JPS6380831A - Removal of iodine in gas - Google Patents

Removal of iodine in gas

Info

Publication number
JPS6380831A
JPS6380831A JP61227048A JP22704886A JPS6380831A JP S6380831 A JPS6380831 A JP S6380831A JP 61227048 A JP61227048 A JP 61227048A JP 22704886 A JP22704886 A JP 22704886A JP S6380831 A JPS6380831 A JP S6380831A
Authority
JP
Japan
Prior art keywords
iodine
aqueous solution
gas
silver
silver ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61227048A
Other languages
Japanese (ja)
Other versions
JPS6348572B2 (en
Inventor
Takaaki Tamura
田村 孝章
Norihiko Fujita
矩彦 藤田
Mikiro Kumagai
幹郎 熊谷
Masami Sasarashi
九石 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO GENSHIRYOKU KYOKUCHO
Japan Atomic Energy Agency
Original Assignee
KAGAKU GIJUTSUCHO GENSHIRYOKU KYOKUCHO
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO GENSHIRYOKU KYOKUCHO, Japan Atomic Energy Research Institute filed Critical KAGAKU GIJUTSUCHO GENSHIRYOKU KYOKUCHO
Priority to JP61227048A priority Critical patent/JPS6380831A/en
Priority to EP87113910A priority patent/EP0261662A3/en
Publication of JPS6380831A publication Critical patent/JPS6380831A/en
Publication of JPS6348572B2 publication Critical patent/JPS6348572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To simply and efficiently remove iodine, by bringing a gaseous mixture or vapor containing iodine and/or an iodine compound into contact with an aqueous solution containing a silver ion to precipitate iodine as an insoluble iodine compound. CONSTITUTION:A gaseous mixture or vapor containing at least iodine and/or an iodine compound is brought into contact with an aqueous solution containing at least a silver ion to remove iodine in the gaseous mixture or vapor as an insoluble iodine compound precipitate. The silver ion contained in the aqueous solution can be used in a form of a salt of mineral acid of every kind, especially, in a form of nitrate or sulfate and the concn. range thereof may be widely set to 0.0001-5mol/l but a range of 0.001-1mol% is especially pref. As an apparatus for performing the gas-liquid contact of the gas to be treated and the aqueous solution containing the silver ion, there are a foam tower, a spray tower, a shelf stage tower, a wet tower, etc.

Description

【発明の詳細な説明】 技街分立: 本発明は、混合気体中からヨウ素及び/又はヨウ素化合
物をほぼ完全に除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field: The present invention relates to a method for almost completely removing iodine and/or iodine compounds from a gas mixture.

従米伎離二 使用済み核燃料の再処理工場における、使用済み核燃料
の溶解工程から発生するオフガス(以下、DOGと略称
する)から、その中に含まれるヨウ素を除去する方法と
しては、既に種々の方法が提案されている。
Various methods have already been used to remove iodine contained in the off-gas (hereinafter abbreviated as DOG) generated from the spent nuclear fuel melting process at the spent nuclear fuel reprocessing plant. is proposed.

それら方法にはアルカリ洗浄法、メルキュレックス(M
ercurex )法、ヨードックス(Iodox)法
などの湿式法と各種の固形吸着剤を用いる乾式法とがあ
る。先ず、湿式法については、アルカリ洗浄法は、DO
Gを1−2Mの苛性ソーダ水溶液で洗浄し、DOG中の
ヨウ素をNal、 Mail、Na1Oなどに変えるこ
とにより、吸収除去する方法である。この方法は生成ヨ
ウ素化物の沈澱の外に、DOG中に含まれているC02
やNOx  と苛性ソーダとの反応により、多量のスラ
ッジが生成し、後処理すべき放射性廃棄物の量が著しく
増大し、その処理のための負担が嵩むという欠点がある
(参考文献■Ho1laday、 D、11..197
9. A 1lte−rature 5urvey: 
 methods of the removal o
f 1odinespecies from off−
gases and 1iquid waste st
reamsof nuclear power and
 nuclear fuel reprocessln
gplants、 with emphasis on
 5olid 5orbents、 0RNL/TM−
G350;■Internatlonal Atomi
c Energy Agency、 1980゜Rad
iolodjne removal In nucle
ar faclllltles。
These methods include alkaline cleaning method, Mercurex (M
There are wet methods such as ercurex method and Iodox method, and dry methods using various solid adsorbents. First, regarding the wet method, the alkaline cleaning method uses DO
This is a method of absorbing and removing DOG by washing DOG with a 1-2M aqueous solution of caustic soda and converting the iodine in DOG to Nal, Mail, Na1O, etc. In addition to precipitating the produced iodide, this method also reduces the amount of CO2 contained in DOG.
The disadvantage is that a large amount of sludge is generated due to the reaction between NOx and caustic soda, significantly increasing the amount of radioactive waste that must be post-treated, and increasing the burden of processing it (References ■Holladay, D. 11..197
9. A 1lte-rate 5urvey:
methods of the removal
f1odinespecies from off-
gases and 1quid waste st
reamsof nuclear power and
nuclear fuel reprocessln
gplants, with emphasis on
5olid 5orbents, 0RNL/TM-
G350; ■International Atomi
c Energy Agency, 1980° Rad
iolodjne removal in nucleus
ar facllllltles.

Technlca reports 5eries N
o、 201 、 IAEA、 Viennai■Be
nedlct、 M、、T、 H,Plgford a
nd H,W、 Levl、 +981、 Nucle
ar Chemical Englneerlngl 
McGraw−HillN、Y、) ヌルキュレックス法は吸収液として、硝酸水銀の硝酸溶
液(1−14101/l )を使用し、ヨウ素をHg1
2、Hg(IO2)2等に変えて、吸収除去する方法で
ある。この方法は水銀を使用する為、水銀による公害を
排除する為、十分な対策を必要としている(上記参照文
献■、■及び■を参照)。なお、公開されているヌルキ
ュレックス法によると、その操作過程に於いて、ヨウ素
を吸収した硝酸水銀溶液は、電解槽に送られ、そこでヨ
ウ素と水銀とに分解され、ヨウ素はヨウ化銅として固定
し、水銀を循環使用している。このように、その操作過
程は極めて複雑に構成されなければならないという、欠
点を有している(参考文献■Co11ad、 G、E、
R,et al、、 1978. Iodine tr
appln)and condltloning In
 the mercurex system、 1Gt
hDOE  Nuclear Air Cleanin
g Conference、 p552.)o最後に、
ヨードックス法は、20−22mmol/lという高l
コ度の鞘酸を吸収液として使用し、ヨウ素を旧Oとして
沈澱させ、分離回収する方法である。この方法では、濃
硝酸が用いられるため、その装置材料が腐蝕されるとい
う好ましくない難点を有している(上記 参考文献■。
Technlca reports 5eries N
o, 201, IAEA, Vienna■Be
nedlct, M,, T, H, Plgford a.
nd H, W, Levl, +981, Nucle
ar Chemical Englneerlngl
McGraw-Hill N, Y.) The Nurculex method uses a nitric acid solution of mercury nitrate (1-14101/l) as the absorption liquid, and absorbs iodine into Hg1
2. This is a method of absorbing and removing Hg(IO2)2, etc. Since this method uses mercury, sufficient measures are required to eliminate pollution caused by mercury (see references ①, ②, and ① above). According to the published Nurculex method, during the operation process, the mercury nitrate solution that has absorbed iodine is sent to an electrolytic bath, where it is decomposed into iodine and mercury, and iodine is converted into copper iodide. It is fixed and mercury is recycled. As described above, it has the disadvantage that its operation process must be extremely complicated (References: Co11ad, G, E,
R, et al., 1978. Iodine tr
appln) and condoltloning In
the mercurex system, 1Gt
hDOE Nuclear Air Cleanin
g Conference, p552. ) o Finally,
The iodox method has a high l content of 20-22 mmol/l.
In this method, iodine is precipitated as old O by using hardened sheath acid as an absorption liquid, and the iodine is separated and recovered. Since this method uses concentrated nitric acid, it has the undesirable disadvantage of corroding the equipment material (see Reference ① above).

■及び■を参照)。(See ■ and ■).

次に、ヨウ素の除去に各種の固形吸着剤を使用する乾式
法に関しては、その大部分は銀又は銀塩とヨウ素との反
応が利用されている。例えば、ACGI20は、非晶質
ケイ酸を担体とし、それに石門酸銀を添着した吸着剤で
あって、NOxの共存下でも、効率良くヨウ素を吸着除
去できる(参考文献■特公昭53−22077参照)。
Next, regarding dry methods that use various solid adsorbents to remove iodine, most of them utilize the reaction of silver or silver salt with iodine. For example, ACGI20 is an adsorbent that uses amorphous silicic acid as a carrier and impregnates silver oxide, and can efficiently adsorb and remove iodine even in the coexistence of NOx (see References ■ Japanese Patent Publication No. 53-22077). ).

しかし乍ら、硝酸銀とヨウ素及びヨウ素化合物とを十分
に急速に反応させるためには、DOGを約150°Cに
加熱しなければならない(参考文献■及び■を参照)。
However, in order to react sufficiently rapidly the silver nitrate with iodine and iodine compounds, the DOG must be heated to about 150° C. (see references 1 and 2).

また、米国ハンフォード工場では素焼きのベルルサドル
に6168を担持せしめた吸着剤を使用して、良好な成
果を挙げている。しかし乍ら、この吸着剤を使用する場
合、DOGを加熱しなければならず、110’C以下の
温度では銀とヨウ素との反応が生起しない、と言われて
いる(参考文献■及び■山水 寛、1976、原子力化
学工学1日刊工業新聞参照)。
Additionally, the Hanford plant in the United States has achieved good results by using an adsorbent containing 6168 on unglazed Berl saddles. However, when using this adsorbent, DOG must be heated, and it is said that the reaction between silver and iodine does not occur at temperatures below 110'C (References ■ and ■ Sansui Hiroshi, 1976, Nuclear Chemical Engineering 1 Nikkan Kogyo Shimbun).

なお、その他の種々の銀交換ゼオライトによるDOG中
のヨウ素の除去法も報告されているが、いずれも、前者
と同様に、100’C以上に加熱したDOGを使用しな
ければ目的は達成できない(参考文献 ■及び■Tho
mas +T 、R,。
Additionally, methods for removing iodine from DOG using various other silver-exchanged zeolites have also been reported, but, like the former, in either case, the purpose cannot be achieved unless DOG is heated to 100'C or higher ( References ■ and ■ Tho
mas +T, R,.

B、A、5tapeles and L、P、Murp
hy+ 1978. The development
Nuc!ear Air Cleaning Conf
erence、 p394.)、また、固形吸着剤を使
用する場合は、何れも、ヨウ素を吸収したAC6120
や銀交換ゼオライトなどを、そのまま貯蔵するか、また
は、最終処分に付そうとする場合、それら余分な体積の
担体をも取り扱わなければならないという、決定的な不
利を有している。
B, A, 5 tapeles and L, P, Murp
hy+ 1978. The development
Nuc! ear Air Cleaning Conf
erence, p394. ), and when using a solid adsorbent, AC6120 which has absorbed iodine
If silver-exchanged zeolite or silver-exchanged zeolite is to be stored as is or for final disposal, the extra volume of the carrier must also be handled, which is a decisive disadvantage.

本光肌0且直上 、本発明の目的は、上述のような湿式法及び乾式法の持
つ欠陥を佇せず、ヨウ素化合物以外の余分な廃棄物を伴
うことなく、操作工程を簡単に構成することができ、濃
硝酸のような腐蝕性の薬品を使用することなく、また、
DOGを予め加熱する必要もなく、DOG中に共存する
NOxや水分の影響を殆ど受けることのない方法を提供
するに存する。
The object of the present invention is to simplify the operation process without having to deal with the drawbacks of the wet method and dry method as described above, and without producing unnecessary waste other than iodine compounds. without the use of corrosive chemicals such as concentrated nitric acid, and
It is an object of the present invention to provide a method that does not require preheating DOG and is hardly affected by NOx and moisture coexisting in DOG.

光期!田賎LJ塾且: 本発明のこの目的は、本発明により、少なくともヨウ素
及び/又はヨウ素化合物を含む混合気体あるいは蒸気を
、少なくとも銀イオンを含む水溶液と接触させ、該気体
中のヨウ素を不溶性ヨウ素化物の沈澱として除去するこ
とによって、達成できた。
Light period! Taze LJ Juku: This object of the present invention is to contact a mixed gas or vapor containing at least iodine and/or an iodine compound with an aqueous solution containing at least silver ions, and convert the iodine in the gas into insoluble iodine. This was achieved by removing the compound as a precipitate.

即ち、本発明は、ヨウ素及び/又はヨウ素化合物を含む
混合気体あるいは蒸気を、常温で、銀イオンを含む水溶
液に接触させるものであって、いわゆる湿式法の範喘に
属するものであり、銀塩を固形担体に担持させる乾式法
ではない。
That is, the present invention belongs to the so-called wet method, in which a mixed gas or vapor containing iodine and/or an iodine compound is brought into contact with an aqueous solution containing silver ions at room temperature. It is not a dry method in which the material is supported on a solid carrier.

銀イオンを含む水溶液としては、各種の鉱酸塩、殊に硝
酸塩又は硫酸塩が使用でき、その濃度範囲は0.000
1ないし5mol/lの広範囲で差し支えなく、殊に、
0.001ないし1mol/lの範囲が好都合である。
Various mineral acid salts, especially nitrates or sulfates, can be used as the aqueous solution containing silver ions, and the concentration range is 0.000.
A wide range of 1 to 5 mol/l is acceptable, especially,
A range of 0.001 to 1 mol/l is advantageous.

また、それら鉱酸塩の水溶液は鉱酸を含んでいてもよい
。処理しようとする気体と銀イオンを含む水溶液との気
・液接触を実施する為の装置としては、気泡塔、スプレ
ー塔、棚段塔、濡れ壁塔などの慣用の装置、その他、新
規な気・液接触装置など、どのような型式の装置でも使
用できる。
Moreover, the aqueous solution of these mineral salts may contain a mineral acid. Devices for bringing the gas to be treated into gas-liquid contact with the aqueous solution containing silver ions include conventional devices such as bubble columns, spray columns, tray columns, and wet wall columns, as well as new gas-liquid devices. - Can be used with any type of equipment, including liquid contact equipment.

また、本発明で処理されるべきヨウ素及び/又はヨウ素
化合物を含む混合気体あるいは蒸気には、除去さるべき
任意の1度のヨウ素の外、たとえば2000ppm  
程度の二酸化窒素及び/又は5000ppm  程度の
水分が含まれていて差し支えなく、それらの混在はヨウ
素類の吸収効率に対して、格別の悪影響を与えることが
ないことが、明らかにせられている。
In addition, the mixed gas or vapor containing iodine and/or iodine compounds to be treated in the present invention may contain, for example, 2000 ppm of iodine in addition to any one degree of iodine to be removed.
It has been shown that there is no problem in containing about 5,000 ppm of nitrogen dioxide and/or about 5,000 ppm of water, and that their mixture does not have any particular adverse effect on the absorption efficiency of iodine.

従って、本発明を実施するための装置は、ヨウ素を含有
する気体を予め、処理することなく、そのまま、気φ液
接触装置に導入でき、後処理装置の簡素さと相俟って、
極めて簡単に構成することができる。即ち、本発明の方
法によれば、ヨウ素は不溶解性のヨウ素化物として沈澱
するから、容易に常法によって、それを分離することが
できる。そして、本発明の方法で廃棄物として除去され
るものはこの沈澱だけであるから、廃棄物の量は従来、
知られている乾式法に対しては勿論、何れの湿式法に対
比しても著しく少量であって、極めて有利である。
Therefore, the apparatus for carrying out the present invention allows the iodine-containing gas to be directly introduced into the gas-φ-liquid contacting apparatus without being treated in advance, and together with the simplicity of the post-treatment apparatus,
It can be configured extremely easily. That is, according to the method of the present invention, iodine is precipitated as an insoluble iodide, which can be easily separated by a conventional method. Since this precipitate is the only thing that is removed as waste in the method of the present invention, the amount of waste is smaller than that of the conventional method.
The amount is extremely small compared to known dry methods as well as any wet method, which is extremely advantageous.

以下、本発明を実施例によって、より詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

但し、本発明はそれらにより、限定されるものではない
However, the present invention is not limited thereto.

実施故1」− 20°Cの恒温水中で、10關of/lの硫酸銀水溶液
50Illにヨウ素200ppn+を含む乾燥空気を、
0.51/winの流速で通気したところ、出口ガス中
のヨウ素濃度の経時変化は添付図1の通りで、通ガス量
26タの時点のヨウ素の除去率は、99.885%であ
った。この値を。
Example 1 - Dry air containing 200 ppn+ of iodine was added to 50 Ill of a 10 f/l silver sulfate aqueous solution in constant temperature water at 20°C.
When aeration was performed at a flow rate of 0.51/win, the iodine concentration in the outlet gas changed over time as shown in attached Figure 1, and the iodine removal rate at a gas flow rate of 26 ta was 99.885%. . this value.

除染係数(=大すロヨウ素15度/出ロヨウ素濃度=D
F)に換算するとDF=6.7X10  になる。また
破過後の残存銀イオンの濃度は、0.05pp−以下で
あった。
Decontamination coefficient (= 15 degrees of iodine/concentration of iodine = D
When converted to F), it becomes DF=6.7X10. Further, the concentration of residual silver ions after breakthrough was 0.05 pp- or less.

これは始めに存在していた銀の99.9977%以上が
有効に利用されていたことを意味するものである。
This means that more than 99.9977% of the silver that was initially present was effectively utilized.

天狂例−2− 20°Cの恒温槽中で、10.50及び100mmol
/lの硝酸銀水溶液に、ヨウ素200ppmに酸化窒素
20001)I)I及び水5000 ppmを含むDO
G  模擬ガスを、0.51/minの流速で通気した
とき、出口ガス中のヨウ素濃度は添付図2に示すような
経時変化を示した。この図から、ヨウ素の吸収量は硝酸
銀の濃度に、はぼ比例していることが判る。銀の有効利
用率は、何れの場合も99.9977%以上であった。
Tenkyo-2- 10.50 and 100 mmol in a constant temperature bath at 20°C
DO containing 200 ppm of iodine, 20,000 ppm of nitrogen oxide, I)I and 5,000 ppm of water in an aqueous solution of silver nitrate of 1/l.
When the G simulated gas was aerated at a flow rate of 0.51/min, the iodine concentration in the outlet gas showed a change over time as shown in the attached Figure 2. This figure shows that the amount of iodine absorbed is approximately proportional to the concentration of silver nitrate. The effective utilization rate of silver was 99.9977% or more in all cases.

また実施例1と実施例2の10mmol/lの場合を比
較すると、共存するNOxはヨウ素の吸収に影響しない
事が判る。
Further, when comparing the cases of 10 mmol/l in Example 1 and Example 2, it is found that the coexisting NOx does not affect the absorption of iodine.

実施例−1 実施例2と同様の実験条件で、硝酸1京度が4101/
I N硝酸銀l震度が50+uol/lの水溶液を用い
て実験を行った。
Example-1 Under the same experimental conditions as Example 2, 1 trillion degrees of nitric acid was
An experiment was conducted using an aqueous solution with an IN silver nitrate seismic intensity of 50+uol/l.

出口ガス中のヨウ素濃度の経時変化は添付図3に示した
通りであり、実施例2の50++mol/lの場合と比
較すると、ヨウ素の吸収は液中に共存する硝酸の影響を
殆ど受けないことが判る。この結果は、DOG中のNO
xが吸収されて、反応 3NO+H0=28NO3+NO に従ってかなり大量に硝酸が生成しても、その影響は小
さいことを示すものである。
The change over time in the iodine concentration in the outlet gas is shown in the attached Figure 3, and compared to the case of 50++ mol/l in Example 2, the absorption of iodine is hardly affected by nitric acid coexisting in the liquid. I understand. This result shows that NO in DOG
This shows that even if x is absorbed and nitric acid is produced in a fairly large amount according to the reaction 3NO+H0=28NO3+NO, the effect is small.

実施桝−生 実施例2と同様の実験条件で、l濃度12.5imol
/lの硫酸銀水溶液を用いて実験したところ、出口ガス
中のヨウ素濃度は添付図4のような経時変化を示した。
Experimental box - Raw Under the same experimental conditions as in Example 2, the concentration of l was 12.5 imol.
When an experiment was conducted using an aqueous silver sulfate solution of /l, the iodine concentration in the outlet gas showed a change over time as shown in the attached Figure 4.

硫酸銀水溶液も硝酸銀水溶液と同様のヨウ素除去能力の
あることがわかった。また、破過後の残存銀イオンの濃
度は、0、O5ppm以下であった。これは銀利用率9
9.998%以上に相当する。
It was found that silver sulfate aqueous solution also has the same iodine removal ability as silver nitrate aqueous solution. Further, the concentration of residual silver ions after breakthrough was 0.05 ppm or less. This is silver usage rate 9
This corresponds to 9.998% or more.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面1−4は本発明の方法の効果を説明する説明図
である。
The attached drawings 1 to 4 are explanatory diagrams illustrating the effects of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 少なくともヨウ素及び/又はヨウ素化合物を含む混合気
体あるいは蒸気を、少なくとも銀イオンを含む水溶液と
接触させ、該気体中のヨウ素を不溶性ヨウ素化物の沈澱
として除去することを特徴とするヨウ素の除去法。
A method for removing iodine, which comprises bringing a mixed gas or vapor containing at least iodine and/or an iodine compound into contact with an aqueous solution containing at least silver ions, and removing the iodine in the gas as a precipitate of insoluble iodide.
JP61227048A 1986-09-25 1986-09-25 Removal of iodine in gas Granted JPS6380831A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61227048A JPS6380831A (en) 1986-09-25 1986-09-25 Removal of iodine in gas
EP87113910A EP0261662A3 (en) 1986-09-25 1987-09-23 Method for removal of iodine in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227048A JPS6380831A (en) 1986-09-25 1986-09-25 Removal of iodine in gas

Publications (2)

Publication Number Publication Date
JPS6380831A true JPS6380831A (en) 1988-04-11
JPS6348572B2 JPS6348572B2 (en) 1988-09-29

Family

ID=16854709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227048A Granted JPS6380831A (en) 1986-09-25 1986-09-25 Removal of iodine in gas

Country Status (2)

Country Link
EP (1) EP0261662A3 (en)
JP (1) JPS6380831A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077099B2 (en) * 1988-09-26 1995-01-30 動力炉・核燃料開発事業団 Recovery and storage method of radioactive iodine by freeze-vacuum drying method
WO1995028714A1 (en) * 1994-04-19 1995-10-26 Joint Stock Company 'kkip' Process and agents for removing iodine from the atmosphere
CN102371147B (en) * 2010-08-23 2013-05-08 中国石油化工股份有限公司 Preparation method of iodine removing agent
CN102371192B (en) * 2010-08-23 2013-04-03 中国石油化工股份有限公司 Preparation method of deiodination agent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429655A (en) * 1966-02-09 1969-02-25 Atomic Energy Commission Method and filter for removing iodine from gases
DE2913329C2 (en) * 1979-04-03 1984-11-22 Dechema Deutsche Gesellschaft F. Chem. Apparatewesen E.V., 6000 Frankfurt Process for the separation of traces of gaseous pollutants based on sulfur from exhaust gases by chemical absorption

Also Published As

Publication number Publication date
EP0261662A3 (en) 1988-06-15
JPS6348572B2 (en) 1988-09-29
EP0261662A2 (en) 1988-03-30

Similar Documents

Publication Publication Date Title
KR930007831A (en) Pure water manufacturing method and apparatus
JP2015160888A (en) Treatment method and treatment equipment of used ion exchange resin
JPS6380831A (en) Removal of iodine in gas
EP0555996B1 (en) Methods and apparatus for treating aqueous indutrial effluent
JP2009162646A (en) Method for treating used ion-exchange resin
KR920007856B1 (en) Method of removing gassy acidic halogen compound
JPS5852598A (en) Removal of organic compounds from radioactive waste liquid
JP3866402B2 (en) Chemical decontamination method
EP0684067A1 (en) Process for treating acidic exhaust gas
JPH0319520B2 (en)
JP2012242092A (en) Processing method of radioactive cesium containing contaminated water
JP2011115772A (en) Method and apparatus for treating waste liquid
JPH06304581A (en) Treatment of waste solution
JP3656602B2 (en) Treatment method of chemical decontamination waste liquid
JP4136016B2 (en) Exhaust gas purification method
JP4306999B2 (en) Dissolution / decontamination method
JP3058705B2 (en) Radioactive waste treatment method and pretreatment equipment
JPH0871368A (en) Removal of iodine in exhaust gas
JPS6051680B2 (en) How to dispose of radioactive waste liquid
KR20230089972A (en) Regeneration agents of radionuclide adsorbents, method of regenerating spent radionuclide adsorbents using the same and method of treating spent regeneration agents
JP3058854B2 (en) Radioactive waste treatment method
JP3058855B2 (en) Treatment of radioactive liquid waste
JPH10142395A (en) Method for treating chemical decontamination waste liquid
KR20210099549A (en) Ion exchange resin conditioning methods and apparatus for performing such methods
RU2078387C1 (en) Surface-contaminated metals deactivating method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term