JPS6383227A - Improvement of iron loss value of electrical steel sheet - Google Patents

Improvement of iron loss value of electrical steel sheet

Info

Publication number
JPS6383227A
JPS6383227A JP61226271A JP22627186A JPS6383227A JP S6383227 A JPS6383227 A JP S6383227A JP 61226271 A JP61226271 A JP 61226271A JP 22627186 A JP22627186 A JP 22627186A JP S6383227 A JPS6383227 A JP S6383227A
Authority
JP
Japan
Prior art keywords
steel sheet
laser
iron loss
lenses
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61226271A
Other languages
Japanese (ja)
Other versions
JPH0619112B2 (en
Inventor
Shinya Ishii
石井 信也
Kikuji Hirose
広瀬 喜久司
Takeji Egashira
江頭 武二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61226271A priority Critical patent/JPH0619112B2/en
Publication of JPS6383227A publication Critical patent/JPS6383227A/en
Publication of JPH0619112B2 publication Critical patent/JPH0619112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the iron loss of an electrical steel sheet to the value better than by the conventional method by projecting the YAG laser light condensed by flat field lenses in such a manner as to satisfy the specific conditions and equations and in the direction approximately perpendicular to the rolling direction onto the surface of the steel sheet. CONSTITUTION:The continuously oscillated laser light is projected to the surface of the grain oriented electrical steel sheet in the above-mentioned direction in a manner as to satisfy the conditions I-III and the relational equation IV to improve iron loss value thereof. More specifically, the YAG laser 1 is condensed 2 and is branched to a phase A and phase B by a rotary mirror 3 provided at the focal point. The respective laser beams are condensed by collimating lenses 5A, 5B. The beams are polarized downward by mirrors 6A, 6B and are projected by mirrors 7A, 7B to galvanomirrors 8A, 8B provided right above Ftheta lenses 9A, 9B. As a result, the beams are scanned on the lens faces of the lenses 9A, 9B and are condensed and projected onto the steel sheet S to be treated by the lenses 9A, 9B. The laser beam treatment is executed approximately perpendicularly to the transverse direction of the steel S by dividing the laser beams to the two beams in the transverse direction of said steel sheet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁銅板の鉄損値の改善方法に関するもので
あり、さらに詳しく述べるならば、電磁鋼板の表面にレ
ーザー光を照射することにより磁区構造に変化を生じせ
しめることにより鉄損値を向上せしめる方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for improving the iron loss value of an electromagnetic copper plate, and more specifically, by irradiating the surface of an electromagnetic steel plate with laser light. This invention relates to a method of improving iron loss value by causing changes in magnetic domain structure.

〔従来の技術〕[Conventional technology]

電磁鋼板の表面にレーザー光を照射することにより磁区
構造に変化を生じせしめることにより鉄損値を向上せし
める技術は、本出願人の特公昭57−2252号をもっ
て唱矢とし、その後多数の技術が特許として公表されて
いる。レーザー光照射により鋼板に痕跡が残るか否かの
観点からレーザー光照射技術を分類することができる。
The technology of improving the iron loss value by changing the magnetic domain structure by irradiating the surface of an electrical steel sheet with laser light was pioneered by the present applicant in Japanese Patent Publication No. 57-2252, and since then many technologies have been developed. Published as a patent. Laser light irradiation techniques can be classified from the viewpoint of whether or not traces are left on the steel plate by laser light irradiation.

痕跡を残すことが前提になっている技術には、例えば特
公昭58−50297号、特公昭5B−50298号で
ある。一方、特開昭59−33802号は連続発振レー
ザー光を照射に用いると絶縁被膜に損傷を与えることな
く磁区の細分化による鉄損値低下が可能であることを開
示している。よって、特開昭59−33802号は鋼板
に痕跡を残さない技術に分類される。
Examples of techniques based on leaving traces include Japanese Patent Publication No. 58-50297 and Japanese Patent Publication No. 5B-50298. On the other hand, JP-A No. 59-33802 discloses that when continuous wave laser light is used for irradiation, it is possible to reduce the iron loss value by subdividing the magnetic domains without damaging the insulating coating. Therefore, JP-A-59-33802 is classified as a technique that does not leave traces on the steel plate.

特開昭59−33802号に開示されたレーザー光照射
条件で際立ったところは次の点にあると認められる。走
査線が鋼板の移動方向(圧延方向)に対してほぼ直角に
なり、隣合った走査線間の間隔が適当になるような条件
で照射時間制御により最大の磁区細分化を行なうような
条件を一般的条件とする。具体的条件としては、(イ)
wj板垂直面でのエネルギー密度の制御、(ロ)レーザ
ービームの断面形状の選定、(ハ)単位面積当たりのレ
ーザーパワー制御卸についての説明がなされている。
It is recognized that the following points are notable about the laser beam irradiation conditions disclosed in JP-A-59-33802. The scanning lines are almost perpendicular to the moving direction (rolling direction) of the steel plate, and the spacing between adjacent scanning lines is appropriate, and the irradiation time is controlled to achieve maximum magnetic domain refining. General conditions. The specific conditions are (a)
Control of the energy density on the vertical plane of the WJ plate, (b) selection of the cross-sectional shape of the laser beam, and (c) control of the laser power per unit area are explained.

(イ)の制御は鋼板内部への熱の拡散を制御することに
より磁区細分化の効果を生じるものである。
Control (a) produces the effect of magnetic domain refining by controlling the diffusion of heat into the steel sheet.

(イ)の制御対象であるエネルギー密度を決定する要因
は、レーザーパワーP、レーザービームが鋼板の幅Wを
横切るに必要とする走査時間tSCalls鋼板の幅W
、ある特定位置にスポットが滞在する時間Δt、銅板の
熱拡散率kにより決定される。
The factors that determine the energy density to be controlled in (b) are the laser power P, the scanning time tSCalls required for the laser beam to cross the width W of the steel plate, and the width W of the steel plate.
, the time Δt that the spot stays at a specific position, and the thermal diffusivity k of the copper plate.

これらの要因のうち実際上制御の対象となる要因はレー
ザーパワーPであり、また20〜600WのNd−YA
Gレーザーを高速走査することが良好な結果を与える。
Among these factors, the factor that is actually subject to control is the laser power P, and the 20 to 600 W Nd-YA
Fast scanning of the G laser gives good results.

またエネルギー密度が高すぎると絶縁被膜の損傷が起る
。これを避けるためにはレーザーパワー、走査時間、滞
在時間の選定が必要である。(ロ)のレーザービームの
断面形状の選定は、絶縁被膜の損傷を生じないである特
定位置にスポットが滞在する時間Δtを長くし、磁区細
分化効果を高めるものである。具体的には、走査方向に
長軸を有する楕円形スポットをシリンドリカルレンズで
形成する。(ハ)も絶縁膜の損傷を生じさせないために
上限を制御する要因である。
Also, if the energy density is too high, damage to the insulation coating will occur. To avoid this, it is necessary to select laser power, scanning time, and residence time. The selection of the cross-sectional shape of the laser beam (b) increases the time Δt during which the spot stays at a specific position without causing damage to the insulating film, thereby enhancing the magnetic domain refining effect. Specifically, an elliptical spot having a long axis in the scanning direction is formed using a cylindrical lens. (C) is also a factor for controlling the upper limit in order to prevent damage to the insulating film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は、連続発振レーザーにより電磁鋼板の鉄損値
を改善する方法において、−層の改善の可能性を目的と
して実験を行なった。
The present inventor conducted an experiment with the aim of improving the -layer in a method of improving the iron loss value of an electrical steel sheet using a continuous wave laser.

その過程で、絶縁被膜の非損傷性を調べるため特開昭5
9−33802号に記載された絶縁破壊電圧を測定する
方法の他に、塩酸噴霧試験法を行なって絶縁被膜がレー
ザー照射により損傷を受けたが否かを検討した。その結
果、破壊電圧測定法では非照射絶縁被膜と区別できない
照射絶縁被膜の一部が塩酸噴霧により発錆し、被膜が損
傷していることが認められた。
In the process, in order to investigate the non-damage properties of the insulating coating,
In addition to the method of measuring dielectric breakdown voltage described in No. 9-33802, a hydrochloric acid spray test method was conducted to examine whether the insulating coating was damaged by laser irradiation. As a result, it was found that a portion of the irradiated insulating film, which cannot be distinguished from the non-irradiated insulating film by the breakdown voltage measurement method, was rusted by the hydrochloric acid spray and the film was damaged.

さらに、特開昭59〜33802号の第3図に記載され
たようにレーザーエネルギー密度が高くなると、鉄損は
低下するが絶縁被膜が損傷するという関係があり、この
特開昭59−33802号に開示されたより更に鉄損を
低下しようとすると、ここに具体的に説明されたレーザ
ーパワーP、レーザービームが鋼板の幅Wを横切るに必
要とする走査時間t 5CII11、鋼板の幅W、ある
特定位置にスポットが滞在する時間Δt、鋼板の熱拡散
率にの調節とは別の手法を採用する必要があることが認
められた。
Furthermore, as shown in FIG. 3 of JP-A No. 59-33802, when the laser energy density increases, the iron loss decreases but the insulation coating is damaged. In order to further reduce the iron loss than that disclosed in , the laser power P, the scanning time t required for the laser beam to traverse the width W of the steel plate, t5CII11, the width W of the steel plate, and a certain It was recognized that it was necessary to adopt a method different from adjusting the time Δt that a spot stays in a position and the thermal diffusivity of the steel plate.

C問題点を解決するための手段〕 本発明は、フラントフィールドレンズにより集光したY
AGレーザ光を下記条件(a)、(b)、(c)および
関係式(d)を満足するように、がつ円形のスポットと
して鋼板に照射して極めて低い鉄損値を得ることを特徴
とする。
Means for Solving Problem C] The present invention provides Y light condensed by a flank field lens.
The feature is that an extremely low iron loss value can be obtained by irradiating AG laser light onto a steel plate as a circular spot so as to satisfy the following conditions (a), (b), (c) and relational expression (d). shall be.

(a)  レーザーハ’7− P (W)      
 40≦P ≦80(b)  レーサービー4径d(a
m)    0.04≦d ”0.1(c)  レーザ
ー走査スピードV。
(a) Laserha'7-P (W)
40≦P≦80(b) Racerby 4 diameter d(a
m) 0.04≦d”0.1 (c) Laser scanning speed V.

(w/5ec)   4000≦V、≦6000(d)
関係式: %式% 但し、η1は電磁鋼板表面に形成された絶縁被膜の透過
率である。
(w/5ec) 4000≦V, ≦6000(d)
Relational formula: % formula % However, η1 is the transmittance of the insulating film formed on the surface of the electromagnetic steel sheet.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

上記した関係式4P77+ /π(d’  ・Vs)”
”はエネルギー密度を表わす 4P/π(d3  ・V、、)I/2・・・川(1)の
項を含む。(1)式は P/((π/4)・d2)  ・・・・・・(2)と(
d/V5)””  ・・・・・・(3)の積である。(
2)式は円形スポット面積当たりのレーザーパワーを表
わし、また(3)式は直径(d)のそのレーザースポッ
トが鋼板に滞在する時間の因子である。(2)式と(3
)式の積により鋼板への投入熱量が定まる。
The above relational expression 4P77+ /π(d'・Vs)"
” represents the energy density, 4P/π(d3 ・V, ,) I/2... Contains the term of river (1).Equation (1) is P/((π/4)・d2)... ...(2) and (
d/V5)""...It is the product of (3). (
Equation 2) represents the laser power per circular spot area, and equation (3) is a factor for the time that the laser spot of diameter (d) stays on the steel plate. Equation (2) and (3
) The amount of heat input to the steel plate is determined by the product of the equation.

η1は絶縁皮膜のYAGレーザー波(波長1.06μm
)に対する透過率である。η1は、あらかじめ透過率の
判明しているガラス上に皮膜を塗布し、レーザー光を照
射した時、ガラスの反対側に設置したパワーメータにて
透過レーザーパワーを測定することにより、得られる。
η1 is the YAG laser wave of the insulation film (wavelength 1.06 μm
). η1 can be obtained by applying a film on glass whose transmittance is known in advance, irradiating it with laser light, and measuring the transmitted laser power with a power meter installed on the opposite side of the glass.

η1は皮膜中の酸素量の多ケにより変化するが、鉄損効
果を十分得る条件として十分な地鉄への投入熱量を得る
ためには、η1はすくなくとも0.8以上必要である。
η1 changes depending on the amount of oxygen in the film, but in order to obtain a sufficient amount of heat input to the base iron as a condition for obtaining a sufficient iron loss effect, η1 must be at least 0.8 or more.

よって絶縁被膜の状態によって適切な投入熱量を得るこ
とが重要である。なお、絶縁被膜の状態を変える最大の
要因は原板の鉄損を良好にすべく為されている脱炭焼鈍
雰囲気制御、絶縁被膜の組成調整であり、これらは重要
な技術であるが、絶縁被膜の色調を変化させてレーザー
照射効果を著しく変動させる原因となる。
Therefore, it is important to obtain an appropriate amount of heat input depending on the state of the insulation coating. The biggest factors that change the state of the insulation coating are the decarburization annealing atmosphere control and composition adjustment of the insulation coating, which are done to improve the core loss of the original plate.These are important technologies, but the insulation coating This causes the color tone to change and the laser irradiation effect to vary significantly.

YAGレーザーを用いて、η、 =0.85である電磁
鋼板についてレーザービーム形状および4P/π(d3
.VS )””を変化させて、鉄損(WIT/So)お
よび耐性を測定した結果を示す第1図を参照として、さ
らに本発明の説明を行なう。第1図で供試した電磁鋼板
は厚さ0.23mmであり、磁気特性が鉄損W+715
0 =0.913 W/ K g 、磁束密度BIO=
1.9347であり、絶縁被膜はアルミナとコロイダル
シリカを主体とするものである。
Using a YAG laser, the laser beam shape and 4P/π (d3
.. The present invention will be further explained with reference to FIG. 1, which shows the results of measuring iron loss (WIT/So) and resistance by varying VS)''. The electromagnetic steel sheet used in Figure 1 has a thickness of 0.23 mm, and its magnetic properties are iron loss W + 715.
0 = 0.913 W/K g, magnetic flux density BIO=
1.9347, and the insulating coating is mainly composed of alumina and colloidal silica.

第1図の下側横軸は、レーザーパワーP、レーザービー
ム径d3レーザー走査スピード■3を特許請求の範囲の
値内で変化させて与えたエネルギー密度4P/π(d3
 、V、)I/2を表わす。上側横軸は特開昭59−3
3802号に示されたエネルギー密度E/Avである。
The lower horizontal axis in Fig. 1 is the energy density 4P/π (d3
, V, ) represents I/2. The upper horizontal axis is JP-A-59-3
This is the energy density E/Av shown in No. 3802.

レーザービームスポットの幾何学形状を、(イ)円形、
直径d>O,1mn(上限10璽園)、(ロ)円形、直
径d =0.04〜0.1璽−1(ハ)楕円、長径a−
20mm、短径b = 0.2 *uの三種類で変化さ
せた。なお惰肯≠*#零≠、楕円についてはab=d2
として横軸のエネルギー密度を計算した。
The geometric shape of the laser beam spot is (a) circular;
Diameter d > O, 1 mm (upper limit 10 mm), (b) circular, diameter d = 0.04 to 0.1 mm -1 (c) ellipse, major axis a-
It was varied in three types: 20 mm, minor axis b = 0.2 *u. In addition, inertia≠*#zero≠, ab=d2 for the ellipse
The energy density on the horizontal axis was calculated as .

−に記諸条件でレーザーを測定した後鉄損(WI、/、
。)を通常の方法で測定し、また被膜損傷の有無を5%
IIcI溶液に5時間噴霧し、その後24時間放置して
発錆の有無により評価した。
− Iron loss (WI, /, after measuring the laser under the conditions described in
. ) is measured in the usual way, and the presence or absence of film damage is measured at 5%.
It was sprayed onto the IIcI solution for 5 hours, then left to stand for 24 hours, and evaluated based on the presence or absence of rust.

第1図から明らかなように、d=0.04〜Q、l m
mの細径円径スポットを高いエネルギー密度で照射する
と鉄損が著しく低下しまた絶縁被膜の損傷が起るエネル
ギー密度が高い値にずれる。これに対して楕円形スポッ
トで照射すると、鉄損低下が顕著でなく、かつ低いエネ
ルギー密度で絶縁被膜の損傷が起る。d > 0.11
1の大径円形スポットは細径円形スポットと楕円形スポ
ットの中間的挙動を示す。
As is clear from Fig. 1, d=0.04~Q, l m
When a spot with a small circular diameter of m is irradiated at a high energy density, iron loss is significantly reduced, and the energy density at which damage to the insulating film occurs shifts to a high value. On the other hand, when irradiating with an elliptical spot, the reduction in core loss is not significant and damage to the insulating film occurs at low energy density. d > 0.11
The large-diameter circular spot No. 1 exhibits intermediate behavior between the small-diameter circular spot and the elliptical spot.

以下、本発明における数値限定理由を説明する。The reason for numerical limitation in the present invention will be explained below.

d =0.04〜0.1 ++nの円形スポットを用い
ることにしたのは、第1図を参照して説明したように絶
縁被膜の損傷を招かずに、エネルギー密度を高めて著し
く低い鉄損を達成することができるからである。レーザ
ービームの径dはビームエキスパングーで調節する。レ
ーザービームのスポットの円形形状はフラットフィール
ドレンズで得られる。
The reason why we decided to use a circular spot with d = 0.04 to 0.1 ++n is that, as explained with reference to Fig. 1, we can increase energy density and significantly lower core loss without causing damage to the insulating film. This is because it is possible to achieve The diameter d of the laser beam is adjusted with a beam expander. The circular shape of the laser beam spot is obtained with a flat field lens.

4Pη1/π (d’  ・Vs )””を40以」二
としたのは、これ未満の投入熱量であると鉄損の改善効
果が低く、原板(レーザー照射前の一方向性電磁銅板)
に対する改善が10%を越えないからである。一方4P
η+ / n (d” Vs ) ””を90未満とし
たのは、これを越えると絶縁被膜の損傷が起るからであ
る。なお、投入熱量が90を越えても、絶縁被膜の破壊
電圧が急激に低下するという問題はないが、レーザー照
射後の鋼板が需要家もしくは製造者の工場で在庫された
ときに錆が発生する問題が起り得る。こうなると外観不
良の問題に留らず、耐電圧不良等の重大な品質上の欠陥
を生じる。
The reason why 4Pη1/π (d' ・Vs) was set to 40 or more is because if the input heat amount is less than this, the iron loss improvement effect will be low, and the original plate (unidirectional electromagnetic copper plate before laser irradiation)
This is because the improvement over 10% does not exceed 10%. On the other hand, 4P
The reason why η+ / n (d"Vs) "" is set to be less than 90 is because if this value is exceeded, the insulation coating will be damaged. Furthermore, even if the amount of heat input exceeds 90, the breakdown voltage of the insulation coating will be Although there is no problem of sudden deterioration, rust may occur when the steel plate after laser irradiation is stored at a customer's or manufacturer's factory.This will not only cause poor appearance, but also lead to poor durability. This will result in serious quality defects such as voltage failure.

レーザーパワーPとレーザー走査スピードvsは現在実
現可能なレーザーパワーの中で低めの範囲と、高速走査
スピードを組み合わせるごとによって絶縁被膜損傷傾向
を抑制するように定めた。
Laser power P and laser scanning speed vs. were determined to suppress the tendency to damage the insulating coating by combining a lower range of laser power that is currently achievable and a higher scanning speed.

低いパワーのレーザーを高速で走査するとエネルギー投
入量が少なくなり、鉄損改善効果が少なくなるという不
都合が起るが、この点はビームのスポット形状を円形に
特定するとともにビーム径を極めて小さい0.04〜Q
、 l **に特定することにより、解決した。レーザ
ーパワーPが40Wを下回りまたレーザー走査スピード
V、が6m/secを越えると、レーザービーム径dを
極端に小さくしなければ、所定の4Pη1/π(d3 
・y、)l/2を維持することができず、また板金維持
できたにせよ鉄損改善効果は優れない。レーザーパワー
Pが80wを越えまたレーザー走査スピード■5が4m
/secを下回ると、逆にレーザービーム径dを大きく
しなければならず、絶縁被膜が損傷し易くなりまた鉄損
改善が優れない。レーザーパワーは□通常のパワーメー
ターで測定する。走査スピードはスポットの鋼板との相
対速度の計算値による。
Scanning at high speed with a low power laser has the disadvantage that the amount of energy input is small and the iron loss improvement effect is reduced.However, in this case, the beam spot shape is specified to be circular and the beam diameter is extremely small. 04~Q
, l** was solved. When the laser power P is less than 40W and the laser scanning speed V exceeds 6 m/sec, the predetermined 4Pη1/π(d3
・Y, )l/2 could not be maintained, and even if the sheet metal could be maintained, the iron loss improvement effect would not be excellent. Laser power P exceeds 80w and laser scanning speed ■5 is 4m
If it is less than /sec, on the contrary, the laser beam diameter d must be increased, the insulating coating is likely to be damaged, and iron loss improvement is not excellent. Laser power is measured using a regular power meter. The scanning speed is based on the calculated value of the relative speed of the spot to the steel plate.

さらに本発明の実施する好ましい装置について第2図を
参照として説明する。
Further, a preferred apparatus for carrying out the present invention will be described with reference to FIG.

YAGレーザ−1は集光レンズ2で集光され、集光点に
設けられている回転ビームスブリットミラー3 (駆動
モーター4で回転)でレーザーはA相及びB相に分岐さ
れ、A相、B相夫々のレーザー光線はコリメートレンズ
5A、5Bにて集光される。そしてミラー6A、6Bで
下方へ偏光され、ミラー7A、7BT:Fθレンズ9A
、9Bの直」二に設けられているガルバーミラー8A、
8Bに照射してFθレンズ9A、9Bのレンズ面にスキ
ャニングし、Fθレンズ9A、9Bにより被処理銅板S
上に集光照射される。而して被処理鋼板Sの巾方向にA
、B2分担して巾方向にはソ゛直角にレーザービーム処
理が行われるものである。
The YAG laser 1 is focused by a condensing lens 2, and the laser is split into A-phase and B-phase by a rotating beam split mirror 3 (rotated by a drive motor 4) provided at the condensing point. The respective laser beams are focused by collimating lenses 5A and 5B. The light is then polarized downward by mirrors 6A and 6B, and mirrors 7A and 7BT: Fθ lens 9A
, Galver mirror 8A installed on the second side of 9B,
8B and scans the lens surfaces of Fθ lenses 9A and 9B.
A focused beam of light is irradiated on top. A in the width direction of the steel plate S to be treated
, B2, and laser beam processing is performed at right angles to the width direction.

さらに、本発明の詳細な説明する。Furthermore, the present invention will be explained in detail.

〔実施例〕〔Example〕

レーザー照射した一方向性電磁鋼板は次のとうりである
The unidirectional electrical steel sheet irradiated with laser is as follows.

以下余白 表  1 YAGレーザー照射条件は次のとうりである。Margin below Table 1 The YAG laser irradiation conditions were as follows.

表  2 備考 *1−(2)式と同じ *2−4PηI/π(d3  ・V、)l/2と同じ*
3−d/走査スピード 第4に示す条件の組み合わせでレーザー照射を行ない、
鉄損改善率を次の式で計算して求めた。
Table 2 Notes *1 - Same as formula (2) *2 - Same as 4PηI/π(d3 ・V,)l/2 *
3-d/scanning speed Perform laser irradiation under the combination of conditions shown in the fourth,
The iron loss improvement rate was calculated using the following formula.

表  3 表3の各試験例では塩酸噴霧試験による発錆はいづれも
認められなかった。
Table 3 In each of the test examples in Table 3, no rust was observed in the hydrochloric acid spray test.

比較のために下記条件でレーザー照射を行なった。For comparison, laser irradiation was performed under the following conditions.

表4 備考:XYはYAGレーザーを意味する。Table 4 Note: XY means YAG laser.

鉄損改善率および塩酸噴霧試験による発錆の有無を次表
に示す。
The following table shows the iron loss improvement rate and the presence or absence of rust based on the hydrochloric acid spray test.

以下余白 表5 〔発明の効果〕 本発明によると、従来の連続発振レーザー照射により鉄
損を改善する方法より一層の鉄損の改善と一層良好な絶
縁膜健全性を同時に達成することができた。
Margin Table 5 below [Effects of the Invention] According to the present invention, it was possible to simultaneously achieve further improvement in iron loss and better insulating film integrity than in the conventional method of improving iron loss by irradiation with continuous wave laser. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は÷レモ聴Y A Gレーザーの投入熱量と鉄損
の関係を、スポット形状のパラメータとして示すグラフ
、第2図はスキャナ内光路図を示す図面である。 1・・・YAGレーザ−、2・・・集光レンズ、3・・
・回転ビームスプリントミラー、5・・・コリメートレ
ンズ、  6,7・・・ミラー、8・・・ガルパ、  
     9・・・Fθレンズ。
FIG. 1 is a graph showing the relationship between input heat amount and iron loss of ÷REMO YAG laser as a parameter of spot shape, and FIG. 2 is a drawing showing an optical path diagram in the scanner. 1... YAG laser, 2... Condensing lens, 3...
・Rotating beam splint mirror, 5...Collimating lens, 6,7...Mirror, 8...Galpa,
9...Fθ lens.

Claims (1)

【特許請求の範囲】 1、方向性電磁鋼板の表面に圧延方向とほぼ直角方向に
連続発振レーザー光を照射して、鉄損値を改善する方法
において、 フラットフィールドレンズにより集光したYAGの円形
スポットを下記条件(a)、(b)、(c)および関係
式(d)を満足するように照射して極めて低い鉄損値を
得ることを特徴とする電磁鋼板の鉄損値改善方法。 (a)レーザーパワーP(W) 40≦P≦80(b)
レーザービーム径d(mm) 0.04≦d≦0.1(
c)レーザー走査スピードV_s (mm/sec)4000≦V_s≦6000(d)関
係式: 40≦4Pη_1/π(d^3・V_s)^1^/^2
≦90但し、η_1は電磁鋼板表面に形成された絶縁被
膜の透過率で1≧η_1≧0.8である。
[Claims] 1. In a method for improving the iron loss value by irradiating the surface of a grain-oriented electrical steel sheet with continuous wave laser light in a direction substantially perpendicular to the rolling direction, the YAG circular shape is focused by a flat field lens. A method for improving an iron loss value of an electrical steel sheet, the method comprising obtaining an extremely low iron loss value by irradiating a spot so as to satisfy the following conditions (a), (b), (c) and relational expression (d). (a) Laser power P (W) 40≦P≦80 (b)
Laser beam diameter d (mm) 0.04≦d≦0.1 (
c) Laser scanning speed V_s (mm/sec) 4000≦V_s≦6000 (d) Relational expression: 40≦4Pη_1/π(d^3・V_s)^1^/^2
≦90 However, η_1 is the transmittance of the insulating film formed on the surface of the electromagnetic steel sheet, and 1≧η_1≧0.8.
JP61226271A 1986-09-26 1986-09-26 Method for improving iron loss value of electrical steel sheet Expired - Lifetime JPH0619112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226271A JPH0619112B2 (en) 1986-09-26 1986-09-26 Method for improving iron loss value of electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226271A JPH0619112B2 (en) 1986-09-26 1986-09-26 Method for improving iron loss value of electrical steel sheet

Publications (2)

Publication Number Publication Date
JPS6383227A true JPS6383227A (en) 1988-04-13
JPH0619112B2 JPH0619112B2 (en) 1994-03-16

Family

ID=16842589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226271A Expired - Lifetime JPH0619112B2 (en) 1986-09-26 1986-09-26 Method for improving iron loss value of electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH0619112B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298654A (en) * 1997-04-24 1998-11-10 Nippon Steel Corp Manufacturing equipment for grain oriented silicon steel sheet excellent in magnetic property
EP1607487A1 (en) * 2003-03-19 2005-12-21 Nippon Steel Corporation Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
JP2007002334A (en) * 2005-05-09 2007-01-11 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP2007119821A (en) * 2005-10-26 2007-05-17 Nippon Steel Corp Grain-oriented silicon steel sheet excellent in magnetic property and its manufacturing method
US7703330B2 (en) 2006-08-31 2010-04-27 Matsushita Electric Works, Ltd. Power tool
WO2012017675A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Oriented electromagnetic steel plate
WO2013099272A1 (en) * 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
WO2014073599A1 (en) * 2012-11-08 2014-05-15 新日鐵住金株式会社 Laser processing device and laser radiation method
US8790471B2 (en) 2010-07-28 2014-07-29 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
WO2016002036A1 (en) * 2014-07-03 2016-01-07 新日鐵住金株式会社 Laser machining device
KR20160070843A (en) 2011-06-01 2016-06-20 신닛테츠스미킨 카부시키카이샤 Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
KR20190121416A (en) 2015-02-13 2019-10-25 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing same
JP2021030230A (en) * 2019-08-13 2021-03-01 日本製鉄株式会社 Laser irradiation apparatus and processing system of steel plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613972B2 (en) 2006-10-23 2014-10-29 新日鐵住金株式会社 Unidirectional electrical steel sheet with excellent iron loss characteristics
JP5884168B2 (en) * 2012-02-08 2016-03-15 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298654A (en) * 1997-04-24 1998-11-10 Nippon Steel Corp Manufacturing equipment for grain oriented silicon steel sheet excellent in magnetic property
EP1607487A1 (en) * 2003-03-19 2005-12-21 Nippon Steel Corporation Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
EP1607487B1 (en) * 2003-03-19 2016-12-21 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of a grain-oriented magnetic steel sheet excellent in magnetic characteristics
JP2007002334A (en) * 2005-05-09 2007-01-11 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP2007119821A (en) * 2005-10-26 2007-05-17 Nippon Steel Corp Grain-oriented silicon steel sheet excellent in magnetic property and its manufacturing method
US7703330B2 (en) 2006-08-31 2010-04-27 Matsushita Electric Works, Ltd. Power tool
US8790471B2 (en) 2010-07-28 2014-07-29 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
US9659693B2 (en) 2010-07-28 2017-05-23 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
US9799432B2 (en) 2010-08-06 2017-10-24 Jfe Steel Corporation Grain oriented electrical steel sheet
WO2012017675A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Oriented electromagnetic steel plate
KR20160070843A (en) 2011-06-01 2016-06-20 신닛테츠스미킨 카부시키카이샤 Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
CN107012303B (en) * 2011-12-28 2020-01-24 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN104024457A (en) * 2011-12-28 2014-09-03 杰富意钢铁株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
US10395806B2 (en) 2011-12-28 2019-08-27 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing the same
CN107012303A (en) * 2011-12-28 2017-08-04 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and its manufacture method
WO2013099272A1 (en) * 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
JPWO2014073599A1 (en) * 2012-11-08 2016-09-08 新日鐵住金株式会社 Laser processing apparatus and laser irradiation method
US9607744B2 (en) 2012-11-08 2017-03-28 Nippon Steel & Sumitomo Metal Corporation Laser processing apparatus and laser irradiation method
CN104755637A (en) * 2012-11-08 2015-07-01 新日铁住金株式会社 Laser processing device and laser radiation method
KR20150065860A (en) * 2012-11-08 2015-06-15 신닛테츠스미킨 카부시키카이샤 Laser processing device and laser radiation method
WO2014073599A1 (en) * 2012-11-08 2014-05-15 新日鐵住金株式会社 Laser processing device and laser radiation method
JPWO2016002036A1 (en) * 2014-07-03 2017-06-22 新日鐵住金株式会社 Laser processing equipment
WO2016002036A1 (en) * 2014-07-03 2016-01-07 新日鐵住金株式会社 Laser machining device
EP3165615A4 (en) * 2014-07-03 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Laser machining device
US11498156B2 (en) 2014-07-03 2022-11-15 Nippon Steel Corporation Laser processing apparatus
KR20190121416A (en) 2015-02-13 2019-10-25 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing same
US10988822B2 (en) 2015-02-13 2021-04-27 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
JP2021030230A (en) * 2019-08-13 2021-03-01 日本製鉄株式会社 Laser irradiation apparatus and processing system of steel plate

Also Published As

Publication number Publication date
JPH0619112B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JPS6383227A (en) Improvement of iron loss value of electrical steel sheet
RU2371487C1 (en) Method and device for manufacturing of sheet of grain-oriented electric steel with excellent magnetic properties
US4468551A (en) Laser treatment of electrical steel and optical scanning assembly therefor
US4456812A (en) Laser treatment of electrical steel
RU2301839C2 (en) Grain-oriented electrical steel sheet at high electrical characteristics and method of manufacture of such sheet
EP0897016B1 (en) Grain-oriented electrical steel sheet having excellent magnetic characteristics, its manufacturing method and its manufacturing device
RU2746618C1 (en) Method for producing textured silicon steel with low loss in iron by annealing for stress relief
RU2749826C1 (en) Electrical anisotropic steel sheet
RU2548544C2 (en) Method of fast laser denting
EP2918689B1 (en) Laser processing apparatus and laser irradiation method
JP2563729B2 (en) Method and apparatus for improving iron loss of grain-oriented electrical steel sheet using pulsed CO2 laser
JP4091749B2 (en) Oriented electrical steel sheet with excellent magnetic properties
WO2009082155A1 (en) Apparatus and method for refining magnetic domain of electrical steel sheet
US6482271B2 (en) Grain-oriented electrical steel sheet excellent in magnetic properties
WO2022045264A1 (en) Oriented electromagnetic steel sheet manufacturing method
JPH01316415A (en) Laser beam heat treating method using polygon mirror and apparatus thereof
JPH0790385A (en) Grain-oriented silicon steel sheet excellent in magnetic property
CN114854967A (en) Laser-scored high-magnetic-induction oriented silicon steel and manufacturing method thereof
JP2563730B2 (en) Method for improving iron loss of grain-oriented electrical steel sheet using pulsed CO2 laser
KR20100058929A (en) Method for miniaturizing magnetic domain with electromagnetic steel plate and electromagnetic steel plate thereof
JP2647322B2 (en) Low iron loss grain-oriented electrical steel sheet and method of manufacturing the same
JP2004124226A (en) Method and apparatus for producing grain oriented magnetic steel sheet excellent in magnetic characteristic
JPS5826407B2 (en) How to improve iron loss characteristics of electrical steel sheets

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term