JPS6380167A - Heat pump hot-water supply machine - Google Patents

Heat pump hot-water supply machine

Info

Publication number
JPS6380167A
JPS6380167A JP61223006A JP22300686A JPS6380167A JP S6380167 A JPS6380167 A JP S6380167A JP 61223006 A JP61223006 A JP 61223006A JP 22300686 A JP22300686 A JP 22300686A JP S6380167 A JPS6380167 A JP S6380167A
Authority
JP
Japan
Prior art keywords
temperature
hot water
heat exchanger
medium
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61223006A
Other languages
Japanese (ja)
Inventor
敏 今林
俊元 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61223006A priority Critical patent/JPS6380167A/en
Publication of JPS6380167A publication Critical patent/JPS6380167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はヒートポンプを用いた給湯機に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a water heater using a heat pump.

従来の技術 従来この種のヒートポンプ給湯機は、貯湯槽に埋設した
単一の熱交換器、又は、貯湯槽と熱交換器の間で温水循
環を行う構成のために、高温湯を得ようとすると冷媒の
凝縮圧力が上昇して効率の低下を生じていた。以上の様
な従来の問題点を解決するために、特開昭60−537
31号報の様に高温ガス域での冷媒との熱交換器と2相
域、液域での冷媒との熱交換器を設けて、高温湯と中温
湯の2温度レベルの温水を得るようにしたものが提案さ
れている。この様な2つの熱交換器を構成するものにお
いては、所定の高温湯と中温湯を得るためには各々の熱
交換器へ入る冷媒ガス温度の制御方法に問題を有してい
た。
BACKGROUND OF THE INVENTION Conventionally, this type of heat pump water heater has a single heat exchanger buried in a hot water storage tank, or a configuration in which hot water is circulated between a hot water storage tank and a heat exchanger, making it difficult to obtain high-temperature hot water. As a result, the condensation pressure of the refrigerant increased, resulting in a decrease in efficiency. In order to solve the above-mentioned conventional problems,
As in Report 31, heat exchangers with refrigerant in the high-temperature gas region and heat exchangers with refrigerant in the two-phase region and liquid region are installed to obtain hot water at two temperature levels: high-temperature water and medium-temperature water. It has been proposed that In such two heat exchangers, there is a problem in the method of controlling the temperature of the refrigerant gas entering each heat exchanger in order to obtain predetermined high-temperature and medium-temperature hot water.

発明が解決しようとする問題点 本発明はかかる従来の問題を解消するもので、ヒートポ
ンプのいかなる運転条件においても所定の高温湯を得る
と共に、am圧力を上昇させることなく高効率運転を行
なうようにすることを目的とする。
Problems to be Solved by the Invention The present invention solves these conventional problems, and is capable of obtaining hot water at a predetermined temperature under any operating conditions of the heat pump, and to perform highly efficient operation without increasing the am pressure. The purpose is to

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ給湯
機は、圧縮機、高温採湯用第1熱交換器、中温採湯用第
2熱交換器、絞り装置、蒸発器を冷媒管路にて順次結合
してなるヒートポンプ回路の圧縮機吐出管に吐出温度検
知部を設け、吐出温度を一定に保持すべく絞り装置の開
度を制御する制別機構を有する構成としたものである。
Means for Solving the Problems In order to solve the above problems, the heat pump water heater of the present invention includes a compressor, a first heat exchanger for high-temperature hot water extraction, a second heat exchanger for medium-temperature hot water extraction, a throttling device, A heat pump circuit in which an evaporator is sequentially connected through a refrigerant pipe line has a discharge temperature detection section in a compressor discharge pipe, and has a regulating mechanism that controls the opening degree of a throttle device to maintain a constant discharge temperature. That is.

作  用 本発明は上記した構成によって、高温採湯用第1熱交換
器で高温の冷媒ガス域との熱交換により所定の高温湯が
得られ、中温採湯用第2熱交換器では2相域、液域との
熱交換で所定の中温湯が得られるものであり、圧縮機吐
出管に設けた吐出温度検知部と、吐出温度を一定に保持
する絞り装置制御機構により、負荷変動等があっても常
に吐出温度を一定に保つことが出来るため、高温採湯用
第1熱交換器の冷媒ガス入口温度が常に一定となり、採
湯温度が所定の高温湯として安定して得られるものであ
る。
Effect: With the above-described configuration, the present invention can obtain predetermined high-temperature hot water by heat exchange with a high-temperature refrigerant gas region in the first heat exchanger for high-temperature hot water sampling, and obtain two-phase hot water in the second heat exchanger for medium-temperature hot water sampling. A predetermined medium-temperature hot water is obtained by heat exchange with the compressor discharge pipe and the liquid region, and a discharge temperature detection section installed in the compressor discharge pipe and a throttling device control mechanism that maintains the discharge temperature constant prevent load fluctuations, etc. Since the discharge temperature can always be kept constant even if the temperature is high, the refrigerant gas inlet temperature of the first heat exchanger for high-temperature hot water sampling is always constant, and the hot water sampling temperature can be stably obtained as a predetermined high-temperature hot water. be.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図において、1は圧縮機、2は高温採湯用第1熱交
換器、3は中温採湯用第2熱交換器、4は絞9装置、5
は蒸発器でこれらを冷媒管路にて順次結合してヒートポ
ンプ回路を形成する。6は蒸発器用送風機である。7は
圧縮機吐出管8に設けた吐出温度検知部、9は吐出温度
検知部7の信号により吐出温度を一定に保持すべく絞り
装置4の開度を制御する絞り装置制御機構、10は貯湯
槽、11は循環ポンプで貯湯槽10下部と中温採湯用第
2熱交換器3の入口との水回路に設ける。
In FIG. 1, 1 is a compressor, 2 is a first heat exchanger for high-temperature hot water sampling, 3 is a second heat exchanger for medium-temperature hot water sampling, 4 is a throttle device 9, and 5
A heat pump circuit is formed by sequentially connecting these in an evaporator with a refrigerant pipe. 6 is an evaporator blower. 7 is a discharge temperature detection section provided in the compressor discharge pipe 8; 9 is a throttle device control mechanism that controls the opening degree of the throttle device 4 to keep the discharge temperature constant based on a signal from the discharge temperature detection section 7; 10 is a hot water storage The tank 11 is a circulation pump installed in the water circuit between the lower part of the hot water storage tank 10 and the inlet of the second heat exchanger 3 for medium temperature hot water sampling.

12は三方流量制御弁で中温採湯用第2熱交換器3と高
温採湯用第1熱交換器2との間に位置せしめ、三方流量
制御弁12の一方は貯湯槽10の中間部と結ぶ、13は
中温採湯用第2熱交換器3の出口水温検知部、14は高
温採湯用第1熱交換器2の出口水温検知部、15は湯温
調節混合栓、16は出湯管、17は給水管である。
12 is a three-way flow control valve located between the second heat exchanger 3 for medium-temperature hot water sampling and the first heat exchanger 2 for high-temperature hot water sampling; 13 is the outlet water temperature detection part of the second heat exchanger 3 for medium-temperature hot water sampling, 14 is the outlet water temperature detection part of the first heat exchanger 2 for high-temperature hot water sampling, 15 is the hot water temperature adjustment mixing tap, and 16 is the hot water outlet pipe. , 17 is a water supply pipe.

上記構成において、圧縮機1からの高温冷媒ガスは高温
採湯用第1熱交換器2に流入し、3方流量制御弁12で
分流した中温採湯用第2熱交換器3からの中温湯を高温
に加熱する。この時、高温採湯用第1熱交換器2の出口
湯温が所定の高温湯になるように、検知部14により三
方流量制御弁12を作動し、高温採湯用第1熱交換器2
への分流量を制御しているので、高温採湯用第1熱交換
器2では一定の高温湯が得られ、これで貯湯槽10の頂
部から次々と貯湯して行く、高温採湯用第1熱交換器2
で高温湯を作った冷媒ガスは中温採湯用第2熱交換器3
に流入し、循環ポンプ11により送入する水と熱交換し
て中温湯を作る。つまり、中温採湯用第2熱交換器3を
流れる冷媒は凝縮過程の気液2相状態から凝縮完了後の
液相になる。中温採湯用第2熱交換器3を流れる循環水
量は、中温採湯用第2熱交換器3の出口水温検知部13
による循環ポンプ11の回転数で制御されるので、中温
採湯用第2熱交換器3の出口では常に所定の中温湯が得
られる。この中温湯は三方流量制御弁12にて、高温採
湯用第1熱交換器2へと貯湯槽10の中間部へと分流し
、貯湯槽10への分流中温湯は貯湯槽10の中間部下方
に中温湯層として貯湯される。
In the above configuration, the high-temperature refrigerant gas from the compressor 1 flows into the first heat exchanger 2 for high-temperature hot water sampling, and the medium-temperature water from the second heat exchanger 3 for medium-temperature hot-water sampling is divided by the three-way flow control valve 12. Heat to high temperature. At this time, the detection unit 14 operates the three-way flow control valve 12 so that the outlet hot water temperature of the first heat exchanger 2 for high-temperature hot water sampling reaches a predetermined high temperature.
Since the flow rate is controlled, a constant amount of high-temperature hot water is obtained in the first heat exchanger 2 for high-temperature hot water sampling, and the hot water is stored one after another from the top of the hot-water storage tank 10. 1 heat exchanger 2
The refrigerant gas that produced high-temperature hot water is transferred to the second heat exchanger 3 for medium-temperature hot water.
The medium-temperature hot water is exchanged with the water fed by the circulation pump 11 to produce medium-temperature hot water. That is, the refrigerant flowing through the second heat exchanger 3 for medium-temperature hot water sampling changes from a gas-liquid two-phase state during the condensation process to a liquid phase after completion of condensation. The amount of circulating water flowing through the second heat exchanger 3 for medium-temperature hot water sampling is determined by the outlet water temperature detection unit 13 of the second heat exchanger 3 for medium-temperature hot water sampling.
Since the rotation speed of the circulation pump 11 is controlled by the rotation speed of the circulation pump 11, a predetermined medium-temperature hot water is always obtained at the outlet of the second heat exchanger 3 for medium-temperature hot water sampling. This medium-temperature hot water is diverted to the first heat exchanger 2 for high-temperature hot water sampling into the middle part of the hot water storage tank 10 by the three-way flow control valve 12, and the medium-hot water branched to the hot water storage tank 10 is diverted to the middle part of the hot water storage tank 10. Hot water is stored as a medium-temperature layer in the opposite direction.

第2図に上記、高温採湯用第1熱交換器2と中温採湯用
第2熱交換器3における冷媒と水との熱交換による温度
特性を示している。縦軸Tは温度、横方向は高温採湯用
第1熱交換器2の管長L1と、中温採湯用第2熱交換器
3の管長L2を示している。冷媒の温度特性を実線、水
の温度特性を破線で示し、矢印は流れ方向を示している
。つまり高温採湯用第1熱交換器2、即ちLlを流れる
間に、高温冷媒ガスAからBの温度変化により中温湯F
の分流水量なFからGへと高温湯にする。この時、中温
湯Fの他の分流はFとして貯湯槽10へ流入している。
FIG. 2 shows the temperature characteristics due to heat exchange between the refrigerant and water in the first heat exchanger 2 for high-temperature hot water sampling and the second heat exchanger 3 for intermediate-temperature hot water sampling. The vertical axis T indicates the temperature, and the horizontal direction indicates the pipe length L1 of the first heat exchanger 2 for high-temperature hot water sampling and the pipe length L2 of the second heat exchanger 3 for medium-temperature hot water sampling. The temperature characteristics of the refrigerant are shown by solid lines, the temperature characteristics of water are shown by broken lines, and the arrows indicate the flow direction. In other words, while flowing through the first heat exchanger 2 for high-temperature hot water sampling, that is, Ll, the medium-temperature water F
The diversion water amount is from F to G to make high-temperature water. At this time, another branch of the medium-temperature hot water F flows into the hot water storage tank 10 as F.

又、中温採湯用第2熱交換器3、即ちL2においては、
冷媒はBからCへと凝縮2相域と、CからDへの液相へ
となり、この間に循環ポンプ11よシ流れてくる水温E
を加熱して中温湯Fにすることになる。
In addition, in the second heat exchanger 3 for medium temperature hot water sampling, that is, L2,
The refrigerant becomes a condensed two-phase region from B to C and a liquid phase from C to D, and during this time the temperature of the water flowing through the circulation pump 11 increases.
will be heated to make medium-temperature water F.

ここで、中温採湯用第2熱交換器3の出口湯温Fを所定
の一定温度に制御することで、冷媒の凝縮温度であるB
又はCはサイクルの負荷変動に関係なくはソ一定の温度
となる。即ち凝縮圧力もはy一定となる。また、高温採
湯用第1熱交換器2の出口湯温であるGを所定の高温湯
として採湯するためには、圧縮機1の吐出ガス温度であ
るAは温湯Gよりも所定の温度差だけ高温に保つ必要が
ある。
Here, by controlling the outlet hot water temperature F of the second heat exchanger 3 for medium temperature hot water sampling to a predetermined constant temperature, the condensation temperature of the refrigerant B
Alternatively, C becomes a constant temperature regardless of cycle load fluctuations. That is, the condensation pressure also becomes constant. In addition, in order to draw hot water G, which is the outlet hot water temperature of the first heat exchanger 2 for hot water drawing, as a predetermined high temperature hot water, A, which is the discharge gas temperature of the compressor 1, must be at a predetermined temperature higher than the hot water G. It is necessary to maintain the temperature by the difference.

第3図にヒートポンプサイクル動作説明のためのモリエ
ル線図を示す。縦軸は圧力P1横軸はエンタルピhであ
り、M−Mは飽和液線、N−Nは飽和ガス線であり、モ
リエル線図上で圧縮機吐出ガスAが高温採湯用第1熱交
換器2で飽和ガス線上のB点まで熱交換し、さらに中温
採湯用第2熱交換器3で飽和液線Cから液相りまで熱交
換される。ここで、前述したごとく、凝縮圧力であるP
dは負荷変動に関係なくはソ一定である。液化されたD
点から絞り装置4によりPlのH点まで減圧され蒸発器
5に導かれ、1点まで熱交換される。蒸発器5より出た
冷媒ガス■は圧縮機1によシ温度TOA点まで昇温昇圧
される。T、T’、T′は等混線である。従来、蒸発器
5の出口冷媒Iはスーパーヒートをはy一定になるごと
く制御されていた。したがって、蒸発器4の熱源側条件
が低温側へ変化すると蒸発圧力はPsからP/へと低温
側へ移行し蒸発器5の出口温はT′となシ、圧縮機1の
吐出状態はA′となるため吐出温度はTからT′へと高
温となる。逆に蒸発器4の熱源側条件が高温側へ変化す
ると蒸発圧力はpsIへと高温側へ移行し蒸発器5の出
口温はT′となシ、圧縮機1の吐出状態はにとなるため
吐出温度はTからT′へと低温となる。このように吐出
温度が変化すると高温採湯用第1熱交換器2の採湯温度
である図2のG点の温度が確保できない場合があるため
、本発明においては、圧縮機1の吐出管に吐出温度検知
部7を設は絞り装置制御機構9によシ絞り装置4の開度
を制御することで、例えば図3のT′をI+’へ又は■
′をII t’へと移行させることで吐出温度をTの温
度一定に保持できる。従って、あらゆる負荷変動に対し
ても吐出温度を一定に保持できることで、常に高温の安
定した湯温が得られるという効果がある。
FIG. 3 shows a Mollier diagram for explaining the heat pump cycle operation. The vertical axis is the pressure P, the horizontal axis is the enthalpy h, M-M is the saturated liquid line, N-N is the saturated gas line, and on the Mollier diagram, the compressor discharge gas A is the first heat exchanger for hot water extraction. Heat is exchanged in the vessel 2 up to point B on the saturated gas line, and then heat is exchanged from the saturated liquid line C to the liquid phase in the second heat exchanger 3 for medium temperature hot water extraction. Here, as mentioned above, P which is the condensation pressure
d is constant regardless of load fluctuations. liquefied D
From this point, the pressure is reduced by the expansion device 4 to the H point of Pl, and the gas is led to the evaporator 5, where it is heat exchanged up to one point. The refrigerant gas (2) discharged from the evaporator 5 is heated and pressurized by the compressor 1 to a temperature TOA point. T, T', and T' are equal crosstalk. Conventionally, the refrigerant I at the outlet of the evaporator 5 has been controlled so that the superheat is constant. Therefore, when the conditions on the heat source side of the evaporator 4 change to the low temperature side, the evaporation pressure shifts from Ps to P/ to the low temperature side, the outlet temperature of the evaporator 5 becomes T', and the discharge state of the compressor 1 becomes A. ', so the discharge temperature increases from T to T'. Conversely, when the conditions on the heat source side of the evaporator 4 change to the high temperature side, the evaporation pressure shifts to psI and to the high temperature side, the outlet temperature of the evaporator 5 becomes T', and the discharge state of the compressor 1 becomes . The discharge temperature becomes lower from T to T'. If the discharge temperature changes in this way, it may not be possible to secure the temperature at point G in FIG. By controlling the opening degree of the throttle device 4 by the throttle device control mechanism 9, the discharge temperature detection unit 7 is installed at
By shifting ' to II t', the discharge temperature can be kept constant at T. Therefore, by being able to maintain the discharge temperature constant regardless of any load fluctuations, there is an effect that a stable hot water temperature can always be obtained.

発明の効果 以上のように本発明のヒートポンプ給湯機によれば次の
効果が得られる。
Effects of the Invention As described above, the heat pump water heater of the present invention provides the following effects.

圧縮機、高温採湯用第1熱交換器、中温採湯用第2熱交
換器、絞り装置、蒸発器を冷媒管路にて順次結合したヒ
ートポンプ回路の圧縮機吐出管に吐出温度検知部を設け
、吐出温度を一定に保持すべく絞り装置の開度を制御す
る絞り装置制御機構を設けているため、いかなる負荷変
動に対しても常に吐出温度を一定とすることで、安定し
た所定の高温湯が確保できる。
A discharge temperature detection unit is installed in the compressor discharge pipe of a heat pump circuit in which a compressor, a first heat exchanger for high-temperature hot water sampling, a second heat exchanger for medium-temperature hot water sampling, a throttling device, and an evaporator are sequentially connected via a refrigerant pipe. A throttle device control mechanism is provided to control the opening of the throttle device in order to maintain a constant discharge temperature, so the discharge temperature is always kept constant regardless of load fluctuations, and a stable predetermined high temperature is maintained. Hot water can be secured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すヒートポンプ給湯機の
構成図、第2図は高温採湯用第1熱交換器と中温採湯用
第2熱交換器における冷媒と水との温度特性図、第3図
はヒートポンプサイクル動作説明のためのモリエル線図
である。 1・・・・・・圧縮機、2・・・・・・高温採湯用第1
熱交換器、3・・・・・・中温採湯用第2熱交換器、4
・・・・・・絞り装置、5・・・・・・蒸発器、7・・
・・・・吐出温度検知部、8・・・・・・圧縮機吐出管
、9・・・・・・絞り装置制御機構。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
屓糊貰 4−叔l廉I 、5−−−一蒸光舅
Fig. 1 is a block diagram of a heat pump water heater showing an embodiment of the present invention, and Fig. 2 shows the temperature characteristics of the refrigerant and water in the first heat exchanger for high-temperature hot water sampling and the second heat exchanger for intermediate-temperature hot water sampling. 3 are Mollier diagrams for explaining the heat pump cycle operation. 1... Compressor, 2... High temperature hot water extraction No. 1
Heat exchanger, 3...Second heat exchanger for medium temperature hot water sampling, 4
... Throttle device, 5... Evaporator, 7...
. . . Discharge temperature detection section, 8 . . . Compressor discharge pipe, 9 . . . Throttle device control mechanism. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
4-Sister Ren I, 5--1 Steam Light Father

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、高温採湯用第1熱交換器、中温採湯用第2熱交
換器、絞り装置、蒸発器を冷媒管路にて順次結合したヒ
ートポンプ回路の圧縮機吐出管に吐出温度検知部を設け
、吐出温度を一定に保持する絞り装置の開度を制御する
絞り装置制御機構を有するヒートポンプ給湯機。
A discharge temperature detection unit is installed in the compressor discharge pipe of a heat pump circuit in which a compressor, a first heat exchanger for high-temperature hot water sampling, a second heat exchanger for medium-temperature hot water sampling, a throttling device, and an evaporator are sequentially connected via a refrigerant pipe. A heat pump water heater that has a throttle device control mechanism that controls the opening degree of a throttle device that maintains a constant discharge temperature.
JP61223006A 1986-09-19 1986-09-19 Heat pump hot-water supply machine Pending JPS6380167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61223006A JPS6380167A (en) 1986-09-19 1986-09-19 Heat pump hot-water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223006A JPS6380167A (en) 1986-09-19 1986-09-19 Heat pump hot-water supply machine

Publications (1)

Publication Number Publication Date
JPS6380167A true JPS6380167A (en) 1988-04-11

Family

ID=16791346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223006A Pending JPS6380167A (en) 1986-09-19 1986-09-19 Heat pump hot-water supply machine

Country Status (1)

Country Link
JP (1) JPS6380167A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222246A (en) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp Heat pump type water heater
JP2010101574A (en) * 2008-10-24 2010-05-06 Mitsubishi Electric Corp Water heater
JP2012088022A (en) * 2010-10-22 2012-05-10 Daikin Industries Ltd Water heater
JP2014040955A (en) * 2012-08-22 2014-03-06 Corona Corp Hot water storage type water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520316A (en) * 1978-07-28 1980-02-13 Hitachi Ltd Freezing cycle
JPS6050349A (en) * 1983-08-29 1985-03-20 株式会社東芝 Method of controlling refrigeration cycle
JPS6113262B2 (en) * 1981-06-19 1986-04-12 Hitachi Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520316A (en) * 1978-07-28 1980-02-13 Hitachi Ltd Freezing cycle
JPS6113262B2 (en) * 1981-06-19 1986-04-12 Hitachi Ltd
JPS6050349A (en) * 1983-08-29 1985-03-20 株式会社東芝 Method of controlling refrigeration cycle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222246A (en) * 2008-03-13 2009-10-01 Mitsubishi Electric Corp Heat pump type water heater
JP2010101574A (en) * 2008-10-24 2010-05-06 Mitsubishi Electric Corp Water heater
JP2012088022A (en) * 2010-10-22 2012-05-10 Daikin Industries Ltd Water heater
JP2014040955A (en) * 2012-08-22 2014-03-06 Corona Corp Hot water storage type water heater

Similar Documents

Publication Publication Date Title
JPS6380167A (en) Heat pump hot-water supply machine
JPS63127057A (en) Heat pump hot-water supply machine
JPS58130969A (en) Method and device for controlling flow rate
JPH0473062B2 (en)
JPS6042521A (en) Heat pump type water heater
JPH0145538B2 (en)
JPS62284147A (en) Hot water supplier of heat pump type
JPH0157269B2 (en)
JP2935644B2 (en) Absorption chiller / heater and operating method thereof
JP3280261B2 (en) Absorption refrigeration equipment
JPS61184366A (en) Heat pump type hot-water supply device
JPS6160243B2 (en)
JPS61149758A (en) Heat pump type hot water supply apparatus
JP3446159B2 (en) Absorption type cold heat generator
JPH09170824A (en) Heat conveying device
RU2653796C2 (en) Heating device
JPS6146856A (en) Heat pump
JP2792289B2 (en) Heat transfer device
JPS5892745A (en) Hot water supply device
JPS61140743A (en) Heat pump type hot water supply device
JPS5864462A (en) Heat pump hot-water device
JPS6162762A (en) Absorption water chiller and heater
JPH01296061A (en) Heat-pump type heat controller
JPH0486428A (en) Cooling/heating device
JPS6222056B2 (en)