JPS638179B2 - - Google Patents

Info

Publication number
JPS638179B2
JPS638179B2 JP6520787A JP6520787A JPS638179B2 JP S638179 B2 JPS638179 B2 JP S638179B2 JP 6520787 A JP6520787 A JP 6520787A JP 6520787 A JP6520787 A JP 6520787A JP S638179 B2 JPS638179 B2 JP S638179B2
Authority
JP
Japan
Prior art keywords
cylinder
lining
layer
particles
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6520787A
Other languages
Japanese (ja)
Other versions
JPS62253747A (en
Inventor
Takashi Mori
Kenji Toda
Shigehiro Matsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6520787A priority Critical patent/JPS62253747A/en
Publication of JPS62253747A publication Critical patent/JPS62253747A/en
Publication of JPS638179B2 publication Critical patent/JPS638179B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、プラスチツク成形機、スラリーポン
プ、および圧縮機等のシリンダ内周面に遠心鋳造
法によりライニングするライニング材に関する。 〔従来技術〕 プラスチツク成形機用シリンダには、樹脂また
は樹脂に加えた強化添加剤による腐食や摩耗を防
止するために耐食性と耐摩耗が要求されるが、従
来耐食・耐摩耗性シリンダとして鋼製シリンダ内
周面に、Co基合金を遠心鋳造法によりライニン
グしたものが使用されていた。しかし、これ等の
合金をライニングしたシリンダは、ガラス繊維な
どの強化材混入率が高いプラスチツク成形に使用
された時、数ケ月程度の使用で摩耗による損耗が
大きく、使用に耐えなくなるという欠点があつ
た。またこの欠点を改善するためにNi基合金中
にWC粒子を分散させた複合ライニング材もあ
る。 〔発明が解決しようとする問題点〕 しかしながら、この複合ライニング材は耐食、
耐摩耗性は向上したが次のような欠点がある。す
なわちマトリツクス合金より耐摩耗性強化材であ
るWCの比重が約2倍も大きいので、ライニング
時にそれらの比重差に基づく遠心力の差によつて
WC粒子がシリンダ母材側に押し付けられ、WC
粒子が密集した層とWC粒子が微量、あるいは全
くない層とに分離する。従つてライニング後のシ
リンダ内周面に、Ni基合金マトリツクスに強化
材のWC粒子を分散させた耐食、耐摩耗性複合ラ
イニング層を得るためには、シリンダ内周側にあ
るWC粒子が微量、あるいは全くない余分な層を
除去しなければならないという問題があつた。ま
たWC粒子を含む層と、含まない層との境界を所
定寸法のシリンダ内周面近傍に制御するには、ラ
イニング処理条件を非常に厳しくする必要がある
という欠点もあつた。 本発明の目的は上記のような欠点を解消しよう
とするもので、Co基合金に固有の耐食性に加え
特に耐摩耗性に富んだシリンダ用複合ライニング
材を提供することにある。 〔問題点を解決するための手段〕 本発明は上記目的を達成するために、シリンダ
用複合ライニング材において耐食性を有する金属
をマトリツクスとし、同マトリツクス中に硬さは
WCとほぼ同一で、かつ比重がマトリツクスの比
重に極めて近いニオブカーバイド(NbC)粒子
を耐摩耗性強化材として分散させたことを特徴と
するものである。 すなわち本発明のシリンダ用複合ライニング材
は、化学成分が重量比でCr5〜10%、B2.5〜4
%、Si0.2〜2%、Mn0.2〜2%、残部Coおよび
不可避的不純物からなる耐食性を有するCo基合
金をマトリツクスとし、同マトリツクス中に耐摩
耗性強化材としてNbC粒子を重量比で10〜30%
分散させてなることを特徴とする。 硬質粒子であるNbCの硬さはHv2400前後であ
り、WCの硬さとほぼ同じ硬さを有している。ま
たその比重は7.7〜7.8である。また本発明の複合
ライニング材のマトリツクスは従来から用いられ
ているCo―Cr―B系の合金であり、特公昭51−
7126号(特願昭46−94456号)公報に記載されて
いる。即ち、化学成分が重量比でCr5〜10%、2.5
〜4%、Si0.2〜2%、Mn0.2〜2%、残部Coお
よび不可避的不純物からなる。この合金はCr及
びCoを高含有して耐食性に優れており、かつ比
重も7.8〜8.5とNbCに近い。この合金のマトリツ
クスにニオブの硼化物が晶出あるいは析出してい
るので、Hv400〜800の硬さを有し耐摩耗性に優
れている。 なおNbC粒子の配合比を10〜30重量%と限定
する理由は次の通りである。NbC粒子が10重量
%未満では充分な耐摩耗性が得られず、30重量%
を越えるとライニング材の粘性が大きくなつて、
遠心鋳造法による均一なライニング層が形成でき
なくなるからである。 本発明の複合ライニング材を遠心鋳造法によつ
て鋼製シリンダ内周面にライニングすると次のよ
うになる。すなわちマトリツクスとNbCの比重
差が小さいので遠心力によつてNbCが偏在する
ことなくライニング層全体に分散した組織とな
る。ただその分布密度についてはシリンダ母材側
よりもライニング層の表面側(シリンダの最内
面)の方が僅かに大きい。このライニング層にお
けるNbCの分散の仕方は複合ライニング材の組
成、温度、遠心力などのフエーシング条件により
異なる。 上記のように本発明に係る複合ライニング材を
遠心鋳造法によつて鋼製シリンダ内周面にライニ
ングしたシリンダは、ライニング層全面に硬質粒
子であるNbCがほぼ均一に分散しているので、
ライニング後にライニング層を窒化ホウ素系の工
具を用いて所望の内径寸法に切削及び研削を行う
だけで、耐食・耐摩耗性にすぐれたシリンダを容
易に得ることが出来る。 〔実施例〕 本発明を以下の実施例によりさらに詳細に説明
する。 実施例 1 重量比でCr7.5%、B3.0%、Si0.8%、Mn1.0%、
残部が実質的にCoからなるマトリツクス材に、
NbC粉末を重量比で20%配合したものを高周波
誘導炉で溶解して合金をつくり、これを冷却して
5mm以下のサイズに粉砕した。この粉砕した合金
材を外径160mm、内径65mmのSCM440製シリンダ
の中に片肉3.0mmのライニング層を得るための必
要量を封入した後、加熱炉で1200℃まで加熱し、
1200℃に30分間保持した。このあとシリンダを加
熱炉から取出し、直ちに遠心鋳造機に組込み、シ
リンダに1570r.p.mの回転を与えた。次いでシリ
ンダを700℃まで回転しながら冷却した後に遠心
鋳造機から取外し、珪藻土中で48時間徐冷し、そ
の後空気中で放冷した。 当該シリンダからリング試料を採取しライニン
グ層の状態を調査した。その結果ライニング層は
片肉3.2mmの厚さでSCM440製シリンダ内周壁に
拡散溶着しており、NbC粒子がライニング層全
域にほぼ均一に分散していることがわかつた。ま
たライニング層の最内径部から1.5mm外層位置で
の硬さはHRC57〜58であつた。 次いで表1に示すように、本発明に係る複合ラ
イニング材及び従来のCo基合金のライニング材
について、ライニング後のシリンダからそれぞれ
試料を採取して摩耗試験及び腐食試験を行つた。 摩耗試験 10mm×15mm×高さ10mmの各試料(試料番号1,
2)を、粒度800番のSiCを主成分とする200φの
研磨紙に2.5Kgの荷重で押しつけた状態で研磨紙
を回転させた。研磨紙は560r.p.mの速度で回転
し、試験時間は3分間とした。各試料の摩耗量は
重量減によつて測定した。第1図は各試料の摩耗
試験結果を示したものであり、同図において本発
明の複合ライニング材(試料番号2)は従来の合
金ライニング材(試料番号1)に対し10倍近い耐
摩耗性を示している。
[Industrial Application Field] The present invention relates to a lining material for lining the inner peripheral surface of a cylinder of a plastic molding machine, a slurry pump, a compressor, etc. by centrifugal casting. [Prior art] Cylinders for plastic molding machines are required to have corrosion resistance and wear resistance to prevent corrosion and wear due to resin or reinforcing additives added to the resin. The inner peripheral surface of the cylinder was lined with a Co-based alloy using a centrifugal casting method. However, cylinders lined with these alloys have the disadvantage that when used for plastic molding that contains a high proportion of reinforcing materials such as glass fibers, they suffer significant wear and tear after only a few months of use, making them unusable. Ta. In order to improve this drawback, there is also a composite lining material in which WC particles are dispersed in a Ni-based alloy. [Problems to be solved by the invention] However, this composite lining material has poor corrosion resistance and
Although the wear resistance has improved, it has the following drawbacks. In other words, since the specific gravity of WC, which is a wear-resistant reinforcing material, is approximately twice as large as that of the matrix alloy, the difference in centrifugal force due to the difference in specific gravity during lining
The WC particles are pressed against the cylinder base material side, and the WC
The layer is separated into a layer with dense particles and a layer with only a small amount of WC particles or no WC particles. Therefore, in order to obtain a corrosion-resistant and wear-resistant composite lining layer on the inner peripheral surface of the cylinder after lining, in which reinforcing WC particles are dispersed in a Ni-based alloy matrix, it is necessary to Alternatively, there was a problem of having to remove an extra layer that was not present at all. Another drawback is that in order to control the boundary between the layer containing WC particles and the layer not containing WC particles to be near the inner peripheral surface of a cylinder of a predetermined size, it is necessary to make the lining treatment conditions very strict. The object of the present invention is to eliminate the above-mentioned drawbacks, and is to provide a composite lining material for cylinders that has particularly high wear resistance in addition to the corrosion resistance inherent to Co-based alloys. [Means for Solving the Problems] In order to achieve the above object, the present invention uses a matrix of corrosion-resistant metal in a composite lining material for cylinders, and has hardness in the matrix.
It is characterized by the fact that niobium carbide (NbC) particles, which are almost the same as WC and whose specific gravity is extremely close to that of the matrix, are dispersed as a wear-resistant reinforcing material. That is, the composite lining material for cylinders of the present invention has chemical components of Cr5 to 10% and B2.5 to 4% by weight.
%, Si 0.2~2%, Mn 0.2~2%, balance Co and unavoidable impurities. 10-30%
It is characterized by being dispersed. The hardness of NbC, which is a hard particle, is around Hv2400, which is almost the same as that of WC. Moreover, its specific gravity is 7.7 to 7.8. Furthermore, the matrix of the composite lining material of the present invention is a conventionally used Co-Cr-B alloy.
It is described in Publication No. 7126 (Japanese Patent Application No. 46-94456). That is, the chemical components are Cr5-10%, 2.5% by weight.
4%, Si 0.2-2%, Mn 0.2-2%, the balance being Co and unavoidable impurities. This alloy contains high amounts of Cr and Co and has excellent corrosion resistance, and has a specific gravity of 7.8 to 8.5, which is close to NbC. Since niobium boride is crystallized or precipitated in the matrix of this alloy, it has a hardness of 400 to 800 Hv and excellent wear resistance. The reason why the blending ratio of NbC particles is limited to 10 to 30% by weight is as follows. If the NbC particles are less than 10% by weight, sufficient wear resistance cannot be obtained;
If the lining material exceeds the viscosity, the viscosity of the lining material increases.
This is because a uniform lining layer cannot be formed by centrifugal casting. When the composite lining material of the present invention is lined on the inner peripheral surface of a steel cylinder by centrifugal casting, the result will be as follows. In other words, since the difference in specific gravity between the matrix and NbC is small, a structure in which NbC is dispersed throughout the lining layer without being unevenly distributed due to centrifugal force is created. However, the distribution density is slightly larger on the surface side of the lining layer (innermost surface of the cylinder) than on the cylinder base material side. The way NbC is dispersed in this lining layer varies depending on the composition of the composite lining material, temperature, centrifugal force, and other facing conditions. As mentioned above, in a cylinder in which the inner peripheral surface of a steel cylinder is lined with the composite lining material according to the present invention by centrifugal casting, the hard particles of NbC are almost uniformly dispersed over the entire surface of the lining layer.
After lining, a cylinder with excellent corrosion and wear resistance can be easily obtained by simply cutting and grinding the lining layer to a desired inner diameter using a boron nitride tool. [Example] The present invention will be explained in more detail with reference to the following example. Example 1 Weight ratio: Cr7.5%, B3.0%, Si0.8%, Mn1.0%,
In the matrix material, the remainder of which is essentially Co,
A mixture of 20% NbC powder by weight was melted in a high-frequency induction furnace to create an alloy, which was then cooled and crushed into a size of 5 mm or less. After enclosing the necessary amount of this crushed alloy material to obtain a lining layer with a side wall of 3.0 mm in an SCM440 cylinder with an outer diameter of 160 mm and an inner diameter of 65 mm, it was heated to 1200 ° C in a heating furnace.
It was held at 1200°C for 30 minutes. Thereafter, the cylinder was taken out of the heating furnace and immediately installed in a centrifugal casting machine, and the cylinder was rotated at 1570 rpm. Next, the cylinder was cooled to 700° C. while rotating, and then removed from the centrifugal casting machine, slowly cooled in diatomaceous earth for 48 hours, and then allowed to cool in air. A ring sample was taken from the cylinder and the condition of the lining layer was investigated. As a result, it was found that the lining layer was diffusion-welded to the inner peripheral wall of the SCM440 cylinder with a side wall thickness of 3.2 mm, and that the NbC particles were almost uniformly dispersed throughout the lining layer. Further, the hardness at the outer layer position of 1.5 mm from the innermost diameter part of the lining layer was H RC 57 to 58. Next, as shown in Table 1, samples of the composite lining material according to the present invention and the conventional Co-based alloy lining material were taken from the cylinders after lining and subjected to wear tests and corrosion tests. Wear test Each sample of 10 mm x 15 mm x height 10 mm (sample number 1,
2) was pressed against a 200φ abrasive paper whose main component is SiC with a particle size of No. 800 under a load of 2.5 kg, and the abrasive paper was rotated. The abrasive paper was rotated at a speed of 560 rpm, and the test time was 3 minutes. The amount of wear of each sample was measured by weight loss. Figure 1 shows the wear test results for each sample, and the figure shows that the composite lining material of the present invention (sample number 2) has nearly 10 times the wear resistance of the conventional alloy lining material (sample number 1). It shows.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明に係るシリンダ
用複合ライニング材においては、耐食性を有する
Ni基合金をマトリツクスとし、このマトリツク
ス中に耐摩耗性強化材としてNbC粒子を重量比
で10〜30%分散させたことにより、耐食性に加え
耐摩耗性を従来のシリンダ材に比べて数倍向上さ
せることができ、シリンダの寿命が長くなり経済
的である。
As explained above, the composite lining material for cylinders according to the present invention has corrosion resistance.
By using a Ni-based alloy as a matrix and dispersing 10 to 30% by weight of NbC particles as a wear-resistant reinforcing material in this matrix, not only corrosion resistance but also wear resistance is improved several times compared to conventional cylinder materials. The life of the cylinder is extended and it is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の複合ライニング層な
らびに従来のライニング層から採取した試料の摩
耗試験結果を示した図である。
FIG. 1 is a diagram showing abrasion test results of samples taken from a composite lining layer according to an embodiment of the present invention and a conventional lining layer.

Claims (1)

【特許請求の範囲】[Claims] 1 化学成分が重量比でCr5〜10%、B2.5〜4
%、Si0.2〜2%、Mn0.2〜2%、残部Coおよび
不可避的不純物からなる耐食性を有するCo基合
金をマトリツクスとし、同マトリツクス中に耐摩
耗性強化材としてNbC粒子を重量比で10〜30%
分散させてなることを特徴とするシリンダ用複合
ライニング材。
1 Chemical components are Cr5-10% by weight, B2.5-4
%, Si 0.2~2%, Mn 0.2~2%, balance Co and unavoidable impurities. 10-30%
A composite lining material for cylinders characterized by being dispersed.
JP6520787A 1987-03-19 1987-03-19 Composite lining material for cylinder Granted JPS62253747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6520787A JPS62253747A (en) 1987-03-19 1987-03-19 Composite lining material for cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6520787A JPS62253747A (en) 1987-03-19 1987-03-19 Composite lining material for cylinder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19009683A Division JPS6082644A (en) 1983-10-12 1983-10-12 Composite lining material for cylinder

Publications (2)

Publication Number Publication Date
JPS62253747A JPS62253747A (en) 1987-11-05
JPS638179B2 true JPS638179B2 (en) 1988-02-22

Family

ID=13280240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6520787A Granted JPS62253747A (en) 1987-03-19 1987-03-19 Composite lining material for cylinder

Country Status (1)

Country Link
JP (1) JPS62253747A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU658371B2 (en) * 1990-10-02 1995-04-13 Broken Hill Proprietary Company Limited, The Nickel or cobalt based cermet with dispersed niobium carbide
JP3978004B2 (en) * 2000-08-28 2007-09-19 株式会社日立製作所 Corrosion-resistant and wear-resistant alloys and equipment using them

Also Published As

Publication number Publication date
JPS62253747A (en) 1987-11-05

Similar Documents

Publication Publication Date Title
US8147980B2 (en) Wear-resistant metal matrix ceramic composite parts and methods of manufacturing thereof
EP3089839B1 (en) Centrifugal cast composite metal product
US4346684A (en) Valve seat ring
JP6044737B2 (en) Cylinder for molding machine and manufacturing method thereof
US4427446A (en) Corrosion-resistant and abrasive wear-resistant composite material for centrifugally cast linings
US5023145A (en) Multi carbide alloy for bimetallic cylinders
JPS638179B2 (en)
JP2746945B2 (en) Composite lining material for cylinder
US6319109B1 (en) Disk-shaped grindstone
JP3301441B2 (en) Composite cylinder for high-temperature and high-pressure molding
US5246056A (en) Multi carbide alloy for bimetallic cylinders
JPS6239224B2 (en)
JPH0112828B2 (en)
Spiridonova et al. Structure and properties of boron-bearing iron granules for composites
JPS6058782B2 (en) Grinding ball alloy
RU2120491C1 (en) Wear-resistant alloy
JP5095669B2 (en) Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material
JPS5810458B2 (en) Corrosion-resistant and wear-resistant composite material for centrifugal casting lining
JPH06145856A (en) Corrosion and wear resistant cobalt-based alloy
JPH0461059B2 (en)
JP3301442B2 (en) Composite cylinder for high-temperature and high-pressure molding
JPH08319530A (en) Composite material with high wear resistance and corrosion resistance
JPH05132734A (en) Composite material having wear resistance and corrosion resistance
JP2024039269A (en) High chromium cast iron and method for producing high chromium cast iron
JPS6013043A (en) Wear- and corrosion-resistant alloy