reamin wet cake prepared by isolating % of aromatic reamin into a wet cake and a bifunctional aromatic acidic compound in an amide polar solvent. The present invention provides a method for producing a synthetic polymer.

本発明に用いられるアミド系極性溶媒は、芳香族ジアミ
ン化合物と二官能性芳香族酸性物質との重合反応を阻害
する性質を示さず、かつ分子内にアミド結合を有する極
性溶媒類であり、たとえば、N@N−ジメチルアセトア
ミド、N・N−ジエチルアセトアミド、N−メチルピロ
リドン、N−エチルピロリドン、N−ブチルピロリドン
、N−シクロへキンルピロリドン、N−メチルピペリド
ン、1.3−ジメチル−2−イミダゾリジノン、ヘキサ
メチルホスホルアミドなどが挙げられる。特にN−メチ
ルピロリドンおよびN、N−ジメチルアセトアミドが有
用である。また、類似化合物であるN、N−ジメチルホ
ルムアミドは、酸クロリド類を利用する重合系において
重合阻害効果があり、本発明の目的には使えない。
The amide polar solvent used in the present invention is a polar solvent that does not inhibit the polymerization reaction between the aromatic diamine compound and the bifunctional aromatic acidic substance and has an amide bond in the molecule, such as , N@N-dimethylacetamide, N·N-diethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, N-butylpyrrolidone, N-cyclohequinylpyrrolidone, N-methylpiperidone, 1,3-dimethyl-2- Examples include imidazolidinone and hexamethylphosphoramide. Particularly useful are N-methylpyrrolidone and N,N-dimethylacetamide. Further, N,N-dimethylformamide, which is a similar compound, has a polymerization inhibiting effect in polymerization systems that utilize acid chlorides, and cannot be used for the purpose of the present invention.

本発明に用いられる芳香族ジニトロ化合物または芳香族
モノニトロアミノ化合物は一般式O□N−Ar−No□
またハ02N−Ar−NH2テ表ワサレる化合物であり
、 −Ar−1訃一般式から選ばれた二価の芳香族残基
を示す。ここで、R,は炭素数1から4のアルキル基ま
たはアルコキン基、Xは直接結合 −〇−1−S−1O
CH3CF3 −C−1−SO,−1−C−1−〇−またはCH3CF
3  O ll −N−C−1aはOまたは1〜4の整数、bはOまたは
1−12の整数を示す。−Ar−の具体例を挙げろと次
のとおりである。
The aromatic dinitro compound or aromatic mononitroamino compound used in the present invention has the general formula O□N-Ar-No□
It is also an interesting compound and represents a divalent aromatic residue selected from the general formula -Ar-1. Here, R, is an alkyl group or alkoxy group having 1 to 4 carbon atoms, and X is a direct bond -〇-1-S-1O
CH3CF3 -C-1-SO, -1-C-1-〇- or CH3CF
3 O ll -N-C-1a represents O or an integer of 1 to 4, and b represents O or an integer of 1 to 12. Specific examples of -Ar- are as follows.

すなわち ÷0(ΣS÷0÷、 HOOH 本発明で用いられる不均一系水添触媒は、一般に接触還
元に使用されている金属または金属酸化物触媒であり、
たとえば、白金、パラジウム、ロジウム、ルテニウム、
ニッケル、コバルト、銅、酸化白金、酸化パラジウム、
酸化ロジウムなどが挙げられる。これらの金属触媒は、
金属の状態でも使用することができるが、通常バカ−ホ
ン、硫酸バリウム、ノリカゲル、アルミナ等の担体表面
に付着させて用いたり、また、ニッケル、コバルト、銅
等はラネー触媒としても用いられる。触媒の使用量は原
料のニトロ化合物100部に対して、金属分として0.
01〜IO部であり、担体に付着させた場合は好ましく
は0.1〜5部である。
That is, ÷0(ΣS÷0÷, HOOH) The heterogeneous hydrogenation catalyst used in the present invention is a metal or metal oxide catalyst that is generally used in catalytic reduction.
For example, platinum, palladium, rhodium, ruthenium,
Nickel, cobalt, copper, platinum oxide, palladium oxide,
Examples include rhodium oxide. These metal catalysts are
Although it can be used in the form of a metal, it is usually used by being attached to the surface of a carrier such as Vacphone, barium sulfate, Norica gel, or alumina, and nickel, cobalt, copper, or the like is also used as a Raney catalyst. The amount of catalyst used is 0.00 parts as metal content per 100 parts of the raw material nitro compound.
01 to IO parts, and preferably 0.1 to 5 parts when attached to a carrier.

反応温度は、特に限定はないが一般には20〜200℃
の範囲、特に50〜130℃の範囲が好ましい。
The reaction temperature is not particularly limited, but is generally 20 to 200°C.
A range of , particularly a range of 50 to 130°C is preferred.

また、反応に用いる水素の圧力は、通常ゲージ圧で0.
1〜50に9/dであり、触媒の活性度により最適範囲
が異なる。たとえば5%パラジウム/活性炭、5%白金
/活性炭の場合ゲージ圧で0.1〜5 kq / dが
適当であるが、ラネーニッケルの場合10〜50 kq
 / dが適当である。
Furthermore, the pressure of hydrogen used in the reaction is usually 0.00 gauge pressure.
The optimum range varies depending on the activity of the catalyst. For example, in the case of 5% palladium/activated carbon or 5% platinum/activated carbon, a gauge pressure of 0.1 to 5 kq/d is appropriate, but in the case of Raney nickel, it is 10 to 50 kq.
/d is appropriate.

本発明の水添反応においては −No2+ 3H2−e
−NH,+ 2H20の反応により1モルのNO2基か
ら2モルの水が生成する。
In the hydrogenation reaction of the present invention, -No2+ 3H2-e
The reaction of -NH, +2H20 produces 2 moles of water from 1 mole of NO2 groups.

ジアミノを晶析させる工程およびΩ晶析しtこ芳香族ジ
アミンを口過分離して芳香族ジアミン結晶のウェットケ
ークを回収する工程を順次経由させる。ただし、B工程
で過度の濃縮を行なった場合は、C工程は不用となる。
A step of crystallizing diamino and a step of separating aromatic diamine by filtration and recovering a wet cake of aromatic diamine crystals are sequentially performed. However, if excessive concentration is performed in step B, step C will be unnecessary.

そして、必要に応じてこれらのいずれかの工程の前、途
中または後に、水添反応における副生水を蒸留除去する
工程が加わってもよい。
If necessary, a step of distilling and removing by-product water in the hydrogenation reaction may be added before, during, or after any of these steps.

この副生水の蒸留除去は、水添反応母液まt二はその晶
析母液を常圧または減圧下に加熱して低沸成分としての
水を留出させることによって行なわれる。その際、水は
、単蒸留の形式で溶媒と共沸留出させてもかまわないし
、精留塔を通して精留してもかまわない。前者の場合、
上記Bの濃縮操作と兼ねることができろ。
This by-product water is removed by distillation by heating the hydrogenation reaction mother liquor or the crystallization mother liquor under normal pressure or reduced pressure to distill off water as a low-boiling component. In this case, water may be distilled off azeotropically with the solvent by simple distillation, or may be rectified through a rectification column. In the former case,
It can also be used as the concentration operation in B above.

また、効果的共沸助剤たとえばベンゼン、トルエン、キ
シレン、クロルベンゼンなどの芳香族炭化水素類および
芳香族ハロゲン化炭化水素類を併用することも有効であ
る。水添反応母液中には、芳香族ジニトロ体を原料とし
た場合、芳香族ジアミン1モル当り、水4モルが副生じ
ている。上記の副生水蒸留除去操作は、最終的に得られ
るウェットケーク中の水分が、芳香族ジアミン1モル当
り、0.5モル(好ましくは0、1モル)以下になるこ
とを目標に実施される。
It is also effective to use effective azeotropic aids such as aromatic hydrocarbons and aromatic halogenated hydrocarbons such as benzene, toluene, xylene, and chlorobenzene. In the hydrogenation reaction mother liquor, when an aromatic dinitro compound is used as a raw material, 4 moles of water are produced as a by-product per 1 mole of aromatic diamine. The above-mentioned by-product water distillation removal operation is carried out with the aim of reducing the water content in the final wet cake to 0.5 mol (preferably 0.1 mol) or less per 1 mol of aromatic diamine. Ru.

ウェットケーク中の水分が、芳香族ジアミン1モル当り
0.5モルを越えろと、芳香族ジアミンウェットケーク
を二官能性芳香族酸性成分と直接反応させた場合の重合
活性が著しく低下するので好ましくない。
It is not preferable for the water content in the wet cake to exceed 0.5 mole per mole of aromatic diamine, as this will significantly reduce the polymerization activity when the aromatic diamine wet cake is directly reacted with a difunctional aromatic acidic component. .

本発明における不溶性触媒を回収する工程および晶析し
た芳香族ジアミンを口過分離して芳香族ジアミン結晶の
ウェットケークを回収する工程は、通常の固/液分離装
置のいずれを用いても実施できる。それらの代表例とし
て、静置式加圧口過機、静置式減圧口過機、圧送式フィ
ルタープレス、遠心分離機、回転式ドラムフィルター、
回転式ベルトフィルターなどが挙げられる。この口過分
離操作は、得られろウェットケーク中の含液率が70(
好ましくは60)重量%以下になるように実施されろ。
In the present invention, the step of recovering an insoluble catalyst and the step of separating the crystallized aromatic diamine by mouth to recover a wet cake of aromatic diamine crystals can be carried out using any conventional solid/liquid separator. . Typical examples include static pressurizing filters, static vacuum filters, pressure filter presses, centrifugal separators, rotating drum filters,
Examples include rotary belt filters. This separation operation results in a liquid content of 70 (
Preferably, the amount is 60% by weight or less.

含液率が70重量%を越える場合は、夏場のように気温
が高くなると保存中に溶液相が分離する危険性が発生す
るので好ましくない。
If the liquid content exceeds 70% by weight, it is not preferable because there is a risk that the solution phase will separate during storage when the temperature is high, such as in summer.

本発明で得られるウェットケークの含液率は、濃縮操作
を強化するかまたは分離回収後、乾燥工程にかけること
によってさらに低下させることができる。本発明の目的
の一つである芳香族ジアミン乾燥粉末の飛散防止効果が
得られるのは含液率3(好ましくは10)重量%以上で
あす、本発明のウェットケークは含液率3〜70(好ま
しくは10〜60)重量%の芳香族ジアミン結晶集合体
である。
The liquid content of the wet cake obtained in the present invention can be further reduced by intensifying the concentration operation or by subjecting it to a drying process after separation and recovery. The effect of preventing the aromatic diamine dry powder from scattering, which is one of the objects of the present invention, can be obtained when the liquid content is 3 (preferably 10)% by weight or more, and the wet cake of the present invention has a liquid content of 3 to 70% by weight. (preferably 10 to 60% by weight) of aromatic diamine crystal aggregates.

本発明で用いられる二官能性芳香族酸性化合物は、一般
式 である。ここでYは、水酸基、ハロゲン基、炭素数1〜
12個のアルコキシ基、Ar、Ar’、Ar−は炭素数
6〜40個の芳香族基を示す。
The difunctional aromatic acidic compound used in the present invention has the general formula: Here, Y is a hydroxyl group, a halogen group, or a carbon number of 1 to
The 12 alkoxy groups, Ar, Ar', and Ar- represent an aromatic group having 6 to 40 carbon atoms.

などが挙げられる。Examples include.

られる。It will be done.

れる。It will be done.

本発明における耐熱性重合体は上記の芳香族ジアミンウ
ェットケークと二官能性芳香族酸性化合物をアミド系極
性溶媒中で、実質的に等モル比(1/1±0.05モル
比)で混合し、100℃(好ましくは80℃)以下の温
度条件下、0.1〜10時間程度反応させることにより
合成される。そしてこの条件下で合成される耐熱性重合
体は、二官能性芳香族酸性化合物の覆類によって芳香族
ポリアミド、芳香族ポリアミド・アミド酸または芳香族
ポリアミド酸になる。芳香族ポリアミド・アミド酸およ
び芳香族ポリアミド酸は、続いて化学閉環または熱閉環
反応を起こさせることにより芳香族ポリアミドイミドお
よび芳香族ポリイミドに変化する。
The heat-resistant polymer in the present invention is a mixture of the above-mentioned aromatic diamine wet cake and a bifunctional aromatic acidic compound in a substantially equimolar ratio (1/1±0.05 molar ratio) in an amide polar solvent. However, it is synthesized by reacting for about 0.1 to 10 hours at a temperature of 100°C (preferably 80°C) or lower. The heat-resistant polymer synthesized under these conditions becomes aromatic polyamide, aromatic polyamide/amic acid, or aromatic polyamic acid by coating with a difunctional aromatic acidic compound. Aromatic polyamide/amic acid and aromatic polyamic acid are subsequently converted into aromatic polyamide-imide and aromatic polyimide by causing a chemical ring-closing or thermal ring-closing reaction.

〈実施例〉 以下、実施例を挙げて本発明を詳述する。<Example> Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 内容積5gのガラス製オートクレーブに4−4′−ジニ
トロジフェニルエーテル182f (0,7モル)、日
本エンゲルハルト製5%白金カーボン粉末4yおよびN
−メチル−2−ピロリドン(以下、NMPと略称する)
1000禽lを仕込み、オートクレーブ内の空気を窒素
で置換した後、水素で201120にダ/dゲージの中
間タンクを経由して3 kg / dゲージに加圧した
Example 1 4-4'-dinitrodiphenyl ether 182f (0.7 mol), 5% platinum carbon powder 4y manufactured by Engelhard Japan, and N were placed in a glass autoclave with an internal volume of 5 g.
-Methyl-2-pyrrolidone (hereinafter abbreviated as NMP)
After charging 1,000 liters of chicken and replacing the air in the autoclave with nitrogen, it was pressurized to 3 kg/d gauge with hydrogen via an intermediate tank of 201,120 da/d gauge.

次にゆるやかに攪拌しながら30分かけて90℃に加熱
し、続いて攪拌を激しくして反応を開始した。その後、
オートクレーブ内には3kf/dゲージの水素圧をかけ
続けた。強力攪拌開始後、約120分で中間タンクのゲ
ージ圧の低下が止んtごので続いて1時間攪拌して反応
を終了した。次に、内容物を吸引口過して、白金−カー
ボン粉末その他の不溶分を除去し、得られた口過母液を
精留管、窒素ガス導入管および攪拌機を備えた5gフラ
スコに移し、窒素ガスを流しながらトルエン500 d
を添加して約120〜130℃に加熱し、系中の水をト
ルエンとともに共沸留出させた。続いてトルエン500
 mlを追添加し、最終的に実質上すべてのトルエンを
留出させて脱水操作を終了した。
Next, the mixture was heated to 90° C. over 30 minutes with gentle stirring, and then the reaction was started with vigorous stirring. after that,
Hydrogen pressure of 3 kf/d gauge was continuously applied inside the autoclave. After about 120 minutes after the start of strong stirring, the gauge pressure in the intermediate tank stopped decreasing, so stirring was continued for 1 hour to complete the reaction. Next, the contents were passed through a suction port to remove platinum-carbon powder and other insoluble matter, and the obtained filtration mother liquor was transferred to a 5 g flask equipped with a rectifying tube, a nitrogen gas introduction tube, and a stirrer. 500 d of toluene while flowing gas
was added and heated to about 120 to 130°C, and the water in the system was azeotropically distilled together with toluene. followed by 500 toluene
ml was added, and finally substantially all of the toluene was distilled off to complete the dehydration operation.

得られた脱水液中の水分をカールフッシャー法で測定し
たところ380−であり、また、生成した4・4′−ジ
アミノジフェニルエーテル(以下、4−4’ −DDE
と略称する)を液クロ法で分析したところ芳香族化合物
中に占める純度98、996、収率99.8%であった
The water content of the obtained dehydrated solution was measured by the Karl Fuscher method and was found to be 380-.
When analyzed by liquid chromatography, the purity of the aromatic compounds was 98.996, and the yield was 99.8%.

次に、上記で得られた4・4’−DDEの脱水溶液を内
容積51のガラス製ロータリーエバポレーターに仕込み
、40 fiHgの減圧下に濃縮操作を行なってNMP
を約80 Q ml留出させた後、室温に冷却したとこ
ろ、4@4’−DDEの晶析スラリーが得られた。次に
、この晶析スラリーを遠心分離機にかけて結晶を回収し
たところNMPを37重量%含有したウェットケークが
約1531得られた。このウェットケーク中の4・4’
−DDEを液クロ法で分析したところ、芳香族化合物中
に占める純度が99.6%というすぐれたものであった
Next, the dehydrated solution of 4,4'-DDE obtained above was charged into a glass rotary evaporator with an internal volume of 51 cm, and concentrated under a reduced pressure of 40 fiHg to obtain NMP.
After about 80 Q ml of distilled water was cooled to room temperature, a crystallized slurry of 4@4'-DDE was obtained. Next, this crystallization slurry was centrifuged to collect crystals, and about 1,531 wet cakes containing 37% by weight of NMP were obtained. 4.4' in this wet cake
-DDE was analyzed by liquid chromatography and found to have an excellent purity of 99.6% among aromatic compounds.

次に、攪拌機を備えた内容積INの丸底フラスコに上記
で得られた4・4’−DDEのウェットケーク3L8f
(DDE換算0.10モル)、メタフェニレンジアミン
4.32y(0,04モル)およびN M P 300
 mlを仕込んで均一溶解した。この溶液を氷水浴で冷
却しながら、攪拌下、固体粉末状の無水トリメリット酸
モノクロリド29.5y(Q、14モル)を、内部の温
度が30℃を越えない速度で添加し、続いて1時間攪拌
を続行して重合体原液を得た。次に、この重合体原液を
強力攪拌下の水10e中に投入して重合体を析出させ、
水洗/脱水/乾燥してポリアミドイミド重合体粉末を得
た。得られた重合体の対数粘度pinh  (濃度:0
.5f/dl、溶媒二N−メチルー2−ピロリドン、温
度:30℃)を測定したところ0.88という実用性の
高いものであった。
Next, the wet cake 3L8f of 4,4'-DDE obtained above was placed in a round bottom flask with an internal volume of IN equipped with a stirrer.
(0.10 mol in terms of DDE), metaphenylenediamine 4.32y (0.04 mol) and N M P 300
ml was charged and uniformly dissolved. While cooling this solution in an ice-water bath, 29.5y (Q, 14 mol) of trimellitic anhydride monochloride in the form of a solid powder was added under stirring at a rate such that the internal temperature did not exceed 30°C, and then Stirring was continued for 1 hour to obtain a polymer stock solution. Next, this polymer stock solution was poured into water 10e under strong stirring to precipitate the polymer,
A polyamide-imide polymer powder was obtained by washing with water/dehydration/drying. Logarithmic viscosity pinh (concentration: 0
.. The measured value was 0.88, which was highly practical.

比較例1 水添反応溶媒および重合溶媒としてのNMPのかわりに
N@N−ジメチルホルムアミドを用いる以外すべて実施
例Iと同様の操作を行なったところ、得られた重合体の
′Pinhは0.25という著しく低いものであった。
Comparative Example 1 The same operations as in Example I were carried out except that N@N-dimethylformamide was used instead of NMP as the hydrogenation reaction solvent and polymerization solvent, and the resulting polymer had a 'Pinh of 0.25. This was extremely low.

実施例2 4・4′−ジニトロジフェニルエーテル1821c0.
7モル)のかわりに、4−ニトロ−3′−アミノジフェ
ニルエーテル161F(0,7モル)を用いる以外すべ
て実施例1と同様の操作を行なったところ、pinhが
0.91という実用性の高い重合体が得られた。
Example 2 4,4'-dinitrodiphenyl ether 1821c0.
The same procedure as in Example 1 was carried out except that 4-nitro-3'-aminodiphenyl ether 161F (0.7 mol) was used instead of 4-nitro-3'-aminodiphenyl ether 161F (0.7 mol). A combination was obtained.

実施例3 内容積5gのガラス製オートクレーブに2゜2−ビス(
4−p−ニトロフエノキシフエニA4)プロパン 329、71 (0,7モル)、日本エンゲルハルト社
製5%パラジウム−カーボン粉末14FおよびN、N−
ジメチルアセトアミド(以下、DMACと略称する31
500g/を仕込み、オートクレーブ内の空気を窒素で
置換した後、水素で206.20kv/dゲージの中間
タンクを経由して2 kq / c4ゲージに加圧した
。次にゆるやかに攪拌しながら80℃に加熱し、続いて
攪拌を激しくして反応を開始した。その後、オートクレ
ーブ内1こは2 kq / dゲージの水素圧をかけ続
けた。強力攪拌開始後、約5時間で中間タンクのケージ
圧の低下がほぼ止んtごので続いて2時間攪拌して反応
を終了した。次に内容物を吸引口過して、パラジウム−
カーボン粉末その他の不溶分を除去し、得られた口過母
液を内容積51のガラス製σ−タリーエバポレーターに
仕込み、4 Q mHgの減圧下に濃縮操作を行なった
Example 3 A 2° 2-screw (
4-p-Nitrophenoxyphenyl A4) Propane 329,71 (0.7 mol), 5% palladium-carbon powder 14F and N,N-
Dimethylacetamide (hereinafter abbreviated as DMAC)
After charging 500 g of autoclave and replacing the air in the autoclave with nitrogen, it was pressurized with hydrogen to 2 kq/c4 gauge via an intermediate tank of 206.20 kv/d gauge. Next, the mixture was heated to 80° C. with gentle stirring, and then the reaction was started with vigorous stirring. Thereafter, hydrogen pressure of 2 kq/d gauge was continued to be applied to one autoclave. About 5 hours after the start of strong stirring, the cage pressure in the intermediate tank almost stopped decreasing, so stirring was continued for 2 hours to complete the reaction. Next, the contents are passed through the suction port and palladium-
Carbon powder and other insoluble matter were removed, and the resulting filtration mother liquor was charged into a glass σ-tally evaporator with an internal volume of 51 cm, and concentrated under reduced pressure of 4 Q mHg.

この濃縮操作では初期には水が留出し、途中から水/D
MAC共沸系が留出し、末期にはDMACが留出し、全
留出量は約1.450 ztであった。その結果、エバ
ポレーター内に、DMACを28重量%含有したウェッ
トケークが3901残留した。このウェットケーク中の
2・2−ビス(4−p−アミノフェノキシフェニル)プ
ロパノ(以下、PODAと略称する)を液クロ法で分析
したところ、芳香族化合物中に占める純度は99.1%
であった。
In this concentration operation, water is distilled out at the beginning, and water/D
The MAC azeotrope was distilled out, and at the end, DMAC was distilled out, and the total distilled amount was about 1.450 zt. As a result, 3901 pieces of wet cake containing 28% by weight of DMAC remained in the evaporator. When 2,2-bis(4-p-aminophenoxyphenyl)propano (hereinafter abbreviated as PODA) in this wet cake was analyzed by liquid chromatography, the purity of the aromatic compounds was 99.1%.
Met.

次に攪拌機を備えた内容積llの丸底フラスコに上記で
得られたPODAのウェットケーク57.1f(POD
A換算0.10モル)およびDM A C400mlを
仕込んで均一溶解した。この溶液の入ったフラスコを氷
水浴につけ攪拌しながら固体粉末状のテレフタル酸ツク
ロリド/イソフタル酸ジクロリド(1F1モル比)混合
物20.3F(0,1モル)を内部の温度が30℃を越
丸ないような速度で添加し、続いて1時間攪拌を続行し
て重合体原液を得た。次に、この重合体原液を強力攪拌
下の水lO1中に投入して重合体を析出させ、水洗/脱
水/加熱乾燥してポリアミド重合体粉末を得た。得られ
た重合体の′Pinh 1.t 0.70という実用性
の高いものであつtこ。
Next, 57.1f of the wet cake of PODA obtained above (PODA
0.10 mol (calculated as A) and 400 ml of DM AC were charged and uniformly dissolved. Place the flask containing this solution in an ice water bath and add 20.3F (0.1 mol) of a solid powdered mixture of terephthalic acid chloride/isophthalic acid dichloride (1F 1 molar ratio) while stirring until the internal temperature exceeds 30°C. The polymer stock solution was obtained by adding the polymer at the same rate and then continuing stirring for 1 hour. Next, this polymer stock solution was poured into 1O1 water under strong stirring to precipitate the polymer, and the polymer was washed with water, dehydrated, and dried by heating to obtain a polyamide polymer powder. 'Pinh of the obtained polymer 1. It is highly practical with a t of 0.70.

実施例4 2.2−ビス(4−p−ニトロフェノキンフェニル)プ
ロパノ329.7j’(0,7モル)のかわりにビス(
4−p−ニトロフェノキンフェニル)スルホノ 345.1y(0,7モル)を用いる以外はすべて実施
例3と同様の操作を行なったところ、7+inh実施例
5 内容積5gのガラス製オートクレーブに4゜3′−ジニ
トロベノズアミド 143.5y(0,5モル)、ラネーニッケル水性ペー
スト3.5ノおよび1.3−ジメチル−2−イミダゾリ
ジノ7(以下、DMIと略称する)1500 zlを仕
込み、オートクレーブ内の空気を窒素で置換した後、水
素で201,20#/dゲージの中間タンクを経由して
8に9/C4ゲージに加圧した。次にゆるやかに攪拌し
ながら80℃に加熱し、続いて攪拌を激しくして反応を
開始した。その後、90℃に昇温しオートクレーブ内に
は3 kg / dゲージの水素圧をかけ続けた。強力
攪拌開始後約10時間で中間タンクのゲージ圧の低下が
ほぼ止んだので続いて2時間攪拌して反応を終了した。
Example 4 Bis(
All operations were performed in the same manner as in Example 3 except that 4-p-nitrophenoquinphenyl)sulfono 345.1y (0.7 mol) was used. 3'-dinitrobenozamide 143.5y (0.5 mol), Raney nickel aqueous paste 3.5y and 1,3-dimethyl-2-imidazolidino 7 (hereinafter abbreviated as DMI) 1500zl were charged and placed in an autoclave. After replacing the air with nitrogen, the tank was pressurized with hydrogen to 8 to 9/C4 gauge via a 201,20#/d gauge intermediate tank. Next, the mixture was heated to 80° C. with gentle stirring, and then the reaction was started with vigorous stirring. Thereafter, the temperature was raised to 90°C, and a hydrogen pressure of 3 kg/d gauge was continued to be applied inside the autoclave. Approximately 10 hours after the start of strong stirring, the gauge pressure in the intermediate tank almost stopped decreasing, so stirring was continued for 2 hours to complete the reaction.

次に内容物を吸引口過してラネーニッケルその他の不溶
分を除去し、得られた口過母液を精留管、および攪拌機
を備丸た5eフラスコに移し、キシレノ500 mlを
添加して、水流7スビレーターの減圧下に加熱して系中
の水をキシレノとともに共沸留出させた。続いてキシレ
ン5 Q Q ttを追添加し、最終的に実質上すべて
のキシレノを留出させて脱水操作を終了した。
Next, the contents were passed through a suction port to remove Raney nickel and other insoluble matter, and the resulting filtration mother liquor was transferred to a 5e flask equipped with a rectification tube and a stirrer, 500 ml of xyleno was added, and the water was The system was heated under reduced pressure using a subilator to azeotropically distill off the water in the system together with xyleno. Subsequently, xylene 5 Q Q tt was further added, and finally substantially all of the xylene was distilled off to complete the dehydration operation.

次に、上記脱水溶液を内容積51のガラス製ロータリー
エバポレーターに仕込み、40flHgの威圧下に濃縮
操作を行なってDMIを約1250 xl留出させた後
、室温に冷却したところ4e3′−ジアミノベンズアニ
リド(以下、4.3/−DABAと略称する)の晶析ス
ラリーが得られた。次に晶析スラリーを遠心分離機にか
けて結晶を回収したところ、DMIを46重量%含有し
たウェットケークが約204F得られた。このウェット
ケーク中の4・3’−DABAを液クロ法で分析したと
ころ、芳香族化合物中に占める純度が98.8%であっ
た。
Next, the dehydrated solution was charged into a glass rotary evaporator with an internal volume of 51 cm, and concentrated under a pressure of 40 flHg to distill out about 1250 xl of DMI. When cooled to room temperature, 4e3'-diaminobenzanilide was obtained. (hereinafter abbreviated as 4.3/-DABA) was obtained. Next, the crystallization slurry was centrifuged to collect crystals, and a wet cake containing 46% by weight of DMI was obtained at about 204F. When 4,3'-DABA in this wet cake was analyzed by liquid chromatography, the purity of the aromatic compounds was 98.8%.

次に攪拌機を備えた内容積14の丸底フラスコに上記で
得られた3・4’−DABAにl)ウェットケーク42
g(3−4’−DABA換算0. l 0モル)および
DMI3oomzを仕込んで均一溶解した。この溶液の
入ったフラスコを氷水浴につけ攪拌しながら固体粉末状
の3・3′・4・4′−ベノゾフエノンテトラカルボン
酸二無水物32.2F(0,1モル)を内部の温度が3
0℃を越えないような速度で添加し、続いて1時間攪拌
を続行して重合体原液を得た。次に、この重合体原液を
強力攪拌下の水101中に投入して重合体を析出させ水
洗/脱水/加熱乾燥してポリイミド重合体粉末を得た。
Next, in a round bottom flask with an internal volume of 14 equipped with a stirrer, add the 3,4'-DABA obtained above to l) Wet cake 42
g (0.1 0 mol in terms of 3-4'-DABA) and DMI3oomz were charged and uniformly dissolved. The flask containing this solution was placed in an ice water bath, and while stirring, 32.2 F (0.1 mol) of solid powder 3,3',4,4'-benozophenonetetracarboxylic dianhydride was added until the internal temperature was reached. 3
The mixture was added at a rate that did not exceed 0° C., and stirring was continued for 1 hour to obtain a polymer stock solution. Next, this polymer stock solution was poured into water 101 under strong stirring to precipitate the polymer, which was then washed with water, dehydrated, and dried by heating to obtain a polyimide polymer powder.

得られた重合体の7inhは0.69という実用性の高
いものであった。
The 7 inch of the obtained polymer was 0.69, which was highly practical.

〈発明の効果〉 本発明の途中で得られる芳香族ジアミノのウェットケー
クは、有害物質粉塵対策が不用かつコスト/パフォーマ
ンスがすぐれているため、そのまま極性溶媒中で二官能
性芳香族酸性化合物、たとえばピロメリット酸二無水物
、無水トリメリット酸モノクロリド、テレフタル酸ジク
ロリド、イソフタル酸ジクロリドなどと反応させろこと
により安全に実用的高重合度を有する耐熱性高分子類を
製造することができる。そして、これらの耐熱性高分子
類は、すぐれた耐熱性および力学特性を利用して、電気
・電子部品、航空φ宇宙機器部品、自動車用部品、事務
機器部品などの分野に広く活用される。
<Effects of the Invention> The wet cake of aromatic diamino obtained during the process of the present invention does not require measures against harmful substance dust and has excellent cost/performance. By reacting with pyromellitic dianhydride, trimellitic anhydride monochloride, terephthalic acid dichloride, isophthalic acid dichloride, etc., heat-resistant polymers having a practically high degree of polymerization can be safely produced. Utilizing their excellent heat resistance and mechanical properties, these heat-resistant polymers are widely used in fields such as electrical and electronic parts, aerospace equipment parts, automobile parts, and office equipment parts.

Claims (1)

【特許請求の範囲】  重合反応阻害性のない極性溶媒中、 不均一系水添触媒の存在下に芳香族ジニトロ化合物また
は芳香族モノニトロアミノ化合物を接触還元した後、不
均一系水添触媒をロ過回収し、次に芳香族ジアミンを晶
析させて溶媒 含有率3〜70重量%のウェットケーク状に単離するこ
とによつて調製した芳香族ジアミンウェットケークと二
官能性芳香族酸性化合物をアミド系極性溶媒中で反応さ
せることを特徴とする芳香族ジアミンから誘導される耐
熱性重合体の製造方法。
[Claims] After catalytically reducing an aromatic dinitro compound or an aromatic mononitroamino compound in the presence of a heterogeneous hydrogenation catalyst in a polar solvent that does not inhibit the polymerization reaction, the heterogeneous hydrogenation catalyst is Aromatic diamine wet cake and difunctional aromatic acidic compound prepared by collecting the aromatic diamine by filtration and then crystallizing the aromatic diamine and isolating it in the form of a wet cake with a solvent content of 3 to 70% by weight. 1. A method for producing a heat-resistant polymer derived from an aromatic diamine, which comprises reacting the following in an amide polar solvent.
JP14959086A 1986-06-27 1986-06-27 Production of heat-resistant polymer derived from aromatic diamine Pending JPS638418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14959086A JPS638418A (en) 1986-06-27 1986-06-27 Production of heat-resistant polymer derived from aromatic diamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14959086A JPS638418A (en) 1986-06-27 1986-06-27 Production of heat-resistant polymer derived from aromatic diamine

Publications (1)

Publication Number Publication Date
JPS638418A true JPS638418A (en) 1988-01-14

Family

ID=15478527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14959086A Pending JPS638418A (en) 1986-06-27 1986-06-27 Production of heat-resistant polymer derived from aromatic diamine

Country Status (1)

Country Link
JP (1) JPS638418A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168502A (en) * 2009-01-26 2010-08-05 Mitsubishi Gas Chemical Co Inc Polyamide
JP2014094889A (en) * 2012-11-07 2014-05-22 Toray Fine Chemicals Co Ltd Diamine compound and its manufacturing method
JP2014094890A (en) * 2012-11-07 2014-05-22 Toray Fine Chemicals Co Ltd Diamine compound and manufacturing method thereof
JP2014094888A (en) * 2012-11-07 2014-05-22 Toray Fine Chemicals Co Ltd Diamine compound and manufacturing method thereof
WO2024013195A1 (en) * 2022-07-11 2024-01-18 Cap Iii B.V. Process for the recovery of spandex and nylon 6 from spandex and nylon comprising materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168502A (en) * 2009-01-26 2010-08-05 Mitsubishi Gas Chemical Co Inc Polyamide
JP2014094889A (en) * 2012-11-07 2014-05-22 Toray Fine Chemicals Co Ltd Diamine compound and its manufacturing method
JP2014094890A (en) * 2012-11-07 2014-05-22 Toray Fine Chemicals Co Ltd Diamine compound and manufacturing method thereof
JP2014094888A (en) * 2012-11-07 2014-05-22 Toray Fine Chemicals Co Ltd Diamine compound and manufacturing method thereof
WO2024013195A1 (en) * 2022-07-11 2024-01-18 Cap Iii B.V. Process for the recovery of spandex and nylon 6 from spandex and nylon comprising materials

Similar Documents

Publication Publication Date Title
JPS5950691B2 (en) Polyimide and its manufacturing method
Hsiao et al. Syntheses and properties of polyimides based on bis (p-aminophenoxy) biphenyls
Hsiao et al. Synthesis and properties of polyimides, polyamides and poly (amide‐imide) s from ether diamine having the spirobichroman structure
JP3053462B2 (en) 9,9-bis (perfluoroalkyl) xanthene, 9-aryl-9-perfluoroalkylxanthene, monomers and polymers derived therefrom
JPS638418A (en) Production of heat-resistant polymer derived from aromatic diamine
JP5246983B2 (en) Method for producing polyimide
WO2006085493A1 (en) Aromatic diamine and process for producing the same
CA1339574C (en) Process for the preparation of high-purity 5,5&#39;-[2,2,2,- trifluoro-1- (trifluoromethyl)-ethylidene]bis-1,3-isobenzofurandione
US4376195A (en) Method of preparing high purity polyamic acids for use in electronic circuitry
Wang et al. Synthesis and properties of novel polyaspartimides from 2, 7-bis (4-maleimidophenoxy) naphthalene and aromatic diamines
US5081315A (en) Fluoro-containing compounds based on 4,4&#39;-bis[2-(4-hydroxyphenyl) hexafluoroisopropyl]diphenyl ether, processes for their preparation and their use
JPS6327527A (en) Production of heat-resistant polymer
EP0098681A2 (en) Novel dinitrobenzophenone solution and process for preparing an ether solution of diaminobenzophenones therefrom
JP3085610B2 (en) Method for producing bismaleimides
JPH0774199B2 (en) Method for producing aromatic cyclic polyimide
US4598143A (en) Process for the preparation of aromatic polyamide in the presence of SiCl4
JPH032135A (en) Monomer containing hexafluoroiropropyl group, production thereof and use thereof
JPS62275165A (en) Production of aromatic polyamic acid solution for paint
WO1992012118A1 (en) Preparation of aromatic diamines from amino phenols or dihydroxyaromatics and bromoaniline
JPH08134056A (en) High-purity biphenyltetracarboxylic acid dianhydride and its production
JP3386383B2 (en) Method for producing polyimide
CN114656356A (en) Spiro-indane tetraacylchloride and preparation method thereof, and composite membrane and preparation method thereof
JPS62149650A (en) Production of aromatic bisaniline
JPS63122668A (en) Production of bis(hydroxyphthalimide)
JPH0859614A (en) Production of bisdicarboximide