JPS6382375A - Partial discharge test for cv cable - Google Patents

Partial discharge test for cv cable

Info

Publication number
JPS6382375A
JPS6382375A JP22750786A JP22750786A JPS6382375A JP S6382375 A JPS6382375 A JP S6382375A JP 22750786 A JP22750786 A JP 22750786A JP 22750786 A JP22750786 A JP 22750786A JP S6382375 A JPS6382375 A JP S6382375A
Authority
JP
Japan
Prior art keywords
cable
partial discharge
test
shielding layer
coupling capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22750786A
Other languages
Japanese (ja)
Other versions
JPH0565112B2 (en
Inventor
Takeshi Endo
遠藤 桓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22750786A priority Critical patent/JPS6382375A/en
Publication of JPS6382375A publication Critical patent/JPS6382375A/en
Publication of JPH0565112B2 publication Critical patent/JPH0565112B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To reduce a partial discharge measuring space while lowering external noises, by omitting an exclusive connection capacitor utilizing a part of a sample cable as such. CONSTITUTION:After a cable is cut apart at a dividing part 12, for example, the left cable piece serves as a connection capacitor 11a while the right cable piece is used as a sample cable portion 11b and a partial discharge measuring device 6 is connected thereto through a detection transformer 13. Now when a partial discharge is checked at 50Hz of AC with a load voltage 200kV, power generation Pc at this portion is Pc<(omegaCE)<2> and Pcapprox.=1(mW) in terms of R and hence, heating at the dividing section poses no problem in the boosting of the temperature because the value thereof is below 1mW. When detection impedance of the measuring device 6 is 8kOMEGA, a partial discharge test can be surely performed up to the load voltage 200kV without problem by setting the length of the connection capacitor 11a at 3m and that of the divided part 12 at 15mm.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はCVケ〜プルの部分放電試験法、更に詳しく
は、高電圧の課電によりケーブル絶縁体部に部分放電パ
ルスが生じ、これにより絶縁層か劣化するのを検出する
CVケーブルの部分放電試験法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a partial discharge test method for CV cables. This invention relates to a partial discharge test method for CV cables that detects deterioration of the insulation layer.

[従来の技術] この種、従来の試験法においては、第4図に示すケーブ
ルの部分放電試験回路が使用されている。
[Prior Art] In this kind of conventional test method, a cable partial discharge test circuit shown in FIG. 4 is used.

この回路は実際の回路を簡略化したものであって、実際
の試験回路は、電気学会技術報告(■部)第6号昭和4
4年1月P15第15図に詳細に記載されているものが
用いられる。
This circuit is a simplified version of the actual circuit, and the actual test circuit was published in IEEJ Technical Report (Part ■) No. 6, Showa 4.
The one described in detail in Figure 15 on page 15, January 4, is used.

この第4図の回路においては、閉そくインピーダンス(
Zch) 2を通じて交流電源(S)1から課電圧が供
試ケーブル(Ca)3に加えられるようになっている。
In the circuit shown in Fig. 4, the block impedance (
An applied voltage is applied to the test cable (Ca) 3 from the AC power supply (S) 1 through the cable Zch) 2.

そして、この課電圧を高めると、供試ケーブル3に部分
放電パルスが発生し、このパルス性電流が供試ケーブル
3.結合キャパシタンス(Ck)4.検出インピーダン
ス(Zd)5に還流し、検出インピーダンス5の両端間
にパルス性電流による電圧が生じ、このパルス性電圧を
測定7j(M)6で測定するようになっている。
When this applied voltage is increased, a partial discharge pulse is generated in the cable under test 3, and this pulsed current is transmitted to the cable under test 3. Coupling capacitance (Ck)4. The current flows back to the detection impedance (Zd) 5, and a voltage is generated between both ends of the detection impedance 5 due to the pulsed current, and this pulsed voltage is measured in the measurement 7j (M)6.

ところで、この回路において、供試ケーブル3が66K
VクラスのCVケーブル(架橋ポリエチレン絶縁とニル
シース電カケープル)で、課電圧が300KVでの部分
放電試験をしようとする場合には、図から容易に解るよ
うに300KVの電圧て部分放電を生じない結合コンデ
ンサ4(静電容量500PF以上)が必要となる。
By the way, in this circuit, the test cable 3 is 66K.
When performing a partial discharge test on a V-class CV cable (cross-linked polyethylene insulation and Nilsheath electric cable) with an applied voltage of 300 KV, as can be easily seen from the figure, it is necessary to connect a V-class CV cable that does not cause partial discharge at a voltage of 300 KV. A capacitor 4 (capacitance of 500PF or more) is required.

[発明が解決しようとする問題点] このように部分放電試験では、」二記第4図に示したよ
うに、供試ケーブル3に課電される電圧で部分放電を発
生しない結合コンデンサ4が必要となり、この結合コン
デンサは課電圧が高くなると耐圧も高くなるので高価に
なるという欠点を有している。しかもこれを設置し、高
圧課電リード線の部分でコロナ放電を生じないようにす
るために大きな絶縁空間も必要となる。
[Problems to be Solved by the Invention] In this way, in the partial discharge test, as shown in Figure 4 of Section 2, the coupling capacitor 4 which does not cause partial discharge under the voltage applied to the test cable 3 is tested. This coupling capacitor has the disadvantage that it becomes expensive as the applied voltage increases, the withstand voltage also increases. Moreover, a large insulating space is also required to install this and to prevent corona discharge from occurring at the high voltage lead wire.

更に第4図に示す供試ケーブル3.結合コンデンサ4.
検出インピーダンス5の各素子が占める空間が大きくな
ると、この閉回路中に外部電磁界が鎖交して、結局、検
出インピーダンス5の検出部に外部雑音が入ってくるこ
とになる。微小な部分放電パルスを検出しようとする場
合、このパルス性外部雑音の大きさが影響し、ケーブル
内部から発生している部分放電パルスとの識別限界が決
っでしまう。つまり、この閉回路が大きいと内部部分放
電の検出限界が悪くなってしまう。
Furthermore, the test cable 3 shown in FIG. Coupling capacitor 4.
When the space occupied by each element of the detection impedance 5 becomes large, an external electromagnetic field interlinks in this closed circuit, and external noise eventually enters the detection section of the detection impedance 5. When trying to detect minute partial discharge pulses, the magnitude of this pulsed external noise affects the detection, and limits the ability to distinguish them from partial discharge pulses generated from inside the cable. In other words, if this closed circuit is large, the detection limit for internal partial discharge will deteriorate.

従って、本発明の目的は上記従来の欠点を除去するため
に、供試ケーブルの一部を結合コンデンサとして巧みに
利用し、これによって専用の結合コンデンサを省略し、
外部雑音の低減(部分放電検出感度の向上)および部分
放電測定空間の縮少化が行なえるようにしたCVケーブ
ルの部分放電試験法を提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned conventional drawbacks by cleverly utilizing a portion of the cable under test as a coupling capacitor, thereby omitting a dedicated coupling capacitor.
It is an object of the present invention to provide a partial discharge testing method for a CV cable that can reduce external noise (improve partial discharge detection sensitivity) and reduce a partial discharge measurement space.

c問題点を解決するための手段および作用]本発明では
、上記問題点を解決するために、供試ケーブルが、ケー
ブル導体の外側に絶縁層−を介して半導電層および金属
遮蔽層で被覆されたCVケーブルの場合に、上記半導電
層で課電圧に対する静電遮蔽を行ない、結合コンデンサ
として適当な静電容量になる長さの部分で金属遮蔽層を
縁切りして分割し、一方を結合コンデンサ、他方を供試
ケーブルとして用いる。そして、供試ケーブルが半導電
層ををしないCVケーブルの場合には、金属遮蔽層の分
割した部分にのみ半導電層を設け、一方を結合コンデン
サ、他方を供試ケーブルとして用いる。
c. Means and operation for solving the problems] In the present invention, in order to solve the above problems, the test cable is coated with a semiconducting layer and a metal shielding layer on the outside of the cable conductor with an insulating layer interposed therebetween. In the case of a CV cable, the semiconductive layer is used to provide electrostatic shielding against the applied voltage, and the metal shielding layer is cut and divided at a length that has an appropriate capacitance as a coupling capacitor, and one side is combined. Use the capacitor and the other end as the test cable. If the test cable is a CV cable without a semiconducting layer, the semiconducting layer is provided only in the divided parts of the metal shielding layer, and one part is used as a coupling capacitor and the other part is used as a test cable.

[実 施 例] 以下、図示の一実施例により本発明によるCVケーブル
の部分放電試験法を説明する。
[Example] Hereinafter, a CV cable partial discharge test method according to the present invention will be explained with reference to an illustrated example.

先ず、結合コンデンサの形成手段を第2図によって説明
すると、供試ケーブルがケーブル遮蔽層として外部半導
電性遮蔽層を有する場合、このCVケーブルは第2図に
示すように構成されている。
First, the means for forming a coupling capacitor will be explained with reference to FIG. 2. When the test cable has an external semiconductive shielding layer as a cable shielding layer, this CV cable is constructed as shown in FIG. 2.

即ち、ケーブル導体7の外周面を内部半導電層8で被覆
され、その外周をゴム、プラスチックなどの絶縁層9で
被われ、その外側を外部半導電層10および金属遮蔽層
11で順次被覆されている。
That is, the outer peripheral surface of the cable conductor 7 is covered with an inner semiconducting layer 8, the outer periphery is covered with an insulating layer 9 made of rubber, plastic, etc., and the outside thereof is sequentially covered with an outer semiconducting layer 10 and a metal shielding layer 11. ing.

このように構成されているCVケーブルにおいて、結合
コンデンサを形成するには、最外周の金属遮蔽層11の
一部を取り除き、外部半導電層分割部12を形成する。
In the CV cable configured as described above, in order to form a coupling capacitor, a part of the outermost metal shielding layer 11 is removed to form an external semiconducting layer division part 12.

この外部半導電層のみの部分の長さは、供試ケーブルに
課電した場合の充電電流が外部半導電層10を流れるこ
とによる発熱が問題ない範囲、また部分放電測定器(M
)6(第1図参照)の検出インピーダンス(Zd)5と
同等以上であることが望ましい。
The length of this portion consisting only of the external semiconducting layer is determined within a range where there is no problem with heat generation due to the charging current flowing through the external semiconducting layer 10 when a charge is applied to the cable under test, and with a partial discharge measuring device (M
) 6 (see FIG. 1) is desirably equal to or higher than the detection impedance (Zd) 5.

このように分割部12で縁切りされたケーブルは、例え
ばその左方のケーブルが結合コンデンサ部11aとなり
、右方のケーブルが供試ケーブル部11bとして用いら
れ、これに第1図に示すように、検出トランス13を通
じて部分放電測定器6が接続される。
For example, the cable on the left side of the cable cut off at the dividing part 12 is used as the coupling capacitor part 11a, and the cable on the right side is used as the test cable part 11b, and as shown in FIG. A partial discharge measuring device 6 is connected through the detection transformer 13 .

この場合、例えば供試ケーブルが66KV。In this case, for example, the cable under test is 66KV.

800IIIII+2ノ内、外押出半導電層式ノCVケ
ーフルでは、静電容量は340PF/mであり、結合コ
ンデンサ部11aを3mとすると、結合コンデンサとし
ての静電容量は約1000PFとなる。
In the 800III+2 inner and outer extruded semiconductive layer type CV cable, the capacitance is 340PF/m, and if the coupling capacitor section 11a is 3m, the capacitance as a coupling capacitor is about 1000PF.

そして、供試ケーブル部flb、即ち部分放電測定部の
長さを10mとすれば、外部遮蔽層がついたケーブル部
が13m、それに課電端末補強部が片端1.5m%両端
で3m、合計16mとなる。
If the length of the test cable section flb, that is, the partial discharge measurement section, is 10 m, then the cable section with the external shielding layer is 13 m, and the energized terminal reinforcement section is 1.5 m at one end and 3 m at both ends, in total. It will be 16m.

ここで外部半導電層10の固有抵抗が102ΩCmとす
ると、結合コンデンサ部11aとケーブル測定部の分割
部12の長さは、外部半導電層10の直径が60mm、
厚さが1mmだから低人力インピーダンスで50Ωとす
るには、0.47 mm、高人力インピーダンスである
8にΩとするには、7.5mmとなる。分割部は両端に
あるから片端の分割長さは、15mmとなる。
Here, assuming that the specific resistance of the outer semiconducting layer 10 is 102 ΩCm, the length of the coupling capacitor section 11a and the dividing section 12 of the cable measuring section is such that the diameter of the outer semiconducting layer 10 is 60 mm,
Since the thickness is 1 mm, it would be 0.47 mm to achieve a low human power impedance of 50Ω, and 7.5 mm to achieve a high human power impedance of 8Ω. Since the split portions are at both ends, the split length at one end is 15 mm.

ここで仮に交流で50 Hz s課電圧200KVにお
ける部分放電を調べようとすると、この部分の発熱量P
cは、 Pc< (ωCE)2・R < (tooπ×5.1・10”−12X2・105)
28・103シ1(mW) つまり、分割部の発熱は、1mW以下で温度上昇の点か
らは全く問題はない。
If we were to investigate the partial discharge at an AC voltage of 50 Hz and 200 KV, the amount of heat generated in this part would be P.
c is Pc<(ωCE)2・R<(tooπ×5.1・10”−12X2・105)
28·103Si1 (mW) In other words, the heat generated in the divided portion is 1 mW or less, which poses no problem in terms of temperature rise.

そこで、A11l定器6の検出インピーダンス8にΩの
場合は、 1)結合コンデンサ部11aの長さ3m。
Therefore, if the detection impedance 8 of the A11l regulator 6 is Ω, then: 1) The length of the coupling capacitor section 11a is 3 m.

2)分割部12の長さ15關 とすれば、課電圧20QKVまでの部分放電試験が問題
なくできる。
2) If the length of the divided portion 12 is 15 mm, a partial discharge test with an applied voltage of up to 20 QKV can be performed without any problem.

また、以上は外部半導電性遮蔽層を有するCVケーブル
の場合であるが、外部遮蔽層に半導電層が無いCVケー
ブルの場合には、外部金属遮蔽層の外側から外部半導電
層を巻けば同じ作用、効果を得ることができる。
Also, the above is for a CV cable that has an external semiconductive shielding layer, but in the case of a CV cable that does not have a semiconductive layer in the external shielding layer, it is necessary to wrap the external semiconductive layer from the outside of the external metal shielding layer. You can get the same effect and effect.

第3図は、本発明の部分放電試験法を実施するについて
の具体的な試験回路の一例を示したものである。この試
験回路を簡単に説明すると、供試ケーブルへの課電は、
サイリスク式高速短絡装置をもつ直列共振型トランスT
、Trで行なっている。ケーブルの外部遮蔽層は全長の
中間部で縁切りして、各々を検出用トランスD、Trに
接続〔でいる。これをフィルタ、増幅器を通して破壊前
駆現象判別回路およびカセット式データレコーダに接続
し、またデジタルメモリに記録する。同時に電圧波形も
記録すると共に、モニタスコープで常時監視する。
FIG. 3 shows an example of a specific test circuit for carrying out the partial discharge test method of the present invention. To briefly explain this test circuit, the voltage applied to the test cable is:
Series resonant transformer T with thyrisk-type high-speed short circuit device
, Tr is used. The outer shielding layer of the cable is cut off at the middle of the entire length, and each is connected to the detection transformer D and Tr. This is connected to a destruction precursor phenomenon discrimination circuit and a cassette type data recorder through a filter and an amplifier, and is also recorded in a digital memory. At the same time, the voltage waveform is also recorded and constantly monitored with a monitor scope.

ここで供給試験ケーブルに部分放電パルスP。Here, a partial discharge pulse P is applied to the supply test cable.

Dが生じると発生箇所と電圧位相で決まる極性の部分放
電パルスP、Dがカセット式データレコーダに記録され
る。またこのまま課電を続けると破壊に至る恐れがある
ことが判別回路で、1〜10サイクルの間に判断される
。そして、その判断結果によって、そこからトリガーゲ
ート回路を通してトランスT、Trの1次側をサイリス
タThで高速短絡すると同時に、電源A、  Cの○C
Bが遮断される。電源A、  Cが遮断されてからデー
タレコーダの記録波形を調べて上記P、Dが生じた側を
求める。
When D occurs, partial discharge pulses P and D of polarity determined by the generation location and voltage phase are recorded on a cassette type data recorder. Further, the determination circuit determines that there is a risk of destruction if the current application is continued during the 1st to 10th cycles. Based on the judgment result, the transformer T and the primary side of the Tr are quickly short-circuited by the thyristor Th through the trigger gate circuit, and at the same time, the ○C of the power supplies A and C is connected.
B is blocked. After power supplies A and C are cut off, the recorded waveform of the data recorder is examined to find the side where P and D occur.

次に発生している部分を更に2等分して再び課電する。Next, the generated portion is further divided into two equal parts and energized again.

なお、この場合、一般に最初の部分放電パルスP、Dに
よる電気トリー発生で、その部分の上記P、 D発生電
圧が低下するので、2回目からは電気トリーの進展もお
そくなる。このような操作を数回繰り返して部分放電パ
ルスP、 Dの発生位置を20〜30mmに追いつめ、
以後は切り出して顕微鏡観察し、破壊直前となっている
欠陥部を取り出す。
In this case, generally, when the electric tree is generated by the first partial discharge pulses P and D, the voltages generated at that portion of P and D are reduced, so that the electric tree progresses slowly from the second time onwards. Repeat this operation several times to position the partial discharge pulses P and D to 20 to 30 mm.
After that, it is cut out and observed under a microscope, and the defective parts that are on the verge of destruction are extracted.

[発明の効果] 以上述べたように、本発明によれば ■専用の結合コンデンサが省略できる。[Effect of the invention] As described above, according to the present invention ■Dedicated coupling capacitor can be omitted.

■結合コンデンサのためのコロナフリーリード線が必要
ない。
■No need for corona-free lead wires for coupling capacitors.

■結合コンデンサを設置するための絶縁空間が不要とな
る。
■No need for insulation space to install a coupling capacitor.

■誘導障害を受は易い閉ループが極端に少なくなり、コ
ロナ測定感度の向上、誤測定の低減を行なうことができ
る。
■Closed loops that are susceptible to induction disturbances are extremely reduced, making it possible to improve corona measurement sensitivity and reduce erroneous measurements.

などの数々の顕著な効果が得られる。A number of remarkable effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明よる部分放電試験法の要部の電気回路
を示す線図、 第2図は、供試ケーブルの一部から結合コンデンサを形
成する手段を示すCVケーブルの要部断面図、 第3図は、本発明の部分放電試験法を実施するについて
の具体的な試験回路の一例を示す電気回路線図、 第4図は、従来の部分放電試験回路を簡略に示した電気
回路線図である。 7・・・・・・・・・・・・供試ケーブル導体9・・・
・・・・・・・・・絶縁層 10・・・・・・・・・外部半導電層(ケーブル遮蔽層
)11・・・・・・・・・金属遮蔽層(ケーブル遮蔽層
)11a・・・・・・結合コンデンサ部 11b・・・・・・供試ケーブル部 12・・・・・・・・・分割部(分離ケーブル部)特許
出願人   日立電線株式会社 見20
Fig. 1 is a diagram showing the electrical circuit of the main part of the partial discharge test method according to the present invention, and Fig. 2 is a sectional view of the main part of the CV cable showing the means for forming a coupling capacitor from a part of the test cable. , Fig. 3 is an electric circuit diagram showing an example of a specific test circuit for carrying out the partial discharge test method of the present invention, and Fig. 4 is an electric circuit schematic diagram showing a conventional partial discharge test circuit. This is a route map. 7...... Test cable conductor 9...
......Insulating layer 10...External semiconducting layer (cable shielding layer) 11...Metal shielding layer (cable shielding layer) 11a. ...Coupling capacitor section 11b ... Test cable section 12 ...... Split section (separated cable section) Patent applicant Hitachi Cable Co., Ltd. Mi20

Claims (1)

【特許請求の範囲】 ケーブル導体の外側を、絶縁層を介して少なくとも金属
遮蔽層を有するケーブル遮蔽層で被覆されたCVケーブ
ルにおいて、 上記ケーブル遮蔽層を、課電圧周波数に対しては静電遮
蔽効果を有し、部分放電によって生じるパルス性電圧に
対しては抵抗体として作用するようにし、上記金属遮蔽
層の一部を分離し、分離したケーブル部分を、部分放電
試験における放電検出用結合コンデンサとして用いるこ
とを特徴とする部分放電試験法。
[Claims] In a CV cable in which the outside of the cable conductor is covered with a cable shielding layer having at least a metal shielding layer via an insulating layer, the cable shielding layer is an electrostatic shielding layer for an applied voltage frequency. A part of the metal shielding layer is separated, and the separated cable part is used as a coupling capacitor for discharge detection in partial discharge tests. A partial discharge test method characterized by being used as a
JP22750786A 1986-09-26 1986-09-26 Partial discharge test for cv cable Granted JPS6382375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22750786A JPS6382375A (en) 1986-09-26 1986-09-26 Partial discharge test for cv cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22750786A JPS6382375A (en) 1986-09-26 1986-09-26 Partial discharge test for cv cable

Publications (2)

Publication Number Publication Date
JPS6382375A true JPS6382375A (en) 1988-04-13
JPH0565112B2 JPH0565112B2 (en) 1993-09-17

Family

ID=16861979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22750786A Granted JPS6382375A (en) 1986-09-26 1986-09-26 Partial discharge test for cv cable

Country Status (1)

Country Link
JP (1) JPS6382375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736002A (en) * 2012-07-10 2012-10-17 西安费斯达自动化工程有限公司 Photoelectric detection method for ozone generating tube arc discharge
CN102736001A (en) * 2012-07-10 2012-10-17 西安费斯达自动化工程有限公司 Method for detecting arc discharge and breakdown failures of ozone generation pipe
CN108983053A (en) * 2018-07-27 2018-12-11 武汉大学 The high-voltage direct-current cross-linked polyethylene cable shelf depreciation test platform of temperature-controllable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114086A (en) * 1977-03-16 1978-10-05 Nishinippon Elec Wire Cable Method of dividing and measuring partial discharge of each portion of cable
JPS60114086A (en) * 1983-11-25 1985-06-20 Matsushita Graphic Commun Syst Inc Picture profile emphasis system
JPS61251779A (en) * 1985-04-30 1986-11-08 Showa Electric Wire & Cable Co Ltd Measuring method for partial discharge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114086A (en) * 1977-03-16 1978-10-05 Nishinippon Elec Wire Cable Method of dividing and measuring partial discharge of each portion of cable
JPS60114086A (en) * 1983-11-25 1985-06-20 Matsushita Graphic Commun Syst Inc Picture profile emphasis system
JPS61251779A (en) * 1985-04-30 1986-11-08 Showa Electric Wire & Cable Co Ltd Measuring method for partial discharge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736002A (en) * 2012-07-10 2012-10-17 西安费斯达自动化工程有限公司 Photoelectric detection method for ozone generating tube arc discharge
CN102736001A (en) * 2012-07-10 2012-10-17 西安费斯达自动化工程有限公司 Method for detecting arc discharge and breakdown failures of ozone generation pipe
CN108983053A (en) * 2018-07-27 2018-12-11 武汉大学 The high-voltage direct-current cross-linked polyethylene cable shelf depreciation test platform of temperature-controllable

Also Published As

Publication number Publication date
JPH0565112B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
CN103267933B (en) The method of shelf depreciation in measuring transformer induced voltage test device
Kim et al. Assessment of deterioration in epoxy/mica machine insulation
JPS6382375A (en) Partial discharge test for cv cable
JPH03206976A (en) Diagnosis of insulation
JPH0580112A (en) Failure diagnostic device for power cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JP2590232B2 (en) Diagnosis method for electrical equipment insulation
JP2001183412A (en) Insulation degradation diagnosing method for power cable
CN213069063U (en) Cable insulation defect partial discharge measuring device applying interference
JPH08304487A (en) Method for insulation diagnosis of cable sheath in active condition
US20220390500A1 (en) Apparatus and Method for Locating Partial Discharges in Medium-Voltage and High-Voltage Equipment
JPS5856116B2 (en) Method for locating defective points of corrosion protection layer insulation under live wires
JPH063390A (en) Diagnostic method for deterioration of cable
JPH09304467A (en) Method for diagnosing insulation deterioration of electric insulator
JPH0567191B2 (en)
JPH06201755A (en) Partial discharge detecting device
JPH03102268A (en) Diagnostic method of deterioration of insulation of power cable
JPS59630Y2 (en) Transformer testing equipment
Jiang et al. Defects detection and localization of short cables with DAC method
JPH04299051A (en) Rotary electric machine
JPH06249898A (en) Insulation diagnostic method for cv cable
Park et al. A study on detection of defects in cable splice by analysis of ultrasonic signal
Koyanagi et al. Partial discharge measurement with pulse height analyzer
JP2002214273A (en) Breaking inspection circuit for high voltage cable shielding copper tape