JPS6378692A - Digital chrominance signal processor - Google Patents

Digital chrominance signal processor

Info

Publication number
JPS6378692A
JPS6378692A JP61224428A JP22442886A JPS6378692A JP S6378692 A JPS6378692 A JP S6378692A JP 61224428 A JP61224428 A JP 61224428A JP 22442886 A JP22442886 A JP 22442886A JP S6378692 A JPS6378692 A JP S6378692A
Authority
JP
Japan
Prior art keywords
frequency
signal processing
pass filter
color difference
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61224428A
Other languages
Japanese (ja)
Inventor
Kunihiko Fujii
邦彦 藤井
Tokikazu Matsumoto
松本 時和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61224428A priority Critical patent/JPS6378692A/en
Publication of JPS6378692A publication Critical patent/JPS6378692A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an area required for attaining LSI by sharing the most part of a unit delay element and an adder, both of which are constituents when a low-pass filter samples chrominance components whose frequencies are converted in a different way at the time of recording and reproducing. CONSTITUTION:As for a recording system, an inputted composite video signal is transmitted in such a way that a luminance signal and chrominance signal are frequency- multiplexed as shown by figure (a). The chrominance signal is two-phase modulated orthogonally by fsc. A band-pass filter 12 has such a characteristic that the frequency of 1/8 fs goes to peak as shown by figure (c). When an output whose frequency is converted at a previous stage is inputted to the filter, chrominance signal can be obtained extending with 1/8 fs as a centeres shown by figure (D). A demodulator circuit 13 drops a clock frequency to demodulate two color difference signals by sampling the chrominance signal whose central frequency stands at 1/8 fs as shown by figure (e). As for a reproduction system, a chrominance signal subjected to low frequency conversion and an FM-modulated luminance signal are inputted to a frequency conversion circuit 11. After the band-pass filter 12 removes the unnecessary components of them, they are demodulated to two color difference signals in the same way as in the recording system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ビデオテープレコーダ(VTR)の色信号を
ディジタル処理する色信号処理装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a color signal processing device for digitally processing color signals of a video tape recorder (VTR).

従来の技術 従来のアナログ色信号処理装置は記録再生時の周波数変
換の部分を取り上げると、第5図(al (b)に示す
ような構成となっていたく例えば、構出克哉rNHKホ
ームビデオ技術」、(昭57.4.10)、日本放送協
会、  P94)。
BACKGROUND OF THE INVENTION Conventional analog color signal processing devices have a configuration as shown in Figure 5 (al (b)) when considering the frequency conversion part during recording and playback. , (April 10, 1982), Japan Broadcasting Corporation, P94).

すわなち、記録系では複合映像信号入力を周波数変換回
路51により周波数変換した後、低域通過フィルタ52
で低域変換色信号として抜き出し、再生系では低域変換
色信号入力を周波数変換回路53により色副搬送波周波
数(以下、fscとする)に変換した後、帯域通過フィ
ルタ54を経て色信号を得ている。
That is, in the recording system, after the composite video signal input is frequency-converted by the frequency conversion circuit 51, it is passed through the low-pass filter 52.
In the reproduction system, the input low-pass converted color signal is converted into a color subcarrier frequency (hereinafter referred to as fsc) by a frequency conversion circuit 53, and then passed through a band-pass filter 54 to obtain a color signal. ing.

発明が解決しようとする問題点 このような従来のアナログ色信号処理装置を単にディジ
タルに置き換えたならば、記録系と再生系で低域通過フ
ィルタと帯域通過フィルタをもつことになり、しかもN
TSC?PALのような異なった周波数の搬送色信号に
対応するにはさらにディジタルフィルタが必要となり、
切り替えスイッチもフィルタの数のビット数倍必要とな
る。
Problems to be Solved by the Invention If such a conventional analog color signal processing device were simply replaced with a digital one, the recording system and reproduction system would have a low-pass filter and a band-pass filter.
TSC? An additional digital filter is required to support carrier color signals of different frequencies, such as PAL.
The number of changeover switches is also required to be the number of bits times the number of filters.

ディジタル信号処理回路でディジタルフィルタの占める
割合は非常に大きいので、入力信号毎にフィルタをもつ
ことはLSI化を図るうえで大きな負担となる。
Since digital filters occupy a very large proportion of digital signal processing circuits, having a filter for each input signal is a big burden when implementing LSI.

そのためには一旦同じ周波数に周波数変換した後1つの
帯域通過フィルタに通せばよいが、映像信号は広い周波
数帯域を有するためクロック周波数によっては各方式で
或いはまた記録再生で同じ周波数に周波数変換すること
ができず、2種類のフィルタを用いなければならなくな
る。
To do this, it is sufficient to first convert the frequency to the same frequency and then pass it through one bandpass filter, but since video signals have a wide frequency band, depending on the clock frequency, it may be necessary to convert the frequency to the same frequency in each method or during recording and reproduction. Therefore, two types of filters must be used.

本発明はかかる点に鑑みてなされたもので、記録時と再
生時とで異なった周波数に周波数変換された色信号を取
り出す帯域通過フィルタをその構成要素である単位遅延
素子や加減算器を大部分共用し、スイッチにより記録再
生時に切り替えることにより、1つのフィルタに若干の
規模の増加を見込むだけで異なった周波数特性を実現す
ることができる。
The present invention has been made in view of the above points, and includes a bandpass filter that takes out color signals frequency-converted to different frequencies during recording and playback, and most of the unit delay elements and adders/subtractors that are the constituent elements of the band-pass filter. By sharing the filter and switching it over during recording and reproduction using a switch, different frequency characteristics can be realized with only a slight increase in the scale of one filter.

そしてその後に復調を行い所定の色信号処理を行ったの
ち必要とする信号形式に変調することで、低いクロック
周波数で処理を行った場合でも記録再生時で2種類のフ
ィルタを持つことのないディジタル色信号処理装置を提
供することを目的としている。
After that, demodulation is performed, predetermined color signal processing is performed, and then modulation is performed to the required signal format, so that even when processing is performed at a low clock frequency, there is no need for two types of filters during recording and playback. The object of the present invention is to provide a color signal processing device.

問題点を解決するための手段 本発明は上記問題点を解決するため、入力信号を記録時
と再生時とで異なった周波数に周波数変換する周波数変
換回路と周波数変換回路の出力を濾波する帯域通過フィ
ルタと帯域通過フィルタの出力を2つの色差信号に復調
する復調回路と復調回路の出力を処理する第1、第2の
色差信号処理回路と第1、第2の色差信号処理回路の出
力を濾波する第1、第2の低域通過フィルタと第1、第
2の低域通過フィルタの出力を任意の周波数に変調する
変調回路により構成されるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a frequency conversion circuit that converts an input signal into different frequencies during recording and playback, and a band pass that filters the output of the frequency conversion circuit. A demodulation circuit that demodulates the outputs of the filter and the bandpass filter into two color difference signals, first and second color difference signal processing circuits that process the output of the demodulation circuit, and filters the outputs of the first and second color difference signal processing circuits. It is constructed of first and second low-pass filters, and a modulation circuit that modulates the outputs of the first and second low-pass filters to an arbitrary frequency.

作用 本発明は上記した構成により、記録時と再生時とで異な
った周波数に周波数変換された色信号を帯域通過フィル
タで抜き取る際に構成要素である単位遅延素子や加減算
器の大部分を共用することで、異なった周波数特性を満
たすフィルタを2種類持つことなくディジタル色信号処
理を行える。
According to the above-described configuration, the present invention shares most of the unit delay elements and adders/subtractors, which are the constituent elements, when extracting color signals frequency-converted to different frequencies during recording and playback using a band-pass filter. This allows digital color signal processing to be performed without having two types of filters that satisfy different frequency characteristics.

実施例 第1図は本発明のディジタル色信号処理装置の一実施例
を示すブロック図である。第1図において、1)は周波
数変換回路、12は帯域通過フィルタ、13は復調回路
、14.16は色差信号処理回路、15゜17は低域通
過フィルタ、18は変調回路である。以下、本発明のデ
ィジタル色信号処理装置の動作説明を具体例としてサン
プリング周波数(以下、fsとする)が18MHzの処
理系を例に挙げて記録系と再生系とにつきそれぞれ第2
図から第4図までに示したスペクトル分布図をもとにし
て行うことにする。
Embodiment FIG. 1 is a block diagram showing an embodiment of the digital color signal processing device of the present invention. In FIG. 1, 1) is a frequency conversion circuit, 12 is a band pass filter, 13 is a demodulation circuit, 14.16 is a color difference signal processing circuit, 15.degree. 17 is a low pass filter, and 18 is a modulation circuit. Hereinafter, the operation of the digital color signal processing device of the present invention will be explained as a specific example, and a processing system with a sampling frequency (hereinafter referred to as fs) of 18 MHz will be taken as an example.
This will be done based on the spectrum distribution diagrams shown in FIGS.

まず記録系の場合、入力の複合映像信号は第2図+8)
に示すように種度信号と色信号が周波数多重されたかた
ちで送られ、色信号はfscで直角二相変調されている
。本発明では色信号をサンプリングにより復調するため
fsのA或いは178の周波数に周波数変換するのが望
ましい。
First of all, in the case of a recording system, the input composite video signal is Fig. 2 + 8)
As shown in the figure, the color signal and color signal are transmitted in a frequency multiplexed form, and the color signal is quadrature two-phase modulated by fsc. In the present invention, since the color signal is demodulated by sampling, it is desirable to perform frequency conversion to a frequency of A or 178 of fs.

ここでPAL方式について考えると、PALの搬送色信
号は4.43M1lzに存在するため%fsに周波数変
換するとスペクトルが重なる。
Considering the PAL system here, the PAL carrier color signal exists at 4.43M1lz, so when the frequency is converted to %fs, the spectra overlap.

したがって周波数変換回路1)は第2図(blに示すよ
うに fc = fsc+1/8  fs で表されるキャリア周波数で色信号を周波数変換するこ
とになる。
Therefore, the frequency conversion circuit 1) converts the frequency of the color signal using the carrier frequency expressed by fc=fsc+1/8 fs as shown in FIG. 2 (bl).

帯域通過フィルタ12は第2図(C)に示すように1/
8fsの周波数が山となる特性を存しており、このフィ
ルタに前段で周波数変換された出力を通すと、輝度信号
の大部分と周波数変換により生じた色信号の和成分が除
去され第2図(d)に示すように1/8fsを中心に拡
がる色信号を得る(なお、輝度信号の高域成分も若干残
るが、この部分はエネルギーも低くかつ後述する色信号
処理回路のくし形フィルタで除去されるので以降は輝度
信号の残留成分はないものとする)。
The band pass filter 12 has a 1/
It has a characteristic that the frequency of 8fs peaks, and when the output frequency-converted in the previous stage is passed through this filter, most of the luminance signal and the sum component of the color signal generated by the frequency conversion are removed, as shown in Figure 2. As shown in (d), a color signal that spreads around 1/8 fs is obtained (note that some high-frequency components of the luminance signal remain, but this part has low energy and is processed by the comb-shaped filter of the color signal processing circuit described later). It is assumed that there is no residual component of the luminance signal after that.)

復調回路13は1/8fsに周波数の中心をもつ色信号
を第2図(e)に示すようなサンプリングによりクロッ
ク周波数を落して2つの色差信号に復調する回路であり
、その復調原理を以下で説明する。
The demodulation circuit 13 is a circuit that demodulates a color signal whose frequency is centered at 1/8 fs into two color difference signals by lowering the clock frequency by sampling as shown in FIG. 2(e).The demodulation principle is explained below. explain.

時刻tの時のサンプリングデータをS (t)とし、簡
単のため位相のずれはないものとすると、S  (t/
fs)  =八(R−Y)SIN(2πt/8)+B 
(B−Y) COS (2πt/8)但し、A、 Bは
定数 で表される。
Let S (t) be the sampling data at time t, and assume that there is no phase shift for simplicity, then S (t/
fs) = 8 (RY) SIN (2πt/8) + B
(B-Y) COS (2πt/8) However, A and B are expressed as constants.

したがって t=1の時 5(t)= (A(R−Y)+B(B−Y
)) /JTt=2の時 5it)= A(R−Y)t
=3の時 5(tl=(^(R−Y)−B(B−Y))
 /JTt=4の時 S (t) = −B (B−Y
)t=5の時 5(tl=(−八(R−Y)−B(B−
Y)) /JTt=6の時 S (t) = −A (
R−Y)t=7の時 5(t)= (−A(R−Y)+
B(B−Y)) /JYt=Bの時 5(t)−B(B
−Y) となるから、R−Y信号を1/8fsの帯域で得るには t = 8 n −6(n = 1 +  2 、・・
・)B−Y信号を1/8fsの帯域で得るにはt=13
n    (n=1.2.・・・)の間隔でサンプリン
グデータを間引いてやればよい。
Therefore, when t=1, 5(t)=(A(RY)+B(B-Y)
)) /JTt=2 5it)= A(RY)t
When =3 5(tl=(^(RY)-B(B-Y))
/JTt=4 S (t) = −B (B−Y
) When t=5 5(tl=(-8(RY)-B(B-
Y)) /JTt=6 S (t) = −A (
RY) When t=7 5(t)= (-A(RY)+
B(B-Y)) /JYt=B 5(t)-B(B
-Y), so to obtain the R-Y signal in the 1/8 fs band, t = 8 n -6 (n = 1 + 2,...
・) To obtain the B-Y signal in the 1/8 fs band, t=13
The sampling data may be thinned out at intervals of n (n=1.2...).

その結果、第2図(f)に示すような復調信号を得るこ
とができる。
As a result, a demodulated signal as shown in FIG. 2(f) can be obtained.

なお、クロック周波数を下げて復調するのは次の色信号
処理回路のくし形フィルタのメモリ容量を極力減らすた
めである。
Note that the reason for demodulating by lowering the clock frequency is to reduce the memory capacity of the comb filter in the next color signal processing circuit as much as possible.

復調された2つの色差信号はそれぞれ色差信号処理回路
14.16を通った後、低域通過フィルタ15゜17で
データ補間されクロック周波数はfsに戻される。この
とき第3図(b)に示すように1/8fsの間隔でスペ
クトルが並ぶことになるため高調波成分を除去するには
かなり急峻な特性を持つフィルタが必要となるが、第3
図(C)に示すようなサンプル・ホールド特性を有する
低域通過フィルタを利用すると高調波成分の山の部分が
すべて減衰する。
After the two demodulated color difference signals pass through color difference signal processing circuits 14 and 16, data interpolation is performed by low pass filters 15 and 17, and the clock frequency is returned to fs. At this time, as shown in Figure 3(b), the spectra are lined up at intervals of 1/8 fs, so a filter with fairly steep characteristics is required to remove the harmonic components.
When a low-pass filter having a sample-and-hold characteristic as shown in FIG. 3(C) is used, all peaks of harmonic components are attenuated.

伝達関数で表すと、単位遅延量をZ−1としてなるフィ
ルタを通したことになるが、実際は同一データを8クロ
ック分ホールドすることと同等であるため、フィルタと
しての回路はほとんど必要ない。
Expressed in terms of a transfer function, this means that the data is passed through a filter with the unit delay amount being Z-1, but in reality this is equivalent to holding the same data for 8 clocks, so there is almost no need for a circuit as a filter.

サンプル・ホールド特性を利用して高調波成分を減衰さ
せた結果を第3図+d)に示す。高調波の残留成分が若
干あるが、さらに特性をあげるためには低域通過フィル
タをいれればよい。またサンプル・ホールドの代りに直
線近似の補間フィルタを用いることも可能である。
Figure 3+d) shows the results of attenuating harmonic components using sample-and-hold characteristics. Although there are some residual harmonic components, a low-pass filter can be added to further improve the characteristics. It is also possible to use a linear approximation interpolation filter instead of sample and hold.

最後にこの2つの色差信号を第3図telに示すような
キャリア周波数fcで直角二相変調する変調回路に通す
ことにより第3図fflに示すような低域変換された搬
送色信号を得る。
Finally, these two color difference signals are passed through a modulation circuit that performs orthogonal two-phase modulation at a carrier frequency fc as shown in FIG. 3 tel to obtain a carrier color signal subjected to low frequency conversion as shown in FIG. 3 ffl.

次に再生系の場合、第4図(a)に示すように低域変換
された搬送色信号とFM変調された輝度信号が周波数変
換回路1)に入力される。この時、色信号を1/8fs
に周波数変換すると輝度信号の折り返しが色信号に対す
る妨害となるため記録系と同じ周波数に周波数変換する
ことはできない。したがって、キャリア周波数f(−=
 fL+!4 fsで第4図(b)のように周波数変換
することにする。そして帯域通過フィルタ12で不要成
分を除去した後、記録系と同様に2つの色差信号に復調
するわけであるが、その際のサンプリング点の間引き方
は、時刻tの時のサンプリングデータをS (t)とす
るとS (t/fs)=八(R−Y) S IN (2
7r t/4)+B(B−Y)COS(2πt/4) で表される。
Next, in the case of a reproduction system, as shown in FIG. 4(a), a carrier color signal subjected to low frequency conversion and a luminance signal subjected to FM modulation are input to a frequency conversion circuit 1). At this time, the color signal is 1/8 fs
If the frequency is converted to the same frequency as the recording system, the aliasing of the luminance signal will interfere with the color signal, so the frequency cannot be converted to the same frequency as the recording system. Therefore, the carrier frequency f(-=
fL+! The frequency will be converted at 4 fs as shown in FIG. 4(b). Then, after removing unnecessary components with the band-pass filter 12, it is demodulated into two color difference signals as in the recording system, but the method of thinning out the sampling points at this time is to reduce the sampling data at time t to S ( t), then S (t/fs)=8(RY) S IN (2
7r t/4)+B(BY)COS(2πt/4).

したがって t=lの時 S tt) =八(R−Y)t=2の時 
S (t) = −B (B−Y)t=3の時 s (
U = −A (R−Y)t=4(7)時 5(tl=
 B(B−Y)t=5の時 5(tl= A(R−Y)
t=6の時 5(t)=−B(B−Y)t=7の時 S
 (t) = −A (R−Y)t=Bの時 5(t)
= B(B−Y)となるから、R−Y信号を1/8fs
の帯域で得るには t=8n−7(n=1. 2.・・・)B−Y信号を1
/8fsの帯域で得るにはt=8n−4(n=1.2.
・・・) の間隔でサンプリングデータを間引いてやればよい。
Therefore, when t=l, S tt) =8(RY) when t=2
S (t) = -B (B-Y) When t=3 s (
U = -A (RY) When t = 4 (7) 5 (tl =
B(B-Y) When t=5 5(tl= A(RY)
When t=6 5(t)=-B(B-Y) When t=7 S
(t) = -A (RY) When t=B 5(t)
= B(B-Y), so the R-Y signal is 1/8 fs
To obtain a band of t = 8n-7 (n = 1. 2...)
/8fs band, t=8n-4 (n=1.2.
) The sampling data can be thinned out at intervals of .

復調された色差信号はそれぞれ色信号処理回路14、1
6、低域通過フィルタ15.17を経て変調回路18で
第4図(C)に示すキャリア周波数fscで直角二相変
調することで第4図+d)に示すような搬送色信号を得
る。
The demodulated color difference signals are sent to color signal processing circuits 14 and 1, respectively.
6. After passing through low-pass filters 15 and 17, the modulation circuit 18 performs quadrature two-phase modulation at the carrier frequency fsc shown in FIG. 4(C), thereby obtaining a carrier color signal as shown in FIG. 4+d).

なお第6図、第7図に本発明のディジタル色信号処理装
置の一実施例で述べた帯域通過フィルタの記録再生時の
周波数特性とその周波数特性を満たす構成図を示す。
Note that FIGS. 6 and 7 show the frequency characteristics during recording and reproduction of the bandpass filter described in one embodiment of the digital color signal processing apparatus of the present invention, and configuration diagrams that satisfy the frequency characteristics.

発明の効果 以上述べてきたように、本発明によれば記録再生時に異
なった周波数特性をもつ帯域通過フィルタを必要とする
場合でも構成要素である単位遅延素子や加減算器を大部
分共用するため入力信号毎に別々のフィルタブロックを
もつ必要がな(、LSI化を図るうえで面積の縮小手段
として極めて有用である。
Effects of the Invention As described above, according to the present invention, even when bandpass filters with different frequency characteristics are required during recording and reproduction, most of the unit delay elements and adders/subtractors that are the constituent elements can be shared, so that the input It is not necessary to have a separate filter block for each signal (it is extremely useful as a means for reducing area when implementing LSI).

また、復調を行うため色差信号を容易に得ることができ
るのでディジタルテレビとビデオのディジタルインター
フェースが可能になる、といった付随的な効果も大なる
ものがある。
Furthermore, since color difference signals can be easily obtained for demodulation, there are also great accompanying effects, such as enabling a digital interface between digital television and video.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のディジタル色信号処理装置
を示したブロック図、第2図(al (bl fcl 
(d) fe)(f)から第4図(a) (b) (C
) (d)は第1図の記録再生時の各部の動作を説明す
るためのスペクトル分布図および周波数特性図、第5図
(al (b)は従来のアナログ色信号処理装置の記録
再生時の周波数変換の方法を示し、(a)は記録系、(
至))は再生系のブロック図、第6図(al (blは
帯域通過フィルタの記録再生時の周波数特性図、第7図
は帯域通過フィルタの一構成図である。 1)、51.53・・・・・・周波数変換回路、12.
54・・・・・・帯域通過フィルタ、13・・・・・・
復調回路、14.16・・・・・・色信号処理回路、1
5.17.52・・・・・・低域通過フィルタ、18・
・・・・・変調回路。 代理人の氏名 弁理士 中尾敏男 はか1名第2図 第3図 丁ヒ                       
               」ご第4図 第5図 第 6 図 (0,)
FIG. 1 is a block diagram showing a digital color signal processing device according to an embodiment of the present invention, and FIG. 2 (al (bl fcl
(d) fe) (f) to Figure 4 (a) (b) (C
) (d) is a spectral distribution diagram and a frequency characteristic diagram to explain the operation of each part during recording and reproducing in Fig. 1, and Fig. 5 (al) (b) is a diagram of the conventional analog color signal processing device during recording and reproducing. The frequency conversion method is shown, (a) is the recording system, (
(to)) is a block diagram of the reproduction system, Figure 6 (al (bl) is a frequency characteristic diagram of the band-pass filter during recording and reproduction, and Figure 7 is a block diagram of the band-pass filter. 1), 51.53 ...Frequency conversion circuit, 12.
54...Band pass filter, 13...
Demodulation circuit, 14.16... Color signal processing circuit, 1
5.17.52...Low pass filter, 18.
...Modulation circuit. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 2 Figure 3 Dinghi
”Figure 4Figure 5Figure 6 (0,)

Claims (6)

【特許請求の範囲】[Claims] (1)入力信号を記録時と再生時とで異なった周波数に
周波数変換する周波数変換回路と前記周波数変換回路の
出力を濾波する帯域通過フィルタと前記帯域通過フィル
タの出力を2つの色差信号に復調する復調回路と前記復
調回路の出力である2つの色差信号を処理する第1、第
2の色差信号処理回路と前記第1、第2の色差信号処理
回路の出力を濾波する第1、第2の低域通過フィルタと
前記第1、第2の低域通過フィルタの出力を任意の周波
数に変調する変調回路とを具備したディジタル色信号処
理装置。
(1) A frequency conversion circuit that converts the input signal to different frequencies during recording and playback, a bandpass filter that filters the output of the frequency conversion circuit, and demodulation of the output of the bandpass filter into two color difference signals. a demodulation circuit that processes two color difference signals output from the demodulation circuit, first and second color difference signal processing circuits that process two color difference signals output from the demodulation circuit, and first and second color difference signal processing circuits that filter the outputs of the first and second color difference signal processing circuits. A digital color signal processing device comprising: a low-pass filter; and a modulation circuit that modulates the outputs of the first and second low-pass filters to an arbitrary frequency.
(2)周波数変換回路は記録時にはサンプリング周波数
の1/Nr(Nr:自然数)の周波数に周波数変換し再
生時にはサンプリング周波数の1/Np(Np:自然数
)の周波数に周波数変換する周波数変換回路である特許
請求の範囲第(1)項記載のディジタル色信号処理装置
(2) The frequency conversion circuit is a frequency conversion circuit that converts the frequency to 1/Nr (Nr: natural number) of the sampling frequency during recording, and converts the frequency to 1/Np (Np: natural number) of the sampling frequency during playback. A digital color signal processing device according to claim (1).
(3)帯域通過フィルタは記録時にはサンプリング周波
数の1/Nrの周波数に山をもち再生時にはサンプリン
グ周波数の1/Npの周波数に山をもつ帯域通過フィル
タである特許請求の範囲第(1)項記載のディジタル色
信号処理装置。
(3) The band-pass filter is a band-pass filter that has a peak at a frequency of 1/Nr of the sampling frequency during recording and a peak at a frequency of 1/Np of the sampling frequency during reproduction. digital color signal processing device.
(4)復調回路は色信号をサンプリング周波数を下げて
2つの色信号に復調する復調回路である特許請求の範囲
第(1)項記載のディジタル色信号処理装置。
(4) The digital color signal processing device according to claim (1), wherein the demodulation circuit demodulates the color signal into two color signals by lowering the sampling frequency.
(5)低域通過フィルタはサンプリング周波数を下げて
復調された色差信号を元の帯域に戻すと共に生じた高調
波成分を除去する補間特性を有する低域通過フィルタで
ある特許請求の範囲第(1)項記載のディジタル色信号
処理装置。
(5) The low-pass filter is a low-pass filter having an interpolation characteristic that lowers the sampling frequency to return the demodulated color difference signal to its original band and removes the generated harmonic components. ) The digital color signal processing device described in item 2.
(6)変調回路は2つの色差信号を直角二相変調する変
調回路である特許請求の範囲第(1)項記載のディジタ
ル色信号処理装置。
(6) The digital color signal processing device according to claim (1), wherein the modulation circuit is a modulation circuit that performs orthogonal two-phase modulation of two color difference signals.
JP61224428A 1986-09-22 1986-09-22 Digital chrominance signal processor Pending JPS6378692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224428A JPS6378692A (en) 1986-09-22 1986-09-22 Digital chrominance signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224428A JPS6378692A (en) 1986-09-22 1986-09-22 Digital chrominance signal processor

Publications (1)

Publication Number Publication Date
JPS6378692A true JPS6378692A (en) 1988-04-08

Family

ID=16813623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224428A Pending JPS6378692A (en) 1986-09-22 1986-09-22 Digital chrominance signal processor

Country Status (1)

Country Link
JP (1) JPS6378692A (en)

Similar Documents

Publication Publication Date Title
EP0418852B1 (en) Video signal processing circuit
EP0169035B1 (en) Color difference signal processing system
US4594607A (en) Demodulator for sampled chrominance signals including a Nyquist filter for recovering wideband I color difference signals
JPS6378692A (en) Digital chrominance signal processor
JP3049764B2 (en) Digital video signal processor
US5440349A (en) Color signal demodulation circuit and method therefor
JPS6378693A (en) Digital chrominance signal processor
EP0382151B1 (en) Sampling frequency down-converting apparatus
KR0142291B1 (en) Apparatus for generating carrier in order to conversion of frequency band of chroma signal
JPH0135558B2 (en)
JPS62116095A (en) Chrominance signal recording and reproducing method
JPS6187494A (en) Method of digital processing video signal
KR920009183B1 (en) Down sampler for compressing video data
Kato et al. Digital Video Signal Processing in Home VTRs
JPS6358437B2 (en)
EP0124280B1 (en) Method and apparatus for the extraction of luminance information from a video signal
JP2693841B2 (en) Digital signal processing circuit and magnetic recording / reproducing apparatus
JPH0732490B2 (en) Magnetic video recording / playback system
JPS61290894A (en) Digital processing chrominance signal processing device
JPS6267992A (en) Recording and reproducing device
JP3175407B2 (en) Television receiver with built-in color video signal recording / reproducing device
JPS60192491A (en) Color signal separating circuit of magnetic video recording and reproducing device
JPS6373792A (en) Digital processing chrominance signal processor
JPS6378690A (en) Video signal processor
JPS63200694A (en) Recording device and reproducing device