JPS6381257A - Production of ion selective ceramic electrode element - Google Patents

Production of ion selective ceramic electrode element

Info

Publication number
JPS6381257A
JPS6381257A JP61226722A JP22672286A JPS6381257A JP S6381257 A JPS6381257 A JP S6381257A JP 61226722 A JP61226722 A JP 61226722A JP 22672286 A JP22672286 A JP 22672286A JP S6381257 A JPS6381257 A JP S6381257A
Authority
JP
Japan
Prior art keywords
electrode element
binder
ion
ceramic electrode
selective ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61226722A
Other languages
Japanese (ja)
Other versions
JPH0781979B2 (en
Inventor
Yukio Terada
幸男 寺田
Saburo Mori
森 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61226722A priority Critical patent/JPH0781979B2/en
Publication of JPS6381257A publication Critical patent/JPS6381257A/en
Publication of JPH0781979B2 publication Critical patent/JPH0781979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/182Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte
    • H01M6/183Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte with fluoride as solid electrolyte

Abstract

PURPOSE:To enable stable production of an ion selective ceramic electrode element having a high sintered density of the element, a high yield and a long life by calcining and pulverizing lanthanum fluoride then adding a binder to the powder and molding the mixture under pressurization. CONSTITUTION:After the lanthanum fluoride powder is calcined and pulverized, the org. binder is added to the powder and the mixture is molded. The binder is once decomposed and splashed within a 300-600 deg.C range in air and thereafter, the molding is sintered by heating in an inert gas. The electrode element which has good moldability and has no open pores is thereby manufactured and the ion selective ceramic electrode element having the high yield and long life is stably produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水質管理、溶液管理、濃度管理、或は化学分
析等に使われ、迅速かつ正確に定量出来るイオン選択性
セラミック電極素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an ion-selective ceramic electrode element that is used for water quality management, solution management, concentration management, chemical analysis, etc. and is capable of rapid and accurate quantitative determination. It is something.

従来の技術 従来のイオン選択性セラミック電極素子は、例えば特公
昭53−26839号公報に示す様に、弗化ランタンを
主成分とする粉末を900〜1100℃で仮焼後、粉砕
造粒しバインダーを無添加の状態で所望の形状に加圧成
型し、その後不活性ガス中で1200−1350℃の温
度範囲で焼成し製造していた。
2. Description of the Related Art Conventional ion-selective ceramic electrode elements are manufactured by calcining powder containing lanthanum fluoride as a main component at 900 to 1100°C, then crushing and granulating it to form a binder, as shown in Japanese Patent Publication No. 53-26839, for example. The product was manufactured by press-molding it into a desired shape without additives, and then firing it in an inert gas at a temperature range of 1200-1350°C.

発明が解決しようとする問題点 しかし、この様な方法ではバインダーを添加せずに加圧
成型するため、ラミネーションやクランクなどが多発し
易いことなどで、成型歩留りが非常に悪く、又、粉末間
の密着が弱いために、10t/d以上の大きな成型圧を
必要としていた。従って、焼結体においても成型締りか
弱いために粒界間の焼結性が悪く、オープンポアーなど
が多発し、歩留りが非常に低いという欠点があった。又
、良品として残った中にも焼結性が悪いために空孔が多
く残り、寿命が短くなる等の欠点がある。これらの原因
は、弗化ランタンを空気中で加熱すると、800℃付近
で酸化分解するために、アルゴンガス等の不活性ガス中
で焼成する必要を生じ、バインダーとして有機バインダ
ーは不活性ガス中で燃焼しないので用いることは困難で
あり、バインダーの種類が無機バインダーに限定される
。しかし、無機バインダーも焼結体中に残るため、イオ
ン選択性に支障を及ぼす等の問題を生じ使用出来ない。
Problems to be Solved by the Invention However, in this method, since pressure molding is performed without adding a binder, lamination and cranking are likely to occur frequently, resulting in a very poor molding yield. Because of the weak adhesion, a large molding pressure of 10 t/d or more was required. Therefore, in the sintered body, the compaction of the mold is weak, resulting in poor sinterability between grain boundaries, frequent occurrence of open pores, and a very low yield. Furthermore, even among the good products that remain, many pores remain due to poor sintering properties, resulting in shortened service life. The reason for these is that when lanthanum fluoride is heated in air, it oxidizes and decomposes at around 800°C, making it necessary to sinter it in an inert gas such as argon gas. It is difficult to use because it does not burn, and the type of binder is limited to inorganic binders. However, since the inorganic binder also remains in the sintered body, problems such as interfering with ion selectivity occur, making it unusable.

つまりバインダーの使用が困難なために成型、焼成に影
響を及ぼし良品が歩留りよ(得られない等の問題点があ
った。
In other words, since it is difficult to use a binder, it affects molding and firing, resulting in problems such as a decrease in the yield of good products.

問題点を解決するための手段 本発明は上記問題点を解決するため、弗化ランタン粉末
を仮焼粉砕後、有機バインダーを添加して成型し、−星
空気中で300〜600℃の温度範囲でバインダーを分
解飛散させた後、続いて不活性ガス中で1200〜13
50℃の温度範囲で加熱焼結することにより、成型性が
良く、しかもオープンポアーのない電極素子を作製し、
歩留り並びに寿命の良いイオン選択性セラミック電極素
子の製造方法を提供するものである。
Means for Solving the Problems The present invention solves the above problems by calcining and pulverizing lanthanum fluoride powder, adding an organic binder and molding the powder in a temperature range of 300 to 600°C in star air. After decomposing and scattering the binder with
By heating and sintering in a temperature range of 50°C, an electrode element with good moldability and no open pores was created.
The present invention provides a method for manufacturing an ion-selective ceramic electrode element with good yield and long life.

作用 本発明は上記の方法のように、有機バインダーを使用し
て成型した後、有機バインダーの分解温度であり、かつ
弗化ランタンの分解しない温度である300〜600℃
で、−星空気中加熱しバインダーの影響を除いた後、加
熱焼結することにより成型性、成型績り、更には粉末間
の密着性が良くなる等が効果して粒界間の焼結性が良(
、しかもオープンポアー、クラフクのないイオン選択性
セラミック電極素子が安定に製造できる。
Function: As in the above-mentioned method, the present invention uses an organic binder for molding and then molds the organic binder at a temperature of 300 to 600°C, which is the decomposition temperature of the organic binder and the temperature at which lanthanum fluoride does not decompose.
After heating in the air to remove the influence of the binder, heating and sintering improves moldability, moldability, and adhesion between powders, resulting in sintering between grain boundaries. Good quality (
Moreover, an ion-selective ceramic electrode element with open pores and no cracks can be stably produced.

実施例 以下に本発明の一実施例について具体的に説明する。Example An embodiment of the present invention will be specifically described below.

(実施例1) 弗化ランタン40gを白金皿上に採取し、次にアルゴン
ガス雰囲気炉中で1100℃で2時間仮焼した。
(Example 1) 40 g of lanthanum fluoride was collected on a platinum plate, and then calcined at 1100° C. for 2 hours in an argon gas atmosphere furnace.

仮焼後、めのう乳鉢でよく粉砕した後ポリビニールアル
コールの10%溶液の5重量%を加えよく混合し、次に
20メツシユのふるいを通して造粒した。
After calcination, the mixture was thoroughly ground in an agate mortar, 5% by weight of a 10% solution of polyvinyl alcohol was added thereto, mixed well, and then passed through a 20-mesh sieve and granulated.

造粒後0.6gを秤り取り、直径10φの金型中に移し
5t/、:fflの圧力を加えて成型し、素子形状の成
型体を50ケ作製した。成型体は空気中で300℃、2
時間加熱し完全にバインダーを分解飛散させた。
After granulation, 0.6 g was weighed out, transferred into a mold with a diameter of 10φ, and molded under a pressure of 5 tons/ffl to produce 50 element-shaped molded bodies. The molded body is heated in air at 300℃, 2
The binder was completely decomposed and scattered by heating for a certain period of time.

次にアルゴンガスで置換された雰囲気炉中で、1300
℃、3時間の加熱焼成を行い焼結させた。
Next, in an atmosphere furnace purged with argon gas,
C. for 3 hours to sinter.

焼結後、セラミック素子を赤インク中に浸け、超音波を
5分間かけ、ポアー試験を行なった。次にポアー試験に
合格した素子のみを使用して、弗素イオン電極を作製し
、pHメーターと10− ’ M〜10c′Mの弗素標
準液を用いて起電力を測定した。起電力測定の結果、正
常な素子についてはネルンスト式を満足し、第1図に示
す様な直線が得られた。
After sintering, the ceramic element was immersed in red ink and subjected to ultrasonic waves for 5 minutes to perform a pore test. Next, a fluorine ion electrode was prepared using only the elements that passed the pore test, and the electromotive force was measured using a pH meter and a fluorine standard solution of 10-'M to 10c'M. As a result of the electromotive force measurement, the Nernst equation was satisfied for a normal element, and a straight line as shown in FIG. 1 was obtained.

又、従来法との比較を行うため弗化ランタンを同様に仮
焼粉砕した後、バインダーを添加せずに8t/−で加圧
成型し、以下同様にアルゴンガス雰囲気炉中で焼成した
素子を50ケ作成し比較に供した。第1表にこれらの歩
留、不良内容の比較結果を示す。
In addition, in order to make a comparison with the conventional method, lanthanum fluoride was calcined and crushed in the same way, and then pressure-molded at 8t/- without adding a binder, and then similarly fired in an argon gas atmosphere furnace. Fifty samples were prepared and used for comparison. Table 1 shows the comparison results of these yields and defects.

第1表 第1表から明らかな様に、本発明によるイオン選択性セ
ラミック電極素子は、従来の方法のイオン選択性セラミ
ック電極素子に比べ、優れた歩留りを示すことが分る。
Table 1 As is clear from Table 1, the ion-selective ceramic electrode element according to the present invention shows superior yield compared to the ion-selective ceramic electrode element produced by the conventional method.

これは有機バインダーを添加して成型、焼成することに
より成型性、焼結性が向上し、大きな効果のあることを
示すものである。
This shows that adding an organic binder to molding and firing improves moldability and sinterability, and has a great effect.

(実施例2) 酸化ランタン38.7g、炭酸カルシウム1.25g、
酸化ユーロピウム0.175gをテフロンと一カに秤り
取り、濃硝酸170ccを加えて溶解した。次に酸性弗
化アンモニラ液の30%液を徐々に加え、弗化物を沈澱
させた。沈澱後、水を加えて数回静置濾過を行いよく洗
浄し、続いて遠心分離器にかけて沈澱を抽出し、乾燥器
中で乾燥した。以下、実施例1と同様の方法で仮焼、粉
砕、造粒、成型を行ない素子形状の成型体を50ケ得た
。成型体は空気中で600℃、2時間加熱し完全にバイ
ンダーを分解飛散させた。以下、実施例1と同様の方法
で焼成、ボアー試験、弗素イオン電極の作製、起電力の
測定を行なった。起電力測定の結果、正常な素子につい
ては、実施例1と同様の結果が得られた。
(Example 2) Lanthanum oxide 38.7g, calcium carbonate 1.25g,
0.175 g of europium oxide was weighed out together with Teflon, and 170 cc of concentrated nitric acid was added to dissolve it. Next, a 30% acidic ammonia fluoride solution was gradually added to precipitate the fluoride. After precipitation, water was added and the mixture was subjected to stationary filtration several times for thorough washing, followed by centrifugation to extract the precipitate and drying in a dryer. Thereafter, calcination, pulverization, granulation, and molding were performed in the same manner as in Example 1 to obtain 50 element-shaped molded bodies. The molded body was heated in air at 600° C. for 2 hours to completely decompose and scatter the binder. Thereafter, firing, a bore test, preparation of a fluorine ion electrode, and measurement of electromotive force were performed in the same manner as in Example 1. As a result of electromotive force measurement, the same results as in Example 1 were obtained for normal elements.

又、従来法との比較を行うため、実施例1と同様にバイ
ンダーを添加せずに、成型、焼成した素子を50ケ作成
し、比較に供した。第2表にこれらの歩留、不良内容の
比較結果、第2図、第3図に本発明による電極素子と従
来法による電極素子の鏡面研磨によるポアー観察結果、
第4図、第5図に本発明による電極素子と、従来法によ
る電極素子の50℃の高温溶液中での連続加速寿命試験
結果を示す。
In addition, in order to make a comparison with the conventional method, 50 devices were molded and fired without adding a binder in the same manner as in Example 1, and used for comparison. Table 2 shows the comparison results of these yields and defects, and Figures 2 and 3 show the results of pore observation by mirror polishing of the electrode element according to the present invention and the electrode element according to the conventional method.
FIG. 4 and FIG. 5 show the results of a continuous accelerated life test in a high temperature solution of 50° C. for an electrode element according to the present invention and an electrode element according to a conventional method.

第2表から明らかな様に、本発明によるイオン選択性セ
ラミック電極素子は、従来の方法のイオン選択性セラミ
ック電極素子に比べ、優れた歩留りを示すことが分る。
As is clear from Table 2, it can be seen that the ion-selective ceramic electrode element according to the present invention exhibits a superior yield compared to the ion-selective ceramic electrode element produced by the conventional method.

又、第2図、第3図のポアー観察結果から、本発明によ
るイオン選択性セラミック電極素子は従来のイオン選択
性セラミック電極素子に比べ、粒界間のボアーが消滅し
粒内ボアーだけになり、いわゆるオープンポアーのなく
なっていることが観察される。これはバインダーを添加
して加圧成型することにより、粒子間の密着性が増し焼
結性が向上したものと推測される。
In addition, from the pore observation results shown in Figures 2 and 3, the ion-selective ceramic electrode element according to the present invention shows that, compared to the conventional ion-selective ceramic electrode element, the bores between grain boundaries disappear and only the bores within the grains exist. , it is observed that so-called open pores have disappeared. This is presumably because adding a binder and press-molding increased the adhesion between the particles and improved the sinterability.

第1表、第2表の結果も、これらの効果が明らかに出て
いると推測される。
The results in Tables 1 and 2 suggest that these effects are clearly evident.

又、第4図、第5図の連続加速寿命試験結果からも、本
発明のイオン選択性セラミック電極素子は、従来の方法
のイオン選択性電極素子に比べ、約3倍の寿命があり、
本発明の効果の大きいことが解った。
Furthermore, from the continuous accelerated life test results shown in FIGS. 4 and 5, the ion-selective ceramic electrode element of the present invention has a lifespan approximately three times longer than that of the ion-selective electrode element of the conventional method.
It was found that the present invention is highly effective.

発明の効果 本発明は、イオン選択性セラミック電極素子を製造にお
いて、原料である弗化ランタンを仮焼粉砕後、有機バイ
ンダーを添加して加圧成型し、得られた成型体を空気中
で一旦加熱処理し、バインダーを分解飛散させた後、さ
らに不活性ガス中で焼結させることを特徴とするイオン
選択性セラミック電極素子の製造方法であるので、素子
焼結体の密度の向上に合せて素子成型体の歩留りも著し
く向上し、その結果、従来のイオン選択性電極素子に比
べ素子焼結体の焼結密度が高く、かつ歩留りが良く、し
かも長寿命のイオン選択性セラミック電極素子の製造が
安定に出来る効果が生じる。
Effects of the Invention In the production of an ion-selective ceramic electrode element, the present invention involves calcining and pulverizing the raw material lanthanum fluoride, adding an organic binder, and press-molding the resulting molded body once in the air. This method of manufacturing ion-selective ceramic electrode elements is characterized by heat treatment to decompose and scatter the binder, and then sintering in an inert gas. The yield of the element molded body has also been significantly improved, and as a result, the sintered element has a higher sintering density than conventional ion-selective electrode elements, has a good yield, and has a long lifespan. This has the effect of making it stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のイオン選択性セラミック電極素子で作
製した弗素イオン電極の特性図、第2図は、本発明のイ
オン選択性セラミック電極素子焼結体の鏡面研磨部の拡
大図、第3図は、従来法のイオン選択性セラミック電極
素子焼結体の鏡面研磨部の拡大図、第4図、本発明のイ
オン選択性セラミック電極素子で作製した弗素イオン電
極の50℃の高温溶液中での連続加速寿命試験結果のグ
ラフ、第5図は、従来法のイオン選択性セラミック電極
素子で作製した弗素イオン電極の50℃の高温溶液中で
の連続加速寿命試験結果のグラフである。 代理人の氏名 弁理士 中尾敏男 ほか1名窮1図 戸F(yno171) 第2図 第3図
FIG. 1 is a characteristic diagram of a fluorine ion electrode manufactured using the ion-selective ceramic electrode element of the present invention, FIG. 2 is an enlarged view of the mirror-polished part of the sintered body of the ion-selective ceramic electrode element of the present invention, and The figure shows an enlarged view of the mirror-polished part of the sintered body of the ion-selective ceramic electrode element of the conventional method. FIG. 5 is a graph of the results of a continuous accelerated life test in a high temperature solution at 50° C. of a fluorine ion electrode prepared using a conventional ion-selective ceramic electrode element. Name of agent: Patent attorney Toshio Nakao and one other person (yno171) Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)弗化ランタン、又は弗化ランタンにランタン以外
の稀土類及びアルカリ土類元素弗化物の少なくとも一種
以上添加混合下粉末を焼結してなるイオン選択性セラミ
ック電極素子であって、前記粉末の仮焼粉砕物にバイン
ダーを添加して成型した後、一旦空気中で加熱しバイン
ダーを分解させ、続いて不活性ガス中で加熱焼結するこ
とを特徴とするイオン選択性セラミック電極素子の製造
方法。
(1) An ion-selective ceramic electrode element obtained by sintering lanthanum fluoride or a mixed powder of lanthanum fluoride and at least one rare earth element and alkaline earth element fluoride other than lanthanum, the powder Production of an ion-selective ceramic electrode element characterized by adding a binder to the calcined and pulverized product and molding it, heating it in air to decompose the binder, and then heating and sintering it in an inert gas. Method.
(2)空気中で加熱しバインダーを分解させる温度が、
300℃から600℃の温度範囲であることを特徴とす
る特許請求の範囲第(1)項記載のイオン選択性セラミ
ック電極素子の製造方法。
(2) The temperature at which the binder decomposes when heated in the air is
The method for manufacturing an ion-selective ceramic electrode element according to claim (1), wherein the temperature range is from 300°C to 600°C.
(3)バインダーが空気中の加熱によって分解飛散する
有機バインダーであることを特徴とする特許請求の範囲
第(1)項記載のイオン選択性セラミック電極素子の製
造方法。
(3) The method for producing an ion-selective ceramic electrode element according to claim (1), wherein the binder is an organic binder that decomposes and scatters when heated in the air.
JP61226722A 1986-09-25 1986-09-25 Method for manufacturing ion-selective ceramic electrode element Expired - Fee Related JPH0781979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226722A JPH0781979B2 (en) 1986-09-25 1986-09-25 Method for manufacturing ion-selective ceramic electrode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226722A JPH0781979B2 (en) 1986-09-25 1986-09-25 Method for manufacturing ion-selective ceramic electrode element

Publications (2)

Publication Number Publication Date
JPS6381257A true JPS6381257A (en) 1988-04-12
JPH0781979B2 JPH0781979B2 (en) 1995-09-06

Family

ID=16849600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226722A Expired - Fee Related JPH0781979B2 (en) 1986-09-25 1986-09-25 Method for manufacturing ion-selective ceramic electrode element

Country Status (1)

Country Link
JP (1) JPH0781979B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650918A1 (en) * 1989-08-09 1991-02-15 Tsnt Tv SOLID ELECTROLYTE AND PROCESS FOR OBTAINING THE SAME
CN104723200A (en) * 2013-12-24 2015-06-24 上海宝钢化工有限公司 Method for repairing fluorine ion electrode by burnishing stick

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650918A1 (en) * 1989-08-09 1991-02-15 Tsnt Tv SOLID ELECTROLYTE AND PROCESS FOR OBTAINING THE SAME
CN104723200A (en) * 2013-12-24 2015-06-24 上海宝钢化工有限公司 Method for repairing fluorine ion electrode by burnishing stick

Also Published As

Publication number Publication date
JPH0781979B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
KR101323697B1 (en) Zirconium oxide and method for the production thereof
KR20060102511A (en) Indium oxide powder and method for producing same
JPS5939719B2 (en) Nuclear fuel body and its manufacturing method
JP2018052747A (en) Magnesium oxide-containing spinel powder and manufacturing method thereof
CN107266069A (en) A kind of utilization glass dust permeates the preparation method of regenerating oxidation zirconium porous ceramics
JP3285620B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JPS61101462A (en) Zirconia ceramic
JPH0380749B2 (en)
JPS6381257A (en) Production of ion selective ceramic electrode element
US3751366A (en) Process for preparing ferrite and garnet raw materials for microwave applications
US4119469A (en) Insulating ceramic substances having controlled porosity and the method for preparing them by sintering
JPH0788258B2 (en) Method for producing silicon nitride powder having good sinterability
JP4713214B2 (en) Method for producing porous ceramics
JPH0572355B2 (en)
JPH0455995B2 (en)
JPH08301672A (en) Production of powder for porous sintered compact
JPH01189347A (en) Recovery of platinum group metal from purification catalyst for exhaust gas of automobile
RU2720427C1 (en) Method of producing refractory articles from ceramic material based on potassium sodium niobate
RU2194014C1 (en) Method of finely divided yttrium oxide powder preparing
RU2791652C1 (en) Method of obtaining ceramics
JPH0369546A (en) Sintered ceramic body and production therefor
RU2236389C2 (en) Method of fabricating products from lithium-aluminosilicate glass-ceramic material
DE1932350B2 (en) PROCESS FOR MANUFACTURING GAS SEALS, THIN-WALLED CERAMIC BODY AND APPLICATION OF THE PROCESS
JPS6418913A (en) Production of perovskite-type ceramics powder
CN103771858A (en) Method for preparing porous silicon carbide ceramic employing activated carbon silicification method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees