JPS6379968A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS6379968A
JPS6379968A JP22560786A JP22560786A JPS6379968A JP S6379968 A JPS6379968 A JP S6379968A JP 22560786 A JP22560786 A JP 22560786A JP 22560786 A JP22560786 A JP 22560786A JP S6379968 A JPS6379968 A JP S6379968A
Authority
JP
Japan
Prior art keywords
substrate
alloy
magnetic
layer
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22560786A
Other languages
Japanese (ja)
Other versions
JPH0647722B2 (en
Inventor
Nobuyuki Takahashi
伸幸 高橋
Takao Takahashi
高橋 岳雄
Akihiro Otsuki
章弘 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22560786A priority Critical patent/JPH0647722B2/en
Publication of JPS6379968A publication Critical patent/JPS6379968A/en
Publication of JPH0647722B2 publication Critical patent/JPH0647722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce a magnetic recording medium having superior characteristics by specifying the position of a discoid substrate coated with a nonmagnetic layer to a Co alloy target when the substrate is successively moved in the direction of a Cr target and the Co alloy target in a vacuum chamber to form a Cr layer and a Co alloy layer by sputtering. CONSTITUTION:While nonmagnetic substrate 11 obtd. by forming a nonmagnetic Ni-P alloy layer 32 on the surface of a discoid Al alloy substrate 31 is moved over a Cr target 13 and a Co-Ni-Cr alloy target 13 and a Co-Ni-Cr alloy target 14 in a vacuum vessel, a nonmagnetic Cr underlayer 33 and a thin magnetic Co alloy layer 34 are formed by sputtering and finally a protective lubricating C layer 35 is formed by sputtering or other method. When the Co alloy layer 34 is formed, a mask 15 is fitted so that the erosion region 16 of the Co alloy target 14 is seen from the substrate 11 at <=40 deg. angle thetamax to a normal line of the substrate 11. a magnetic recording medium having a magnetic layer which adheres well and undergoes little deterioration in the magnetic characteristics is obtd.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、スパッタ法により形成した強磁性金属薄膜を
記録層とする磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a magnetic recording medium whose recording layer is a ferromagnetic metal thin film formed by sputtering.

〔従来技術とその問題点〕[Prior art and its problems]

近年、磁気記録装置に用いられる磁気ディスクなどの磁
気記録媒体はまずます高密度記録化が要請されてきてお
り、それに対応するために、磁性層の薄膜化、磁力の強
化が必要であり、従来の非磁性基板上にγ−Fe203
粒子をバインダ中に分散させたものを塗布して焼成して
磁性層とする塗布型媒体にかわって、非磁性基板上にめ
っき法、真空蒸着法またはスパッタ法などで強磁性金属
からなる薄膜磁性層を形成する金属薄膜型磁気記録媒体
の開発がさかんに進められている。
In recent years, magnetic recording media such as magnetic disks used in magnetic recording devices have been required to have higher recording density. γ-Fe203 on the non-magnetic substrate of
Instead of coated media, in which particles are dispersed in a binder and then applied and fired to form a magnetic layer, thin film magnetic materials made of ferromagnetic metal are produced by plating, vacuum evaporation, or sputtering on a nonmagnetic substrate. The development of metal thin film magnetic recording media in which layers are formed is actively progressing.

塗布型媒体では、現在0.7μm程度の膜厚が実用化さ
れている最も薄い膜厚であるのに対し、めっき、蒸着や
スパッタなどでは0.03〜0.05μmという塗布の
場合の1/10以下の薄膜が容易に実現できる。しかも
、塗布型媒体は磁性層が非磁性バインダを多量に含んだ
層であるのに対し、薄膜型媒体は磁性層が強磁性薄膜で
形成されるから非常に優れた磁気特性を有し、飽和磁化
が大きく保磁力も十分大きいので、このような薄膜化に
も特性上対応できるので、高密度記録化には金属薄膜型
媒体の方が好適である。
For coating media, the thinnest film thickness currently in practical use is about 0.7 μm, whereas for plating, vapor deposition, sputtering, etc. A thin film of 10 or less can be easily realized. Furthermore, while the magnetic layer of coated media is a layer containing a large amount of non-magnetic binder, the magnetic layer of thin film media is formed from a ferromagnetic thin film, so it has excellent magnetic properties and is saturated. Since the magnetization is large and the coercive force is sufficiently large, the metal thin film type medium is suitable for high-density recording because it can cope with such a thin film.

現在、高密度磁気記録装置として主流となってきている
固定磁気ディスク装置の記録媒体として用いられる金属
薄膜型の磁気ディスクは一般に第3図に模式的に示した
ような層構成である。第3図において、31は例えばア
ルミニウム合金からなるディスク状基板であり、その表
面はN1−P合金からなる非磁性基体層32で被覆され
ている。基体層32は記録・再生に際して媒体表面に磁
気ヘッドが接触し摺動するときの薄膜磁性層の機械的変
形損傷を防ぎ、かつ、媒体表面に十分な平滑性を付与す
るために設けられるもので、その表面は鏡面仕上げされ
ている。基体層32の上にCrからなる非磁性金属下地
層33が、蒸着、スパッタ、イオンブレーティングなど
で形成される。この下地層33は、その上に設けられる
磁性層の磁気特性を向上させるために設けられるもので
ある。下地層33の上に、蒸着、スパッタ、イオンブレ
ーティングなどでC。
Metal thin film type magnetic disks used as recording media in fixed magnetic disk devices, which are currently becoming mainstream as high-density magnetic recording devices, generally have a layered structure as schematically shown in FIG. In FIG. 3, 31 is a disk-shaped substrate made of, for example, an aluminum alloy, the surface of which is coated with a nonmagnetic base layer 32 made of an N1-P alloy. The base layer 32 is provided to prevent mechanical deformation damage to the thin film magnetic layer when a magnetic head contacts and slides on the surface of the medium during recording and reproduction, and to provide sufficient smoothness to the surface of the medium. , its surface is mirror finished. A nonmagnetic metal underlayer 33 made of Cr is formed on the base layer 32 by vapor deposition, sputtering, ion blasting, or the like. This underlayer 33 is provided to improve the magnetic properties of the magnetic layer provided thereon. C is deposited on the base layer 33 by vapor deposition, sputtering, ion blasting, etc.

合金からなる薄膜磁性層34が形成される。最後に、こ
の磁性層の上に1例えばカーボンからなる保護潤滑層3
5が形成される。この層は腐食、@耗し易い金属薄膜磁
性層を被覆保護し、耐食性、耐久性を向上させるために
設けるものである。
A thin film magnetic layer 34 made of an alloy is formed. Finally, a protective lubricating layer 3 made of carbon, for example, is placed on top of this magnetic layer.
5 is formed. This layer is provided to cover and protect the metal thin film magnetic layer, which is easily corroded and worn out, and to improve corrosion resistance and durability.

以上のような各薄膜の形成技術としては、真空蒸着法、
スパッタ法、イオンブレーティング法。
Formation techniques for each of the thin films mentioned above include vacuum evaporation,
Sputtering method, ion blating method.

めっき法、スピンコード法などがあるが、スパッタ法が
媒体作製法として注目されている。均質な組成の薄膜が
得られ易い、膜厚管理が比較的容易。
Although there are plating methods, spin-coding methods, etc., the sputtering method is attracting attention as a media manufacturing method. It is easy to obtain a thin film with a homogeneous composition, and film thickness control is relatively easy.

非磁性金属下地層以降をすべてスパッタ法で連続して行
うことができ量産に適しているなど利点が多いからであ
る。
This is because it has many advantages, including the fact that everything after the nonmagnetic metal underlayer can be continuously performed by sputtering, making it suitable for mass production.

CO合金薄膜磁性層は、従来、磁気テープによく使われ
てきたが、その際、斜め蒸着法が採られていた。斜め蒸
着法により00合金薄膜の磁化容易軸が面内に倒れ、磁
気異方性が現れて保磁力が大幅に向上することを利用し
ていたのである。一方、前述の金属薄膜型磁気ディスク
をスパッタ法で作製する場合には、非磁性基体層上に非
磁性金属下地層としてスパッタリングされたCr薄膜上
に、連続してスパッタリングされたCO合金はCr薄膜
上にエビクキシャル的に成長して薄膜磁性層を形成する
。このとき、下地層のCr薄膜の結晶配向性により、そ
の上に成長した00合金薄膜は磁化容易軸が膜面内に揃
うようになり、水平方向の磁気異方性が大きく現れて十
分高い保磁力が得られることになる。
CO alloy thin film magnetic layers have conventionally been frequently used in magnetic tapes, but at that time oblique vapor deposition was used. They took advantage of the fact that the axis of easy magnetization of the 00 alloy thin film is tilted in-plane by the oblique evaporation method, resulting in magnetic anisotropy and a significant improvement in coercive force. On the other hand, when the above-mentioned metal thin film type magnetic disk is manufactured by sputtering, a Cr thin film is sputtered continuously on a Cr thin film sputtered as a nonmagnetic metal underlayer on a nonmagnetic base layer. A thin magnetic layer is formed by evixically growing on top of the magnetic layer. At this time, due to the crystal orientation of the Cr thin film of the underlayer, the axis of easy magnetization of the 00 alloy thin film grown thereon is aligned within the film plane, and a large horizontal magnetic anisotropy appears, resulting in sufficiently high retention. Magnetic force will be obtained.

スパッタ法により磁気ディスクを製造する場合、第1図
に要部を模式的に示すようなスパッタ装置が多く用いら
れる。図示されてはいない真空チャンバー内にCrター
ゲット13と00合金ターゲツト14が並置されており
、非磁性基体層で被覆されたディスク基板11がCrタ
ーゲット側から00合金ターゲツト側へ矢印Aのように
基板搬送レール12により搬送されなから[r下地層と
CO合金磁磁性層が順次スパッタにより積層形成される
。その後、基板は基板搬送レールにより図示はされてい
ない保護潤滑層用材料のターゲットのところまで搬送さ
れ、保護潤滑層をスパッタリングにより形成されて媒体
となる。
When manufacturing magnetic disks by the sputtering method, a sputtering apparatus such as the main part schematically shown in FIG. 1 is often used. A Cr target 13 and a 00 alloy target 14 are juxtaposed in a vacuum chamber (not shown), and a disk substrate 11 coated with a non-magnetic base layer is moved from the Cr target side to the 00 alloy target side in the direction of arrow A. Since it is not transported by the transport rail 12, the underlayer and the CO alloy magnetic layer are sequentially laminated by sputtering. Thereafter, the substrate is transported by a substrate transport rail to a target (not shown) of a material for a protective lubricant layer, and a protective lubricant layer is formed by sputtering to form a medium.

このようにして作製された磁気ディスクは、十分な保磁
力を有するものの、実際に記録装置に搭載し、磁気ヘッ
ドと組み合わせて書き込み、読み出しを行った場合、第
2図に示すように、再生出力のエンベロープ曲線Bが変
動し電磁変換特性が変動するという問題がしばしば発生
した。特に、保磁力を高くしたときにこのエンベロープ
曲線の変動率(Emax −Emin) / Eo X
100(%)が太き(なる。この原因について調査を行
ったところ、エンベロープ曲線の変動は磁性層内の場所
による磁気異方性の強さの差異によることが判った。
Although the magnetic disk produced in this way has sufficient coercive force, when it is actually installed in a recording device and used in combination with a magnetic head for writing and reading, the playback output is The problem often occurred that the envelope curve B of the electromagnetic conversion characteristics fluctuated. In particular, when the coercive force is increased, the fluctuation rate of this envelope curve (Emax - Emin) / Eo
100(%) is thick (becomes thick). When investigating the cause of this, it was found that the variation in the envelope curve is due to differences in the strength of magnetic anisotropy depending on the location within the magnetic layer.

この問題の解決方法の一つとして、磁性層をスパッタで
形成する際に、雰囲気の后ガスの圧力を高くしてスパッ
タ粒子とAr原子との衝突回数を増やし、スパッタ粒子
の基板への入射方向をランダムにすることが有効であっ
た。具体的にはArガス圧を3.5 Xl0−2Tor
r まで高めたときに、はぼ実用上問題のない程度の再
生出力のエンベロープ曲線が得られた。
One way to solve this problem is to increase the pressure of the gas in the atmosphere when forming the magnetic layer by sputtering to increase the number of collisions between the sputtered particles and Ar atoms, thereby changing the direction of incidence of the sputtered particles on the substrate. It was effective to randomize. Specifically, the Ar gas pressure was set to 3.5 Xl0-2 Tor.
When the output was increased to r, an envelope curve of the reproduction output was obtained that did not cause any problems in practical use.

しかしながら、Arガス圧を3.5 Xl0−2Tqr
r まで高めると、スパッタリングによる成膜速度が非
常に低下し、かつ、下地層のCr膜への密着性の弱い膜
となる。さらに磁気特性の劣化も生じるようになる。
However, if the Ar gas pressure is 3.5 Xl0-2Tqr
When it is increased to r 2 , the film formation rate by sputtering becomes extremely low and the film has weak adhesion to the underlying Cr film. Furthermore, deterioration of magnetic properties also occurs.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の点に鑑みてなされたものであって、保
磁力が大きく、かつ、磁気特性の経時変化が少なく、ま
た、再生出力のエンベロープ曲線の均一化にみられるご
とく、優れた電磁変換特性をもつ磁気記録媒体の製造方
法を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and has excellent electromagnetic properties such as a large coercive force, little change in magnetic properties over time, and a uniform reproduction output envelope curve. An object of the present invention is to provide a method for manufacturing a magnetic recording medium having conversion characteristics.

〔発明の要点〕[Key points of the invention]

本発明は、真空チャンバー内に並設されたCrターゲッ
トとCo合金ターゲットとに対向して、所定の間隔をお
いて、CrターゲットからCo合金ターゲットの方向へ
搬送される非磁性基板上に設けられた非磁性基体層表面
に、非磁性金属下地層としてCrをスパッタリングし、
続いてその上に磁性層としてCO合金をスパッタリング
する磁気記録媒体の製造方法において、前記磁性層をス
パッタリングする際に基板表面からCo合金ターゲット
のエロージョン領域を見込む角度が、基板の法線に対し
て40°以内であるようにすることによって前記目的を
達成する。
The present invention is provided on a non-magnetic substrate that is conveyed from the Cr target to the Co alloy target at a predetermined interval, facing a Cr target and a Co alloy target that are arranged in parallel in a vacuum chamber. sputtering Cr as a nonmagnetic metal underlayer on the surface of the nonmagnetic base layer,
In a method for manufacturing a magnetic recording medium in which a CO alloy is then sputtered as a magnetic layer thereon, the angle at which the erosion area of the Co alloy target is viewed from the substrate surface when sputtering the magnetic layer is set relative to the normal to the substrate. The above objective is achieved by making the angle within 40°.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施に際しては、第1図に装置の要部を模式的
に示したような従来から使用されているスパッタリング
装置を用いることができる。基板11としてはディスク
状A1合金基板の表面に非磁性基体層としてN1−P合
金を無電解めっきで形成し鏡面研磨を施したものを用い
る。基板11は図示されていない真空槽内に並置された
Crターゲット13゜Co−30at%Ni−7,5a
t%CrのCo合金ターゲット14の上を基板搬送レー
ル12により矢印Δの方向に90mmZ分の速さで搬送
されながら、その表面にまず下地層としてCrを膜厚1
500人に成膜され、続いてこの下地層の上にCO合金
を膜厚500人に成膜されて磁性層とされる。基板11
は、さらに搬送されていって図示されていないカーボン
ターゲットからカーボンを500人の厚みに成膜されて
保護潤滑層とされ、磁気記録媒体とされる。これらの成
膜は、すべて后ガス雰囲気中でDCマグネトロン方式の
スパッタで行われる。
In carrying out the present invention, a conventionally used sputtering apparatus, the main parts of which are schematically shown in FIG. 1, can be used. The substrate 11 used is a disc-shaped A1 alloy substrate on which an N1-P alloy is electrolessly plated as a nonmagnetic base layer and mirror-polished. The substrate 11 is a Cr target 13°Co-30at%Ni-7,5a juxtaposed in a vacuum chamber (not shown).
While being transported by the substrate transport rail 12 over the Co alloy target 14 containing t%Cr at a speed of 90 mmZ in the direction of the arrow Δ, a Cr film with a thickness of 1% is first deposited on the surface as an underlayer.
A film with a thickness of 500 mm is formed, and then a CO alloy film is formed on this underlayer to a thickness of 500 mm to form a magnetic layer. Substrate 11
The disk is further transported, and a carbon film is formed to a thickness of 500 mm from a carbon target (not shown) to form a protective lubricant layer, thereby forming a magnetic recording medium. All of these film formations are performed by DC magnetron sputtering in a gas atmosphere.

ターゲットにはマスク15が設けられているが、このマ
スク15の形状およびマスク15と基板11との間隔に
より、基板上からターゲットのエロージョン領域16を
見込む基板の法線に対する最大角度θmaXが決まる。
A mask 15 is provided on the target, and the shape of the mask 15 and the distance between the mask 15 and the substrate 11 determine the maximum angle θmaX with respect to the normal to the substrate at which the erosion region 16 of the target is viewed from above the substrate.

この角度は、スパッタ粒子が基板に入射する最大角度で
あり、スパッタ粒子がこの角度以上に傾いて斜めに基板
に入射することはない。
This angle is the maximum angle at which the sputtered particles are incident on the substrate, and the sputtered particles are never obliquely incident on the substrate at an angle greater than this angle.

Cr下地層を形成された基板が00合金ターゲツトの方
へ搬送されてくると、はぼ角度θmaX の位置からC
O合金のスパッタ粒子が基板上に付着しはじめ、磁性層
の成膜がはじまる。その後、基板が搬送されるにつれて
、スパッタ粒子の入射角は小さくなり、基板がCo合金
ターゲットの上にきたとき垂直となり、その後基板が0
0合金ターゲツト上を通過して、離れていくにつれてス
パッタ粒子の入射角は増大していき、最大角度θmaX
 となった位置でスパッタ粒子の基板への伺着は止まり
、磁性層の成膜は終了する。
When the substrate on which the Cr underlayer is formed is conveyed toward the 00 alloy target, C
Sputtered O alloy particles begin to adhere to the substrate, and the formation of the magnetic layer begins. After that, as the substrate is transported, the incident angle of the sputtered particles becomes smaller, becomes vertical when the substrate is on the Co alloy target, and then becomes zero when the substrate is on the Co alloy target.
The incident angle of the sputtered particles increases as they pass over the zero alloy target and move away, and the maximum angle θmax
At this position, the sputtered particles stop adhering to the substrate, and the film formation of the magnetic layer is completed.

このように、基板がターゲットに対して移動しながらス
パッタが行われるために、基板へのスパッタ粒子の入射
角が変化し、基板内の場所により形成された膜の結晶の
成長方向が変わり、その結果、磁性層の磁気特性が場所
により変わることになる。このことが、媒体の再生出力
のエンベロープ曲線が変動し、電磁変換特性が変動する
原因と考えられる。基板へのスパッタ粒子の入射角の変
化が少ない程、磁性層内の磁気特性の変動幅は小さくな
る。スパッタ粒子の入射角の変化はθmaXが小さい程
少なくなる。従って、θmaXを小さくすると、再生出
力のエンベロープ曲線の変動率を小さく抑えることがで
きる。
In this way, since sputtering is performed while the substrate is moving relative to the target, the incident angle of the sputtered particles to the substrate changes, and the direction of crystal growth of the formed film changes depending on the location within the substrate. As a result, the magnetic properties of the magnetic layer vary depending on location. This is thought to be the reason why the envelope curve of the reproduction output of the medium fluctuates and the electromagnetic conversion characteristics fluctuate. The smaller the change in the angle of incidence of sputtered particles onto the substrate, the smaller the range of variation in the magnetic properties within the magnetic layer. The smaller θmaX is, the smaller the change in the incident angle of sputtered particles becomes. Therefore, by reducing θmaX, the fluctuation rate of the envelope curve of the reproduced output can be suppressed to a small value.

そこで、磁性層を形成するときのスパッタ雰囲気のAr
ガス圧が、5 X 1O−3Torrの場合と、1×1
0−2Torrの場合とについて、θmaXを20°、
406゜50°、60°と変化させて磁気記録媒体を作
製し、これらの媒体について、再生出力のエンベロープ
曲線の変動率を調べた。その結果、どちらのArガス圧
の場合にも、θmaXが20°、40°のときにはエン
ベロープ曲線の変動率が±10%以内であって、十分に
実用に供せられるものであった。これ以外の媒体につい
ては、エンベロープ曲線の変動率が±15%から±25
%の間にあり実用上問題であった。
Therefore, Ar in the sputtering atmosphere when forming the magnetic layer is
When the gas pressure is 5 x 1O-3 Torr, and when the gas pressure is 1 x 1
For the case of 0-2 Torr, θmax is 20°,
Magnetic recording media were prepared by changing the angle to 406°, 50°, and 60°, and the fluctuation rate of the reproduction output envelope curve was investigated for these media. As a result, for both Ar gas pressures, when θmaX was 20° and 40°, the fluctuation rate of the envelope curve was within ±10%, which was sufficient for practical use. For other media, the fluctuation rate of the envelope curve is between ±15% and ±25%.
%, which was a practical problem.

また、Arガス圧I Xl0−2TorrでθmaXを
40°。
Further, θmax was 40° at Ar gas pressure I Xl0-2 Torr.

60°として作製した前記媒体について、温度60℃。For the medium prepared as 60°, the temperature is 60°C.

相対湿度90%の雰囲気中に2週間放置する環境試験を
行った。その結果、電磁変換特性において、θma×4
0°で作製した媒体はエラー数の増加はみられなかった
が、θma×60°で作製した媒体においては5個/面
のエラー数の増加が観測された。
An environmental test was conducted in which the sample was left in an atmosphere with a relative humidity of 90% for two weeks. As a result, in the electromagnetic conversion characteristics, θmax×4
No increase in the number of errors was observed in the medium manufactured at 0°, but an increase of 5 errors/plane was observed in the medium manufactured at θma×60°.

以上の結果により、θmaXを40°以内にすると、圧
力1O−2Torr以下のArガス雰囲気において、成
膜速度をおとすことなく、CO合金をスパッタして磁性
層を形成し、再生出力のエンベロープ曲線の変動率が十
分小さくて実用上問題とならない媒体を作製できること
が判る。
Based on the above results, when θmax is set within 40°, the CO alloy can be sputtered to form a magnetic layer without slowing down the film formation rate in an Ar gas atmosphere with a pressure of 1O-2 Torr or less, and the envelope curve of the reproduction output can be changed. It can be seen that it is possible to produce a medium in which the rate of variation is sufficiently small to pose no problem in practice.

この実施例においては、磁性層材料としてC0−3Qa
t%Ni−7,5at%Crを用いたが、この組成に限
られることはなく、N1の含有量20at%〜35at
%、 Crの含有量5at%〜1Qat%で残部がCO
であるような組成比の合金は好適に用いることができ、
さらに他の組成のCO合金を用いてもよい。
In this example, C0-3Qa is used as the magnetic layer material.
Although t%Ni-7,5at%Cr was used, the composition is not limited to this, and the N1 content may be 20at% to 35at%.
%, Cr content is 5at% to 1Qat% and the balance is CO
An alloy with a composition ratio such that
Furthermore, CO alloys with other compositions may be used.

また、Cr下地層の上に形成されたCo−30at%N
i−7、5at%Crからなる磁性層の磁気特性は、第
4図に示すとおり、下地層としてのCr膜の膜厚に依存
する。実施例においては、このCr膜厚を1500人と
したが、1000八以上あれば実用上問題ない。
In addition, Co-30at%N formed on the Cr underlayer
The magnetic properties of the magnetic layer made of i-7, 5 at% Cr depend on the thickness of the Cr film as the underlayer, as shown in FIG. In the embodiment, the Cr film thickness was set to 1,500 mm, but if it is 1,000 mm or more, there is no problem in practical use.

〔発明の効果〕〔Effect of the invention〕

本発明においては、並設されたCrターゲットと00合
金ターゲツトとの上を搬送される基板表面に、Cr下地
層、 Co合金磁性層を順次スパッタにより形成して媒
体を作製するときに、基板から00合金ターゲツトのエ
ロージョン領域を見込む角度が基板の法線に対して40
°以内であるようにする。このようにして、Co合金ス
パッタ粒子の基板への入射角の変動幅を小さくすること
により、基板内の磁気特性の変動を抑えて均一にするこ
とができ、再生出力のエンベロープ曲線の変動率が小さ
く均一で、電磁変換特性が優れ、かつ、保磁力の大きい
磁気記録媒体を製造することが可能となる。
In the present invention, when manufacturing a medium by sequentially forming a Cr underlayer and a Co alloy magnetic layer by sputtering on the surface of a substrate that is transported over a Cr target and a 00 alloy target arranged in parallel, The angle at which the erosion area of the 00 alloy target is viewed is 40° with respect to the normal to the substrate.
Ensure that it is within °. In this way, by reducing the fluctuation width of the incident angle of Co alloy sputtered particles onto the substrate, it is possible to suppress fluctuations in the magnetic properties within the substrate and make them uniform, thereby reducing the fluctuation rate of the envelope curve of the reproduced output. It becomes possible to manufacture a magnetic recording medium that is small and uniform, has excellent electromagnetic conversion characteristics, and has a large coercive force.

また、本発明の方法によれば、スパッタを行う雰囲気の
Arガス圧を高くする必要がないので、C。
Furthermore, according to the method of the present invention, there is no need to increase the Ar gas pressure in the atmosphere in which sputtering is performed.

合金膜の成膜速度が低下することなく、密着性良好でし
かも磁気特性の劣化の少ない磁性層が形成でき、この点
でも優れた磁気記録媒体を得ることができる。
A magnetic layer with good adhesion and less deterioration of magnetic properties can be formed without reducing the deposition rate of the alloy film, and an excellent magnetic recording medium can be obtained in this respect as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施できるスパッタ装置の要部の模式
図、第2図は磁気記録媒体の再生出力のエンベロープ曲
線を示す図、第3図は磁気記録媒体の一例の層構成を示
す模式的断面図、第4図はCr下地層のCr膜厚と、C
o−3Qat%Ni−7,5at%Crの磁性層の磁気
特性との関係を示す線図である。 11  基板、12  基板搬送レール、13− Cr
クーゲット、]、t−Co合金ターゲット、15  マ
スク、16エロージヨン領域。 第 1 図 第3図 cr膜厚<A> 當゛  l  M
Fig. 1 is a schematic diagram of the main parts of a sputtering apparatus that can carry out the present invention, Fig. 2 is a diagram showing an envelope curve of reproduction output of a magnetic recording medium, and Fig. 3 is a schematic diagram showing the layer structure of an example of a magnetic recording medium. Figure 4 shows the Cr film thickness of the Cr underlayer and the C
FIG. 3 is a diagram showing the relationship with the magnetic properties of a magnetic layer of o-3Qat%Ni-7, 5at%Cr. 11 board, 12 board transport rail, 13- Cr
Kugett, ], t-Co alloy target, 15 mask, 16 erosion region. Fig. 1 Fig. 3 Cr Film Thickness <A>

Claims (1)

【特許請求の範囲】[Claims] 1)真空チャンバー内に並設されたクロム(Cr)ター
ゲットとコバルト(Co)合金ターゲットとに対向して
、所定の間隔をおいてクロム(Cr)ターゲットからコ
バルト(Co)合金ターゲットの方向へ搬送される非磁
性基板を被覆している非磁性基体層表面上に、非磁性金
属下地層としてクロム(Cr)をスパッタし、続いてそ
の上に磁性層としてコバルト(Co)合金をスパッタす
る磁気記録媒体の製造方法において、前記磁性層をスパ
ッタで形成する際、前記基板表面から前記コバルト(C
o)合金ターゲットのエロージョン領域を見込む角度が
、前記基板の法線に対して40°以内であることを特徴
とする磁気記録媒体の製造方法。
1) Conveying from the chromium (Cr) target to the cobalt (Co) alloy target at a predetermined interval, facing the chromium (Cr) target and cobalt (Co) alloy target that are arranged side by side in a vacuum chamber. A magnetic recording method in which chromium (Cr) is sputtered as a nonmagnetic metal underlayer on the surface of a nonmagnetic base layer covering a nonmagnetic substrate, and then a cobalt (Co) alloy is sputtered as a magnetic layer thereon. In the method for manufacturing a medium, when forming the magnetic layer by sputtering, the cobalt (C) is removed from the surface of the substrate.
o) A method for manufacturing a magnetic recording medium, characterized in that the angle at which the erosion region of the alloy target is viewed is within 40 degrees with respect to the normal to the substrate.
JP22560786A 1986-09-24 1986-09-24 Method of manufacturing magnetic recording medium Expired - Lifetime JPH0647722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22560786A JPH0647722B2 (en) 1986-09-24 1986-09-24 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22560786A JPH0647722B2 (en) 1986-09-24 1986-09-24 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6379968A true JPS6379968A (en) 1988-04-09
JPH0647722B2 JPH0647722B2 (en) 1994-06-22

Family

ID=16831972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22560786A Expired - Lifetime JPH0647722B2 (en) 1986-09-24 1986-09-24 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0647722B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310965A (en) * 1987-06-11 1988-12-19 Anelva Corp Sputtering device
US4950548A (en) * 1988-05-27 1990-08-21 Hitachi, Ltd. Magnetic recording medium and method of producing same
JPH02258975A (en) * 1988-12-22 1990-10-19 Fuji Photo Film Co Ltd Device and method for sputtering
JPH03127329A (en) * 1989-10-13 1991-05-30 Fuji Electric Co Ltd Production of magnetic recording medium
JPH03219067A (en) * 1989-02-15 1991-09-26 Fuji Photo Film Co Ltd Method and device for sputtering
US5527438A (en) * 1994-12-16 1996-06-18 Applied Materials, Inc. Cylindrical sputtering shield
JP2013014806A (en) * 2011-07-04 2013-01-24 Denso Corp Method for manufacturing crystal axis gradient film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310965A (en) * 1987-06-11 1988-12-19 Anelva Corp Sputtering device
US4950548A (en) * 1988-05-27 1990-08-21 Hitachi, Ltd. Magnetic recording medium and method of producing same
JPH02258975A (en) * 1988-12-22 1990-10-19 Fuji Photo Film Co Ltd Device and method for sputtering
JPH03219067A (en) * 1989-02-15 1991-09-26 Fuji Photo Film Co Ltd Method and device for sputtering
JPH03127329A (en) * 1989-10-13 1991-05-30 Fuji Electric Co Ltd Production of magnetic recording medium
US5527438A (en) * 1994-12-16 1996-06-18 Applied Materials, Inc. Cylindrical sputtering shield
JP2013014806A (en) * 2011-07-04 2013-01-24 Denso Corp Method for manufacturing crystal axis gradient film

Also Published As

Publication number Publication date
JPH0647722B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US4950548A (en) Magnetic recording medium and method of producing same
US5356522A (en) Method for manufacturing thin-film medium with chromium underlayer gradient
JPH04228105A (en) High-coercive-force thin-film recording medium and its production
US5084152A (en) Method for preparing high density magnetic recording medium
JPS6379968A (en) Production of magnetic recording medium
US6309516B1 (en) Method and apparatus for metal allot sputtering
JPH0613237A (en) Magnetic recording medium and method for increasing rate of coercive force thereof
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
JPS6329330B2 (en)
JPS62114124A (en) Production of magnetic disk
KR100449848B1 (en) Magnetic disk
JPS62103823A (en) Magnetic disk
JPH0268716A (en) Production of magnetic disk medium
JP2785276B2 (en) Magnetic recording media
JPS63193322A (en) Magnetic recording medium
EP0422547B1 (en) Magnetic recording medium
JPS60231911A (en) Magnetic recording medium
JPS6330691B2 (en)
JPS59157828A (en) Magnetic recording medium
JPH01251313A (en) Magnetic recording medium
JPH04229411A (en) Magnetic recording medium and production thereof
JPH0799570B2 (en) Magnetic recording medium
JPH0512765B2 (en)
JPH1116146A (en) Magnetic recording medium and its production
JPH0261820A (en) Parallel magnetic recording medium