JPS6381766A - Manufacture of paste type cadmium anode for alkaline storage battery - Google Patents

Manufacture of paste type cadmium anode for alkaline storage battery

Info

Publication number
JPS6381766A
JPS6381766A JP61227770A JP22777086A JPS6381766A JP S6381766 A JPS6381766 A JP S6381766A JP 61227770 A JP61227770 A JP 61227770A JP 22777086 A JP22777086 A JP 22777086A JP S6381766 A JPS6381766 A JP S6381766A
Authority
JP
Japan
Prior art keywords
cadmium
active material
polyamide fibers
electrode plate
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61227770A
Other languages
Japanese (ja)
Inventor
Kazuhiro Matsui
一博 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61227770A priority Critical patent/JPS6381766A/en
Publication of JPS6381766A publication Critical patent/JPS6381766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To restrict occurrence of removal of an electrode plate even in negative electrolysis at a high rate, by filling an electrode plate core member with paste composed of an active material mainly containing cadmium oxide and polyamide fibers, heating it to 160-200 deg.C, and then effecting the negative electrolysis thereof in a water solution containing cadmium chloride at a specific current density to deposit metal cadmium on a surface. CONSTITUTION:An electrode plate core member is filled with paste composed of an active material mainly containing cadmium oxide and polyamide fibers as a reinforcing material, it is heated to 160-200 deg.C, and then subject to negative electrolysis in a water solution containing cadmium chloride at a current density of 200-500 mA/cm<2> to deposit metal cadmium on a surface. Since the polyamide fibers are mixed as the reinforcing material, when electrolysis of a cadmium cathode is effected at a high rate after it has been heated to 160-200 deg.C, a surface portion of the polyamide fibers is melted in the heating process so that the polyamide fibers are jointed one another to form matrixes for holding the active material. As a result, the active material is held strongly to be held sufficiently, whereby removal of the active material on the electrode plate is eliminated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はニッケルーカドミウム電池などのアルカリ蓄電
池に用いられるペースト式カドミウム陰極の製法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a paste-type cadmium cathode used in alkaline storage batteries such as nickel-cadmium batteries.

(ロ)従来の技術 一般的なアルカリ蓄′4池用ペースト式カドミウム陰極
は特開昭51−631号公報に開示された如く、活物質
として酸化カドミウムと水酸化カドミウム、結着剤とし
てポリテトラプルオロエチレン?用い水き加えペースト
状とし、このペースト金電極芯体に塗着、乾燥するもの
であり、焼結式カドミウム陰極に比べる七、製造工程が
筒車であり、廉価でカドミウム陰if全得ることができ
る。
(b) Prior art A paste-type cadmium cathode for a general alkaline storage battery uses cadmium oxide and cadmium hydroxide as active materials and polytetra as a binder, as disclosed in JP-A No. 51-631. Pluoroethylene? The paste is made into a paste by adding water, and this paste is applied to a gold electrode core and dried.Compared to a sintered cadmium cathode, the manufacturing process is an hour wheel, and it is possible to obtain a complete cadmium negative electrode at a low cost. can.

しかしながらペースト式カドミウム陰極は、焼結式カド
ミウム陰極に比べると活物質の導電性が低いため過充電
時に陽極から発生する酸素ガスの吸収能力が低く、密閉
型電池にペースト式カドミウム陰極を用いると、内部ガ
ス圧が上昇し易いという欠点があっな。
However, paste-type cadmium cathodes have lower conductivity of the active material than sintered-type cadmium cathodes, and therefore have a lower ability to absorb oxygen gas generated from the anode during overcharging. The drawback is that the internal gas pressure tends to rise.

一方、特開昭58−80268号公報において、補強材
としてポリアミドfI!、維を用いることにより化成工
程が不要で酸素ガス吸収能力が優れたペースト式カドミ
ウム陰極が得られることが提案されているが、このカド
ミウム陰極においては酸素ガス吸収能力が向上するか、
焼結式カドミウム陰極や化成処理を施したペースト式カ
ドミウム陰極に比べると、やはり活物質の4電性は低く
内部ガス圧が上昇し易いという間原点がある。
On the other hand, in JP-A-58-80268, polyamide fI! is used as a reinforcing material. It has been proposed that by using .
Compared to a sintered cadmium cathode or a paste-type cadmium cathode that has been subjected to chemical conversion treatment, the active material has a lower tetraelectricity and the internal gas pressure tends to increase.

これらの問題点を解決する九めに、特開昭57−706
49公報!’Iペ一スト式カドミウム陰極を化成処理す
ることが開示されている。ここで化成処理金施すことに
よって金属カドミウムがカドミウム陰極中に生成し、電
池内で発生した酸素ガスを吸収しやすくなるが、一方ペ
ースト式製法により得られた電極はカドミウム活物質の
保持力が弱いので、製造工程を高速化し大量生産を可能
にするという要求を満たすためにけ化成電流密度を20
0〜500mA/cm程度に設定する必要があり、この
ような条件で化成処理を行うと、芯体から発生する水素
ガスが急激に増加し、この応力により極板芯体とカドミ
ウム活物質との密着性が低下し、剥離しやすいという傾
向があっ九、(ハ)発明が解決しようとする問題点 本発明は前記間桓点に鑑みなされたものであって、その
意図とするところは、200〜500m A / c 
m  のような大電流密度で陰電解しても、極板の剥離
現象が生じにくいペースト式カドミウム陰極の製法を提
供することにある。
As a ninth step to solve these problems,
49 bulletin! It has been disclosed to chemically treat a 'I-paste cadmium cathode. By applying chemical conversion treatment, metallic cadmium is generated in the cadmium cathode, making it easier to absorb oxygen gas generated within the battery, but on the other hand, electrodes obtained using the paste method have a weak retention force for the cadmium active material. Therefore, in order to meet the demands of speeding up the manufacturing process and enabling mass production, the chemical current density was increased to 20%.
It is necessary to set it to about 0 to 500 mA/cm, and if chemical conversion treatment is performed under such conditions, hydrogen gas generated from the core will rapidly increase, and this stress will cause the bond between the electrode plate core and the cadmium active material to increase. (c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and its intention is to ~500m A/c
It is an object of the present invention to provide a method for producing a paste-type cadmium cathode that does not easily cause peeling of the electrode plates even when subjected to negative electrolysis at a high current density such as m2.

に)問題点を解決する九めの手段 本発明のアルカリ蓄電池用ペースト式カドミウム陰極の
製法は、酸化カドミウム全主体とする活物質と、補強材
としてのポリアミド繊ak含むペーストt−櫃板芯体に
充填した後、160〜200℃で加熱し、次いでカドミ
ウム塩水溶液中で200〜500mA/cm  の電流
密度で陰電解して、表面に金属カドミウムを析出させる
ことを要旨とするものである。
Ninth Means for Solving the Problem The method for manufacturing the paste-type cadmium cathode for alkaline storage batteries of the present invention consists of an active material consisting entirely of cadmium oxide and a paste T-shaped plate core containing polyamide fiber ak as a reinforcing material. The gist of the method is to deposit metal cadmium on the surface by heating at 160 to 200° C. and then electrolyzing it negatively at a current density of 200 to 500 mA/cm 2 in an aqueous cadmium salt solution.

(刺作 用 密閉型アルカリ蓄電池において、充電時に陽極から発生
した酸素ガス汀次に示す反応で消費される。
(In a sealed alkaline storage battery for stimulation, oxygen gas generated from the anode during charging is consumed in the following reaction.

Cd +−02+H20→Cd(OH)!このガス吸収
反応は特に陰極表面の金属カドミウムでおこるものであ
り、本発明製法によればカドミウム塩水溶液中でカドミ
ウム陰極全階電解しているので陰極表面全体に金属カド
ミウムが存在し、ガス吸収反応が容易に進行する。
Cd +-02+H20→Cd(OH)! This gas absorption reaction occurs particularly in the metal cadmium on the cathode surface, and according to the production method of the present invention, cadmium cathode full-scale electrolysis is performed in a cadmium salt aqueous solution, so metal cadmium is present on the entire cathode surface, and the gas absorption reaction occurs. progresses easily.

また、補強材としてのポリアミド*aが混入されている
ので、カドミウム陰極t160〜200℃で加熱処理の
後200〜500mA/cm  のハイレートで陰極電
解を行った場合、この加熱処理においてポリアミド繊維
の表層部か溶融し、ポリアミド繊維同志が結着し活物質
全保持するマ)9ツクスr構成する結果、活物質の保持
が強力となり活物質の保持が十分に行なわれるので極板
における活物質の剥離という問題全解消でき、製造工程
の高速化か計れ量産化が可能となる。
In addition, since polyamide*a is mixed as a reinforcing material, when cathodic electrolysis is performed at a high rate of 200 to 500 mA/cm after heat treatment at a cadmium cathode t of 160 to 200°C, the surface layer of the polyamide fibers is As a result of the structure, the retention of the active material is strong and the active material is sufficiently retained, so that the active material is not peeled off at the electrode plate. This problem can be completely solved, and the manufacturing process can be sped up and mass production can be achieved.

尚、加熱温度が160℃よりも低いとポリアミド繊維が
溶融しないので効果がなく、一方200℃よりも高いと
ポリアミド喰維が溶融分解してしまい活物質が脱落する
ので好ましくない。
It should be noted that if the heating temperature is lower than 160°C, the polyamide fibers will not melt, so there is no effect, while if it is higher than 200°C, the polyamide fibers will melt and decompose and the active material will fall off, which is not preferable.

(へ)実施例 イ枦j 実験A1゜ 生活物質としての酸化カドミウム1000tに、糊料剤
としてのヒドロキシ10ビルセルロース6を及び5a6
!Iン酸ナトリウム水溶液300mlを加え、更に補強
材のポリアミド繊維として長さ約1.5 mm 、  
太さ1〜2デニールの6−ナイロン繊1a 10 tp
 を加えて十分に混練してペースト状とし、これをパン
チングメタルよりなる極板芯体に塗布、乾燥して厚さ0
.7mmのカドミウム陰極板?得た。この陰極板を長さ
2oomm、幅33.5mmの大きさに切断した。これ
金50枚用意して5重量彊の硝酸カドミウム水溶液中で
50.100.150,200,300,500,60
0mA/cm  の電流密度で10分分間型解したとき
、活物質が剥離した極板の枚数を第1表に表す。
(f) Example I Experiment A1゜To 1000 tons of cadmium oxide as a living material, hydroxy-10-vinyl cellulose 6 as a thickening agent and 5a6
! 300 ml of sodium phosphate aqueous solution was added, and polyamide fibers with a length of about 1.5 mm were added as reinforcing material.
6-nylon fiber 1a 10 tp with a thickness of 1 to 2 denier
is added and thoroughly kneaded to form a paste, which is applied to the electrode plate core made of punched metal and dried to a thickness of 0.
.. 7mm cadmium cathode plate? Obtained. This cathode plate was cut into a size of 2 oomm in length and 33.5 mm in width. Prepare 50 pieces of gold and put them in a cadmium nitrate aqueous solution with a weight of 50,100,150,200,300,500,60.
Table 1 shows the number of electrode plates from which the active material was peeled off when the mold was disassembled for 10 minutes at a current density of 0 mA/cm 2 .

第  1 表 尚、ここで剥離とは目で見て活物質の一部が明らかに極
板芯体からはがれているとわかるものである。
Table 1 Note that peeling here means that a part of the active material is clearly separated from the electrode plate core when visually observed.

これにより、電流密度が200mA/cm  より小さ
いとき発生する水素ガスが微量のため剥離の発生数はわ
ずかであるが、200mA/cm をこえると急激に増
加する。また200mA/cm2より小さい電流密度で
は工程に要する時間が長くなり、高速化に対応できなく
、500mA/cJより大きい電流密度ではカドミウム
の析出が均一になりにくい。したがって陰電解時の電流
密度は200〜500 mA/cm2である事が望まし
いが、前述したように剥離の発生という問題がある。
As a result, when the current density is less than 200 mA/cm 2 , the amount of hydrogen gas generated is small and the number of peelings is small, but when the current density exceeds 200 mA/cm 2 , the number of peelings increases rapidly. Further, if the current density is less than 200 mA/cm2, the time required for the process becomes longer and it is not possible to cope with higher speeds, and if the current density is more than 500 mA/cJ, it is difficult for cadmium to be deposited uniformly. Therefore, it is desirable that the current density during negative electrolysis is 200 to 500 mA/cm2, but as mentioned above, there is a problem in that peeling occurs.

実験例2 実験例1と同様にして製作した200mmX33.5m
mの極板1100,160.180,200.240℃
で加熱したもの及び全く加熱しないもの全用い、5重電
%の硝酸カドミウム水溶液中で300mA/cm2の電
流密度で10分[」陰電解したとき、活物質が剥離した
極板の板数を第2表に示す。
Experimental example 2 200mm x 33.5m manufactured in the same manner as experimental example 1
m electrode plate 1100, 160, 180, 200, 240℃
The number of electrode plates from which the active material was peeled off was measured when negative electrolysis was carried out for 10 minutes at a current density of 300 mA/cm2 in a 5% cadmium nitrate aqueous solution, both heated at It is shown in Table 2.

この結果より160℃以上で加熱処理を行ったものは3
00mA/cm”というハイレートであっても極板の剥
離が抑制されている。
From this result, those that were heat treated at 160℃ or higher were 3
Even at a high rate of 00 mA/cm'', peeling of the electrode plates is suppressed.

尚、200℃よりも高い温度で加熱したものは剥離が発
生しやすい傾向にあった。これけ6−ナイロン繊維が溶
融し、酸化されて分解し之ためであると考えられる。
Incidentally, those heated at a temperature higher than 200° C. tended to peel off easily. This is thought to be because the 6-nylon fibers melt, oxidize, and decompose.

実施例1 実験例1で得た2 00mmX 33.5 mmのカド
ミウム陰極板を用い180℃で加熱処理を行った後、5
重量%硝酸カドミウム水溶液中で300mA/cm の
電流密度にて陰電解し、本発明による陰極板を得、ニッ
グμ陽極板と組み合わせて公称容量1300mAHの密
閉型カドミウム蓄電池Aを得た。
Example 1 The 200 mm x 33.5 mm cadmium cathode plate obtained in Experimental Example 1 was heat-treated at 180°C, and then
A cathode plate according to the present invention was obtained by negative electrolysis in a wt % aqueous cadmium nitrate solution at a current density of 300 mA/cm 2 , and in combination with a Nig μ anode plate, a sealed cadmium storage battery A with a nominal capacity of 1300 mAH was obtained.

比峻例 実験例1で得た2 00mmX33.5mmのカドミウ
ム陰極板をそのまま用い、実施例1と同様に電池2組み
立て比較電池Bを得た。
Comparative Example Using the 200 mm x 33.5 mm cadmium cathode plate obtained in Experimental Example 1 as it was, Battery 2 was assembled in the same manner as in Example 1 to obtain Comparative Battery B.

これらの電池A、Bを用いて0℃において130mAで
連続充電を行なったときの充電時間と内部ガス圧との関
係を図に示した。
The figure shows the relationship between charging time and internal gas pressure when batteries A and B were continuously charged at 130 mA at 0°C.

本発明電池Aは比lll12電池Bに比べ、内部ガス圧
が低く、優れたガス吸収性能を示しているのがわかる。
It can be seen that the battery A of the present invention has a lower internal gas pressure and exhibits superior gas absorption performance compared to the comparison battery B.

(ト)  発明の効果 本発明のペースト式カドミウム陰極の製法によれば、ガ
ス吸収性能の擾れたカドミウム陰極が提供できると共に
、ハイレートで陰電解しても極板の剥離が発生しに<<
、電極製造工程の高速化が計れ、量産化が可能なるもの
であり、その工業的価値はきわめて大きい。
(g) Effects of the Invention According to the method for producing a paste-type cadmium cathode of the present invention, a cadmium cathode with poor gas absorption performance can be provided, and peeling of the electrode plate does not occur even when catholytically electrolyzed at a high rate.
, the electrode manufacturing process can be sped up and mass production is possible, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図は電池の充電時間と内部ガス圧との関係を示す図であ
る。 A・・・本発明電池、B・・・比較電池。
The figure is a diagram showing the relationship between battery charging time and internal gas pressure. A: Battery of the present invention, B: Comparative battery.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化カドミウムを主体とする活物質と、補強材と
してのポリアミド繊維を含むペーストを極板芯体に充填
した後、160〜200℃で加熱し、次いでカドミウム
塩水溶成中で200〜500mA/cm^2の電流密度
で陰電解して、表面に金属カドミウムを析出させること
を特徴とするアルカリ蓄電池用ペースト式カドミウム陰
極の製法。
(1) After filling the electrode plate core with a paste containing an active material mainly composed of cadmium oxide and polyamide fibers as a reinforcing material, it is heated at 160 to 200°C, and then heated at 200 to 500 mA in cadmium salt water dissolution. A method for producing a paste-type cadmium cathode for an alkaline storage battery, characterized by carrying out negative electrolysis at a current density of /cm^2 to deposit metal cadmium on the surface.
JP61227770A 1986-09-25 1986-09-25 Manufacture of paste type cadmium anode for alkaline storage battery Pending JPS6381766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61227770A JPS6381766A (en) 1986-09-25 1986-09-25 Manufacture of paste type cadmium anode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227770A JPS6381766A (en) 1986-09-25 1986-09-25 Manufacture of paste type cadmium anode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS6381766A true JPS6381766A (en) 1988-04-12

Family

ID=16866105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227770A Pending JPS6381766A (en) 1986-09-25 1986-09-25 Manufacture of paste type cadmium anode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6381766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763097A1 (en) 2005-09-09 2007-03-14 Saft Positive electrode for alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763097A1 (en) 2005-09-09 2007-03-14 Saft Positive electrode for alkaline battery

Similar Documents

Publication Publication Date Title
JPS6381766A (en) Manufacture of paste type cadmium anode for alkaline storage battery
US3053924A (en) Battery electrode and method of making the same
JPS61168866A (en) Hydrogen occlusion electrode
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP3606097B2 (en) Activation treatment method of hydrogen storage alloy for battery
JP3239743B2 (en) Method for producing positive electrode for alkaline storage battery
US1008854A (en) Storage-battery electrode and process of making it.
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2786906B2 (en) Manufacturing method of sealed alkaline storage battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
US1067437A (en) Negative-pole plate for storage batteries.
CN112670446A (en) Lithium titanate electrode capable of inhibiting gas production and preparation method thereof
JP3691257B2 (en) Method for producing sintered cadmium negative electrode for alkaline storage battery
JPS63158761A (en) Solid hydrogen battery
JPH0437544B2 (en)
JPH01132048A (en) Manufacture of hydrogen storage alloy electrode
JPH0410181B2 (en)
JPH1074510A (en) Manufacture of hydrogen absorbing alloy for alkali storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS632254A (en) Alkaline zinc storage battery
JPH041992B2 (en)
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPS62168341A (en) Manufacture of electrode plate for lead storage battery
JPS5927457A (en) Manufacture of nickel positive pole for alkali cell