JPS6380804A - Treatment of membrane separation system - Google Patents

Treatment of membrane separation system

Info

Publication number
JPS6380804A
JPS6380804A JP22379286A JP22379286A JPS6380804A JP S6380804 A JPS6380804 A JP S6380804A JP 22379286 A JP22379286 A JP 22379286A JP 22379286 A JP22379286 A JP 22379286A JP S6380804 A JPS6380804 A JP S6380804A
Authority
JP
Japan
Prior art keywords
membrane
hydrogen peroxide
separation system
membrane separation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22379286A
Other languages
Japanese (ja)
Inventor
Akira Izumi
出水 晶
Katsuya Edogawa
江戸川 勝也
Tadahiro Uemura
植村 忠広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22379286A priority Critical patent/JPS6380804A/en
Publication of JPS6380804A publication Critical patent/JPS6380804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prevent the deterioration of a membrane due to hydroxy radical generated on catalytic action of heavy metal incorporated in a system by combining the addition of hydrogen peroxide and a chelating agent to feed water and the regulation of pH to the specified range. CONSTITUTION:In a membrane separation system performing the production of extremely pure water by using a semipermeable composite membrane having an ultrathin membrane of i.e. cross-linkable aromatic polyamide, the membrane separation system is operated by adding hydrogen peroxide and a chelating agent such as ethylenediaminetetradisodiumacetate to feed water and simultaneously regulating pH of feed water to 4-10 with sodium hydroxide and hydrochloric acid or the like. By such method, both the formation of peroxide difficult to dissolve in water by the reaction of heavy metal deposited in the system and hydrogen peroxide which is caused in case of independently using hydrogen peroxide as the countermeasure of microorganism and the remarkable reduction of membrane performance due to the generation of OH high in reactivity can be prevented and the consumption of hydrogen peroxide is inhibited.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液状混合物の成分を選択分離するシステムに
おける処理に関するものであり、特に超純水の製造シス
テムに有効である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to processing in a system for selectively separating components of a liquid mixture, and is particularly effective in a system for producing ultrapure water.

[従来の技術] 膜による分離技術は、海水及びかん水の淡水化、工業廃
水処理、医療、工業用純水の製造、食品分野への適用と
幅広い分野において急速な発展を見せている。その中で
、特に超純水の製造システムにおいては、理論純水の比
抵抗(18MΩ・Cm以上)を有すること、TOC(全
有機炭素)ができるだ(プ低いこと(50ppb以下)
、微粒子が少ないこと(30個/1111以下)、生菌
(バクテリア)が少ないこと(5個/100m1以下)
などが要求水質として取り上げられ、これに合わせた膜
および膜分離システムの開発が盛んである。また、食品
分野へ適用する場合には微生物による膜の汚染による膜
性能の低下がクローズアップされている。
[Prior Art] Separation technology using membranes is rapidly developing in a wide range of fields, including desalination of seawater and brine, industrial wastewater treatment, medical care, production of industrial pure water, and application to the food field. Among these, especially in ultrapure water production systems, it is necessary to have a theoretically pure water specific resistance (18 MΩ・Cm or more) and a low TOC (total organic carbon) (50 ppb or less).
, Few particles (30 particles/1111 or less), Few viable bacteria (5 particles/100m1 or less)
These are taken up as required water quality, and membranes and membrane separation systems that meet these requirements are being actively developed. Furthermore, when applied to the food field, the deterioration of membrane performance due to membrane contamination by microorganisms has been highlighted.

このように、微生物による問題としては、処理液中に微
生物が発生し、超純水の要求水質を満足できなかったり
、被処理液中、配管の壁面、あるいは、膜面上に菌体及
び菌の代謝物等からなる有機性物質が付着し、膜の水透
過性を低下させ、膜分離システムの機能が低下すること
がしばしば報告されている。
In this way, problems caused by microorganisms include the occurrence of microorganisms in the treated liquid, which may not satisfy the required water quality of ultrapure water, or the presence of bacterial cells or bacteria in the liquid to be treated, on the walls of piping, or on the membrane surface. It has often been reported that organic substances, such as metabolites of

この対策として、微生物の殺菌方法が種々提案されてJ
3す、一般的な方法としては、被処理液中に殺菌剤を常
時、おるいは間欠的に添加する方法が知られている。こ
こに殺菌剤としては、過酸化水素(特開昭58−116
25号公報)、次亜塩素酸塩水溶液(特開昭59−21
6687号公報)等が用いられている。
As a countermeasure against this problem, various methods of sterilizing microorganisms have been proposed.
3. As a general method, a method is known in which a disinfectant is constantly or intermittently added to the liquid to be treated. Here, as a disinfectant, hydrogen peroxide (Japanese Patent Application Laid-Open No. 58-116
No. 25), hypochlorite aqueous solution (JP-A-59-21)
6687) etc. are used.

このうら、過酸化水素による殺菌は、人体に対する毒性
が少ないこと、分解して水を生じ伯に残存するものがな
いことから広く超純水、食品用途に用いられている。
Among these, sterilization using hydrogen peroxide is widely used for ultrapure water and food applications because it has low toxicity to the human body and decomposes to produce water without leaving any residue.

[本発明が解決しようとする問題点] しかしながら、微生物対策として過酸化水素水を単独で
使用した場合、膜分離システム内に析出した重金属によ
って、過酸化水素と反応し、難水溶性の過酸化物を生成
したり、あるいは反応性の高いヒドロキシラジカルが発
生して、滅菌効果もさることながら、膜自体を劣化させ
るという問題点を有していた。すなわち、重金属の触媒
作用により生成した・OH(下記反応式(1))が膜面
を攻撃し、膜性能を著しく低下させるという問題点がお
った。
[Problems to be solved by the present invention] However, when hydrogen peroxide water is used alone as a microbial countermeasure, heavy metals precipitated in the membrane separation system react with hydrogen peroxide, resulting in the formation of poorly water-soluble peroxide. However, this method has the problem of not only improving the sterilization effect but also deteriorating the membrane itself due to the generation of highly reactive hydroxyl radicals. That is, there was a problem in that .OH (reaction formula (1) below) generated by the catalytic action of heavy metals attacked the membrane surface, significantly reducing membrane performance.

Fe”+H2,02−+(Fe−01−1r”+・OH
(1>そこ−で、本発明者らは、膜分離システム内の微
生物対策について検討した結果、過酸化水素による殺菌
処理に併せて、キレート剤を用いて重金属の洗浄を行う
ことにより、効果的に膜分離システムを滅菌せしめる技
術を見出し、本発明に到達したものである。
Fe"+H2,02-+(Fe-01-1r"+・OH
(1> Therefore, as a result of examining microbial countermeasures in membrane separation systems, the present inventors found that cleaning heavy metals using a chelating agent in addition to sterilization treatment with hydrogen peroxide was effective. The present invention was achieved by discovering a technology for sterilizing a membrane separation system.

[問題点を解決するための手段] 本発明は上記目的を達成するために、下記の構成を有す
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

すなわち、本発明は、膜分離システムへの供給水に、下
記のイ11ロ、ハらなる処理を同時に施すことを特徴と
する膜分離システムの処理方法。
That is, the present invention is a method for treating a membrane separation system, which is characterized by simultaneously subjecting water supplied to the membrane separation system to the following treatments.

イ、過酸化水素の添加 ロ、キレート剤の添加 ハ、pH4〜10への調整 に関する。B. Addition of hydrogen peroxide B. Addition of chelating agent C. Adjustment to pH 4-10 Regarding.

本発明での膜分離システムとは、逆浸透膜や限外S濾過
膜を用いて供給水を濃縮水と透過水に分離するシステム
をいう。
The membrane separation system in the present invention refers to a system that separates feed water into concentrated water and permeated water using a reverse osmosis membrane or an ultra-S filtration membrane.

膜素材としては特に限定されないが逆浸透膜としては、
多孔性支持膜上に界面反応によって得られる架橋性芳香
族ポリアミドからなる超薄膜を有する半透性複合膜を用
いると効果が高い。
The membrane material is not particularly limited, but as a reverse osmosis membrane,
The use of a semipermeable composite membrane having an ultra-thin membrane made of crosslinkable aromatic polyamide obtained by interfacial reaction on a porous support membrane is highly effective.

本発明では、過酸化水素とキレート剤を併用することに
より、・OHによる膜性能の著じるしい低下を防止でき
る。また、このキレート剤の添加は、殺菌剤としての、
過酸化水素の消費の点からも好ましい。更に、これらキ
レート剤により、膜分離システム内の重金属を水溶性物
質として除去することもできる。
In the present invention, by using hydrogen peroxide and a chelating agent in combination, significant deterioration in membrane performance due to .OH can be prevented. In addition, the addition of this chelating agent can be used as a bactericidal agent.
This is preferable also from the viewpoint of consumption of hydrogen peroxide. Furthermore, these chelating agents can also remove heavy metals in the membrane separation system as water-soluble substances.

本発明では、l)Hを4〜10の範囲に調整することが
好ましい。このpl+は、キレート剤が重金属を溶解す
るのに最も適した範囲であり、また、膜自体の加水分解
による劣化を押える意味でも、効果的である。まてた、
pHの調整は、水酸化ナトリウムや塩酸を用いて行なう
ことができる。
In the present invention, it is preferable to adjust l)H to a range of 4 to 10. This pl+ is the most suitable range for the chelating agent to dissolve heavy metals, and is also effective in suppressing deterioration of the membrane itself due to hydrolysis. I waited,
The pH can be adjusted using sodium hydroxide or hydrochloric acid.

過酸化水素の濃度は、膜への酸化力を考えて、0.5〜
5.0%でおることが好ましい。
The concentration of hydrogen peroxide should be between 0.5 and 0.5, considering its oxidizing power to the membrane.
It is preferable to keep it at 5.0%.

キレート剤の濃度は、重金属を溶解するのに充分な口と
して、0.1〜11000ppでおることが好ましい。
The concentration of the chelating agent is preferably 0.1 to 11,000 pp to provide a sufficient amount to dissolve heavy metals.

[実施例] 以下に実施例を挙げて説明するが、本発明はこれらに限
定されるものではない。
[Examples] Examples will be described below, but the present invention is not limited thereto.

なお、実施例において、塩排除率は次式で示される。In the examples, the salt rejection rate is expressed by the following formula.

原水温度−透過水濃度 塩排除率(%)=           X100原水
淵度 透過性能としての造水量は、単位面積、単位時間当たり
の水の透過量で決定する。
Raw water temperature - Permeated water concentration Salt rejection rate (%) = X100 Raw water depth The amount of water produced as permeation performance is determined by the amount of water permeated per unit area and unit time.

実施例、比較例において、これら膜性能は、圧力15K
s/cffl、原水濃度NaC,Q 15001)l)
m、 pH6゜5、水温25℃の条件で24時間テスト
した。
In the Examples and Comparative Examples, these membrane performances were measured at a pressure of 15K.
s/cffl, raw water concentration NaC, Q 15001)l)
The test was conducted for 24 hours at a pH of 6.5°C and a water temperature of 25°C.

膜Aとしては、トリアミノベンビン、メタ−フェニレン
ジアミンを架橋剤としてトリメシン酸クロライド、テレ
フタル酸クロラドイドと反応させた活性層を有する複合
膜、膜Bとしては、ポリアミノエーテル、メタアミノベ
ンジルアミン、夛ミノメチルピペリジン、ジアミノシク
ロヘキサンを架橋剤としてトリメシン酸クロライドと反
応させた活性層を有する複合膜を用いた。
Membrane A is a composite membrane having an active layer in which triaminobenbin and meta-phenylene diamine are reacted with trimesic acid chloride and terephthalic acid chloride as a crosslinking agent, and membrane B is a composite membrane having an active layer made of triaminobenbin and meta-phenylenediamine reacted with trimesic acid chloride and terephthalic acid chloridoid. A composite membrane having an active layer made of minomethylpiperidine and diaminocyclohexane reacted with trimesoyl chloride as a crosslinking agent was used.

膜Aは過酸化水素により劣化しにくく、膜Bは比較的劣
化しやすい。
Membrane A is not easily deteriorated by hydrogen peroxide, and membrane B is relatively easily deteriorated.

膜A、膜Bを上記条件で、デストした結果を表1に示す
。以下、この結果を本実施例における初期値とする。
Table 1 shows the results of decomposing films A and B under the above conditions. Hereinafter, this result will be used as the initial value in this example.

表1 実施例1 膜分離システムに膜A、膜Bをセットし、エヂレンジア
ミンテトラ酢酸・2Na塩10ppm過酸化水素2%を
含む原水を用い、24時間運転した後、NaCQ 15
001)pm 、 plI6.5に調整した原水を用い
て、再び運転した。その結果得られた膜性能を表2幅示
す。膜A、膜Bの膜性能は、共に初期性能と同水準であ
り、エヂレンジアミンテトラ酢酸・2Na塩の効果が認
められる。
Table 1 Example 1 Membrane A and Membrane B were set in a membrane separation system, and after operating for 24 hours using raw water containing 10 ppm of endylene diamine tetraacetic acid/2Na salt and 2% hydrogen peroxide, NaCQ 15
001) The operation was performed again using raw water adjusted to pm and plI of 6.5. The membrane performance obtained as a result is shown in Table 2. The membrane performances of Membrane A and Membrane B were both at the same level as the initial performance, and the effect of the ethylenediaminetetraacetic acid/2Na salt was recognized.

実施例2 実施例1をモデル化し、Fe2+lppm、キレート剤
、過酸化水素を含む原水に6時間浸漬した後、NaCf
f 1500ppm 、 I)116.5に、J4整シ
タ原水を用いて、24時間運転を行った。
Example 2 After modeling Example 1 and immersing it in raw water containing Fe2+lppm, chelating agent, and hydrogen peroxide for 6 hours, NaCf
f 1500 ppm, I) 116.5, using J4 regulated raw water, operation was performed for 24 hours.

実施例3 実施例2と同様の実験をキレート剤として、ジエヂレン
トリアミンペンタ酢!10ppmを用いて行った。結果
を実施例2の結果とともに、表3に、示す。膜分離シス
テム同様モデル系でも、キレート剤の効果が認められる
Example 3 An experiment similar to Example 2 was carried out using dielene triamine pentavinegar as a chelating agent! This was done using 10 ppm. The results are shown in Table 3 together with the results of Example 2. The effect of chelating agents is observed in model systems as well as membrane separation systems.

比較例1 膜分離システムに膜A1膜Bをセットし、過酸化水M2
%を含む原水を用い、24時間運転した後、NaCf1
15ooppm 、1)H6,5に調整シタ原水を用い
て、再び運転した。その結果得られた膜性能を表4に示
す。系に存在する微♀のFe2”と過酸化水素の相互作
用により、塩排除率が、膜Aについては若干低下し、ま
たFBについてはOとなり膜分離としての機能を失った
ことがわかる。
Comparative Example 1 Membrane A1 Membrane B was set in the membrane separation system, and peroxide water M2
After operating for 24 hours using raw water containing NaCf1
15ooppm, 1) Using the adjusted raw water for H6.5, it was operated again. Table 4 shows the membrane performance obtained as a result. It can be seen that due to the interaction between a small amount of Fe2'' present in the system and hydrogen peroxide, the salt rejection rate of membrane A slightly decreased, and that of FB became O, indicating that it lost its membrane separation function.

比較例2 比較例1をモデル化し、F e2+1 ppm 、過酸
化水素水を含む原水に6時間浸漬した後、NaCα15
001)I)m 、 pH6,5に調整した原水を用い
て、24時間運転を行った。結果を表5に示す。膜分離
システムと同様にモデルについてもFe2譜過酸化水素
が共存した時、膜性能が低下することがわかる。
Comparative Example 2 Comparative Example 1 was modeled, and after being immersed in raw water containing Fe2+1 ppm and hydrogen peroxide for 6 hours, NaCα15
001)I)m, 24-hour operation was performed using raw water adjusted to pH 6.5. The results are shown in Table 5. As with the membrane separation system, it can be seen that in the model as well, the membrane performance decreases when Fe2 hydrogen peroxide coexists.

表2 表3 表4 表5 [発明の効果] 本発明では、過酸化水素水とキレート剤を併用すること
により、次のような効果を秦する。
Table 2 Table 3 Table 4 Table 5 [Effects of the Invention] In the present invention, the following effects are achieved by using a hydrogen peroxide solution and a chelating agent together.

a、・OHに よる膜性能の著しい低下を防止すること
ができる。
It is possible to prevent significant deterioration in membrane performance due to a, OH.

b、過酸化水素の消費を抑制する。b. Suppressing the consumption of hydrogen peroxide.

C0過酸化水素に対する重金属の触媒作用が防止される
ため、膜性能が保護される。
Membrane performance is protected because heavy metal catalysis on C0 hydrogen peroxide is prevented.

Claims (4)

【特許請求の範囲】[Claims] (1)膜分離システムへの供給水に、下記のイ、ロ、ハ
からなる処理を同時に施すことを特徴とする膜分離シス
テムの処理方法。 イ、過酸化水素の添加 ロ、キレート剤の添加 ハ、pH4〜1への調整
(1) A method for treating a membrane separation system, which is characterized in that the water supplied to the membrane separation system is simultaneously subjected to the following treatments (a), (b), and (c). B. Addition of hydrogen peroxide B. Addition of chelating agent C. Adjustment to pH 4-1
(2)キレート剤が、エチレンジアミンテトラ酢酸及び
その塩、ニトリロ酢酸及びその塩、グルコン酸ソーダ及
びその誘導体から選ばれる少なくとも一種であることを
特徴とする特許請求の範囲第(1)項記載の膜分離シス
テムの処理方法。
(2) The membrane according to claim (1), wherein the chelating agent is at least one selected from ethylenediaminetetraacetic acid and its salts, nitriloacetic acid and its salts, sodium gluconate and its derivatives. Separation system processing methods.
(3)キレート剤が、0.1〜1000ppmの濃度を
有することを特徴とする特許請求の範囲第(1)項記載
の膜分離システムの処理方法。
(3) A treatment method for a membrane separation system according to claim (1), wherein the chelating agent has a concentration of 0.1 to 1000 ppm.
(4)過酸化水素水が、0.5〜5.0%の濃度を有す
ることを特徴とする特許請求の範囲第(1)項記載の膜
分離システムの処理方法。
(4) The method for treating a membrane separation system according to claim (1), wherein the hydrogen peroxide solution has a concentration of 0.5 to 5.0%.
JP22379286A 1986-09-24 1986-09-24 Treatment of membrane separation system Pending JPS6380804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22379286A JPS6380804A (en) 1986-09-24 1986-09-24 Treatment of membrane separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22379286A JPS6380804A (en) 1986-09-24 1986-09-24 Treatment of membrane separation system

Publications (1)

Publication Number Publication Date
JPS6380804A true JPS6380804A (en) 1988-04-11

Family

ID=16803785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22379286A Pending JPS6380804A (en) 1986-09-24 1986-09-24 Treatment of membrane separation system

Country Status (1)

Country Link
JP (1) JPS6380804A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993019093A1 (en) * 1992-03-19 1993-09-30 Institut Pasteur Peptide sequence capable of inducing a delayed-type hypersensitivity reaction in the presence of mycobacterium tuberculosis complex living bacteria, and applications
US5338456A (en) * 1993-02-19 1994-08-16 Stivers Lewis E Water purification system and method
EP1172335A1 (en) * 2000-07-11 2002-01-16 E.On Engineering GmbH Process for cleaning candle filters and membrane systems
JP2008508093A (en) * 2004-08-04 2008-03-21 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Method for cleaning membranes and chemicals therefor
WO2019142945A1 (en) * 2018-01-22 2019-07-25 旭化成株式会社 Method of regenerating member and method of seawater desalination

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993019093A1 (en) * 1992-03-19 1993-09-30 Institut Pasteur Peptide sequence capable of inducing a delayed-type hypersensitivity reaction in the presence of mycobacterium tuberculosis complex living bacteria, and applications
US5338456A (en) * 1993-02-19 1994-08-16 Stivers Lewis E Water purification system and method
WO1994019093A1 (en) * 1993-02-19 1994-09-01 Medro Systems, Inc. Water purification system and method
EP1172335A1 (en) * 2000-07-11 2002-01-16 E.On Engineering GmbH Process for cleaning candle filters and membrane systems
JP2008508093A (en) * 2004-08-04 2008-03-21 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Method for cleaning membranes and chemicals therefor
WO2019142945A1 (en) * 2018-01-22 2019-07-25 旭化成株式会社 Method of regenerating member and method of seawater desalination
CN111556852A (en) * 2018-01-22 2020-08-18 旭化成株式会社 Method for regenerating member and method for desalinating sea water
JPWO2019142945A1 (en) * 2018-01-22 2020-11-26 旭化成株式会社 Method of regenerating parts and desalination of seawater
CN111556852B (en) * 2018-01-22 2022-10-18 旭化成株式会社 Method for regenerating member and method for desalinating sea water
US11491445B2 (en) 2018-01-22 2022-11-08 Asahi Kasei Kabushiki Kaisha Method of regenerating member and method of seawater desalination

Similar Documents

Publication Publication Date Title
JP2007069204A (en) Water treatment method, water treatment apparatus and method of manufacturing regenerated water
JPH0698277B2 (en) Membrane separation method
JP2009028724A (en) Method for water treatment and apparatus for water treatment
JP5066487B2 (en) Method and apparatus for treating hydrogen peroxide-containing organic water
JPS62204892A (en) Desalting method
JPS6380804A (en) Treatment of membrane separation system
JPS6336890A (en) Apparatus for producing high-purity water
JP2002159984A (en) Biodegradation method for toc component
JP3148849B2 (en) Seawater desalination method by reverse osmosis
JP3547018B2 (en) Reverse osmosis treatment method and fresh water method
JP3087750B2 (en) Sterilization method of membrane
JPH0929075A (en) Reduction of disinfected byproduct in membrane separation process
WO2022050838A1 (en) Wastewater ozone treatment
JP3269496B2 (en) Sterilization method and fresh water method of membrane
JP3353810B2 (en) Reverse osmosis seawater desalination system
JP2004244346A (en) Fungicide for water treatment, method for water treatment and apparatus for water treatment
JP3454295B2 (en) How to treat tap water
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
JP3312483B2 (en) Reverse osmosis treatment method and desalination method
JP3350124B2 (en) Raw water treatment method by membrane module
JP3727156B2 (en) Desalination equipment
JP2000042373A (en) Sterilization method in reverse osmosis membrane separation process
JPH0252087A (en) Method for making pure water
Cheng et al. Further understanding NaClO cleaning of bacteria-fouled ultrafiltration membrane: Variation of membrane structure and formation of halogenated by-products
JP2928536B2 (en) Sterilization method of composite reverse osmosis membrane separation device