JPS638150Y2 - - Google Patents

Info

Publication number
JPS638150Y2
JPS638150Y2 JP1982164332U JP16433282U JPS638150Y2 JP S638150 Y2 JPS638150 Y2 JP S638150Y2 JP 1982164332 U JP1982164332 U JP 1982164332U JP 16433282 U JP16433282 U JP 16433282U JP S638150 Y2 JPS638150 Y2 JP S638150Y2
Authority
JP
Japan
Prior art keywords
electrode
solar cell
electrode layer
cell element
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982164332U
Other languages
Japanese (ja)
Other versions
JPS5967955U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16433282U priority Critical patent/JPS5967955U/en
Publication of JPS5967955U publication Critical patent/JPS5967955U/en
Application granted granted Critical
Publication of JPS638150Y2 publication Critical patent/JPS638150Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【考案の詳細な説明】 〈技術分野〉 本考案は太陽電池素子に関し、特にその裏面電
極構造の改良に関するものである。
[Detailed Description of the Invention] <Technical Field> The present invention relates to a solar cell element, and particularly relates to an improvement of the back electrode structure thereof.

〈従来技術〉 太陽電池素子の電極として受光面と反対の裏面
に形成される裏面電極はAlペーストの焼成によ
つて作製されるものが一般的である。第1図は従
来のn+/p/p+構造を有するBSF(Back
Surface Field)型太陽電池素子の裏面電極を示
す底面図である。BSF型太陽電池素子はn+/P
構造の素子に比較して開放電圧が高いという特徴
を有しており、高効率の太陽電池として開発が進
められている。高効率太陽電池素子は高密度光下
で使用されるため発生する大電流に伴なう素子内
での電圧降下を少なくすることが変換効率を高め
る上で必要となりこのため素子内部及び電極の抵
抗は極力低く抑えられなければならない。裏面電
極はAlから成る主電極層1とその内側に形成さ
れた環状のAgから成る補助電極層2より成る。
両電極層1,2で起電力を取り出す一方の電極と
して作用する。しかしながら、従来の電極構造で
はAlから成る主電極層1の抵抗が大きいために
得られる電流電圧特性の曲線因子が低くなり、高
い出力が得られなかつた。
<Prior Art> A back electrode formed on the back surface opposite to the light-receiving surface as an electrode of a solar cell element is generally produced by baking Al paste. Figure 1 shows the conventional BSF (Back
FIG. 2 is a bottom view showing a back electrode of a surface field type solar cell element. BSF type solar cell element has n + /P
It has the characteristic of having a higher open-circuit voltage than other structural elements, and is being developed as a highly efficient solar cell. Since high-efficiency solar cell elements are used under high-density light, it is necessary to reduce the voltage drop within the element due to the large current generated in order to increase conversion efficiency. must be kept as low as possible. The back electrode consists of a main electrode layer 1 made of Al and an annular auxiliary electrode layer 2 made of Ag formed inside the main electrode layer 1.
Both electrode layers 1 and 2 act as one electrode for extracting electromotive force. However, in the conventional electrode structure, because the resistance of the main electrode layer 1 made of Al is large, the fill factor of the current-voltage characteristics obtained is low, and high output cannot be obtained.

〈考案の目的〉 本考案は上述の問題点に鑑み、裏面電界効果に
より電流及び電圧を向上するとともに裏面電極の
抵抗値を下げることにより高出力を得るようにし
た新規有用な太陽電池素子を提供することを目的
とするものである。
<Purpose of the invention> In view of the above-mentioned problems, the present invention provides a new and useful solar cell element that improves current and voltage by the back field effect and obtains high output by lowering the resistance value of the back electrode. The purpose is to

〈実施例〉 第2図は本考案の1実施例を示す太陽電池素子
の底面図である。n+/p/p+構造を有するシリ
コンp−n接合型太陽電池素子の裏面即ち受光面
と反対の面にAlから成る主電極層1が中空円板
状に形成され、その内方部にAgから成る補助電
極層2が形成されている。Al面は半田付けがで
きないので、リード線を接続するためにAgの補
助電極層2を設けて電極取り出し部を構成してい
る。また主電極層1には細線状の細電極3が放射
状に配設されており、この細電極3は補助電極層
2と接続されて主電極層1の電気抵抗値を下げる
作用をする。細電極3の形成方法はAgペースト
を放射状にスクリーン印刷した後、Alペースト
を印刷し、焼成することによつて裏面電極とする
かあるいはAlペーストを印刷焼成した後、Agペ
ーストをAl層上に印刷焼成することによつて裏
面電極とする方法がある。後者の場合、Agペー
ストの焼成は500℃〜600℃程度の低温で行なうこ
とが必要である。この理由は600℃以上になると
AlがAg中に拡散して合金を作り、半田付けがで
きなくなるためである。なお補助電極(Ag)を
点状にした場合、主電極層(Al)の電気抵抗が
大きいため、電極取り出し部においては直列抵抗
が大きくなり出力が若干低下してしまう。また主
電極層1の全面に補助電極(Ag)を形成した場
合、Agと基板(シリコン)との熱膨張率が異な
るため反りの原因となり、これは後の工程でAg
電極部全面に半田デイツプを行なう際に特に問題
となる。さらにこの場合、Ag材料の使用量が大
幅に増すためコストアツプを招来するという問題
がある。これらに対して、本考案の補助電極
(Ag)は多数の線状に主電極層(Al層)に沿つ
て形成されているので、直列抵抗も少く、出力の
低下はほとんど無くすることができる。さらに上
記したAg電極印刷後にAlの印刷焼成を行う構造
でも、補助電極(Ag)を細線状とすることによ
り、p+層の面積を増すことができ、効率UPが図
れる。
<Example> FIG. 2 is a bottom view of a solar cell element showing one example of the present invention. A main electrode layer 1 made of Al is formed in the shape of a hollow disk on the back surface of a silicon p-n junction solar cell element having an n + /p/p + structure, that is, the surface opposite to the light-receiving surface. An auxiliary electrode layer 2 made of Ag is formed. Since the Al surface cannot be soldered, an auxiliary electrode layer 2 of Ag is provided to connect the lead wire to form an electrode extraction part. Further, thin wire-like thin electrodes 3 are arranged radially on the main electrode layer 1, and these thin electrodes 3 are connected to the auxiliary electrode layer 2 and have the effect of lowering the electrical resistance value of the main electrode layer 1. The method for forming the fine electrode 3 is to screen print Ag paste radially, then print Al paste, and then bake it to form a back electrode. Alternatively, after printing and baking Al paste, apply Ag paste on the Al layer. There is a method of making a back electrode by printing and baking. In the latter case, it is necessary to sinter the Ag paste at a low temperature of about 500°C to 600°C. The reason for this is that when the temperature exceeds 600℃,
This is because Al diffuses into Ag and forms an alloy, making soldering impossible. Note that when the auxiliary electrode (Ag) is made into a dot, the electrical resistance of the main electrode layer (Al) is large, so the series resistance increases at the electrode extraction portion, resulting in a slight decrease in output. In addition, when an auxiliary electrode (Ag) is formed on the entire surface of the main electrode layer 1, the thermal expansion coefficients of Ag and the substrate (silicon) are different, which causes warping.
This is especially a problem when applying solder dip to the entire surface of the electrode section. Furthermore, in this case, there is a problem in that the amount of Ag material used increases significantly, leading to an increase in costs. In contrast, the auxiliary electrode (Ag) of the present invention is formed in many lines along the main electrode layer (Al layer), so the series resistance is small and the drop in output can be almost eliminated. . Furthermore, even in the structure in which printing and firing of Al is performed after printing the Ag electrode described above, by making the auxiliary electrode (Ag) into a thin wire shape, the area of the p + layer can be increased and efficiency can be increased.

細電極3の形状は放射状以外に格子状、網目状
等の如く種々のパターンが実施に供される。
The shape of the thin electrode 3 can be implemented in various patterns such as a lattice shape, a mesh shape, etc. in addition to the radial shape.

細電極3を主電極層1に高密度に配設すること
により、裏面電極の抵抗値はAgの抵抗値により
定められることとなり、抵抗値の低い電極が得ら
れる。
By arranging the thin electrodes 3 in the main electrode layer 1 at a high density, the resistance value of the back electrode is determined by the resistance value of Ag, and an electrode with a low resistance value can be obtained.

〈考案の効果〉 以上詳説した如く本考案によれば裏面電極の抵
抗値が低下するため高出力の起電力を得ることが
できる。
<Effects of the Invention> As explained in detail above, according to the present invention, a high output electromotive force can be obtained because the resistance value of the back electrode is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のBSF太陽電池素子を示す底面
図である。第2図は本考案の1実施例を示す太陽
電池素子の底面図である。 1……主電極層、2……補助電極層、3……細
電極。
FIG. 1 is a bottom view showing a conventional BSF solar cell element. FIG. 2 is a bottom view of a solar cell element showing one embodiment of the present invention. 1... Main electrode layer, 2... Auxiliary electrode layer, 3... Fine electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] n+/p/p+構造を有するBSF型太陽電池素子
の裏面電極としてAlから成る平面状の主電極を
形成してなるものにおいて、電極取り出し用に
Agから成る多数の線状の細電極を形成したこと
を特徴とする太陽電池素子。
In a BSF type solar cell element having an n + /p/p + structure, in which a planar main electrode made of Al is formed as the back electrode, there is a
A solar cell element characterized by forming a large number of thin linear electrodes made of Ag.
JP16433282U 1982-10-27 1982-10-27 solar cell element Granted JPS5967955U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16433282U JPS5967955U (en) 1982-10-27 1982-10-27 solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16433282U JPS5967955U (en) 1982-10-27 1982-10-27 solar cell element

Publications (2)

Publication Number Publication Date
JPS5967955U JPS5967955U (en) 1984-05-08
JPS638150Y2 true JPS638150Y2 (en) 1988-03-10

Family

ID=30360310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16433282U Granted JPS5967955U (en) 1982-10-27 1982-10-27 solar cell element

Country Status (1)

Country Link
JP (1) JPS5967955U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656196B2 (en) * 2010-12-01 2015-01-21 株式会社 Nttファシリティーズ総合研究所 Solar cell unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556669A (en) * 1978-10-20 1980-04-25 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556669A (en) * 1978-10-20 1980-04-25 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JPS5967955U (en) 1984-05-08

Similar Documents

Publication Publication Date Title
JP2744847B2 (en) Improved solar cell and method for manufacturing the same
JPS6249676A (en) Solar battery
JPH04276665A (en) Integrated solar battery
TW201140869A (en) Method for applying full back surface field and silver busbar to solar cell
JP2000164902A (en) Solar battery
JPH0652795B2 (en) Flexible amorphous semiconductor solar cell
JPH0682854B2 (en) Solar cell
JP4903444B2 (en) Photoelectric conversion element
Werthen et al. 21%(one sun, air mass zero) 4 cm2 GaAs space solar cells
JPS638150Y2 (en)
JPH05259487A (en) Manufacture of solar cell
JPH09283781A (en) Photovoltaic device
JP2999867B2 (en) Solar cell and method of manufacturing the same
WO1993024960A1 (en) Solar cells with thick aluminum contacts
JPH06169096A (en) Silicon solar cell for spatial application
JP2003273379A (en) Solar cell element
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
JPH05326990A (en) Manufacture of photoelectric device
JP2948142B2 (en) Collector electrode forming method
JP2555023B2 (en) Solar cell
JP4203247B2 (en) Method for forming solar cell element
JP4272414B2 (en) Method for forming solar cell element
JP2698401B2 (en) Thin-film photoelectric conversion element
JP2006066748A (en) Semiconductor device, solar battery, and manufacturing methods thereof
JPS628039B2 (en)