JPS6376895A - Formation of porous layer on metal surface - Google Patents

Formation of porous layer on metal surface

Info

Publication number
JPS6376895A
JPS6376895A JP61221065A JP22106586A JPS6376895A JP S6376895 A JPS6376895 A JP S6376895A JP 61221065 A JP61221065 A JP 61221065A JP 22106586 A JP22106586 A JP 22106586A JP S6376895 A JPS6376895 A JP S6376895A
Authority
JP
Japan
Prior art keywords
copper
pipe
plating solution
porous layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61221065A
Other languages
Japanese (ja)
Other versions
JPH0765230B2 (en
Inventor
Yasuo Masuda
保夫 増田
Tsutomu Takahashi
務 高橋
Yoshio Takizawa
与司夫 滝沢
Shoichi Yoshiki
吉木 尚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61221065A priority Critical patent/JPH0765230B2/en
Priority to FI864554A priority patent/FI85060C/en
Priority to EP86115606A priority patent/EP0224761B1/en
Priority to DE8686115606T priority patent/DE3677338D1/en
Publication of JPS6376895A publication Critical patent/JPS6376895A/en
Priority to US07/221,999 priority patent/US4826578A/en
Priority to US07/221,990 priority patent/US4879185A/en
Publication of JPH0765230B2 publication Critical patent/JPH0765230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • F28F2200/005Testing heat pipes

Abstract

PURPOSE:To form a porous plated layer on the inner surface of a copper pipe by inserting an insoluble anode rod into the copper pie with the inner surface coated with a hydrophobic thin film, and allowing a pulse current to flow between the copper pipe and the anode rod while sending a copper plating soln. contg. the bubbles of gaseous CO2 formed by the decomposition of copper carbonate to carry out plating. CONSTITUTION:The thin film of a hydrophobic substance such as oil and paint is formed on the inner surface of the copper pipe 2 as the heat-transfer pipe to be used for a heat exchanger, and the insoluble anode 9 is pipe to be used for a heat exchanger, and the insoluble anode 9 is arranged in the pipe 2. Copper carbonate 11 is added to the plating soln. contg. copper sulfate in a plating soln. tank 1, and the soln. is charged into the pipe 2. The copper carbonate is decomposed into a copper ion and gaseous CO2 in the plating soln. The CO2 forms fine bubbles, passes through the heat-transfer pipe 2 along with the plating soln., and then circulates to the tank 1. A pulse current is allowed to flow between the heat-transfer pipe 2 and the anode 9 by an electric power source 10, and a porous copper plated layer is formed on the inner surface of the heat-transfer pipe 2 on which the fine bubbles of gaseous CO2 are deposited. A heat-transfer pipe for heat exchange having excellent heat exchange efficiency can be produced in this way.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、金属表面における多孔質層の形成方法に係わ
り、特に、熱交換器の伝熱面やヒートバイブのウィック
を形成する際に用いて好適な金属表面における多孔質層
の形成方法に関するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method for forming a porous layer on a metal surface, and in particular to a method for forming a porous layer on a metal surface. The present invention relates to a method for forming a porous layer on a metal surface, which is suitable for use in metal surfaces.

「従来の技術j 一般に、熱交換器等においては、加熱流体と被加熱流体
とを金属壁によって分離し、加熱流体の熱を前記金属壁
を介して被加熱流体へ伝達するようにしている。
BACKGROUND ART Generally, in a heat exchanger or the like, a heating fluid and a heated fluid are separated by a metal wall, and the heat of the heating fluid is transferred to the heated fluid via the metal wall.

一方、このような熱交換を行う場合に、その熱交換効率
を高めるための有効な手段として、以下に示す方法か挙
げられている。
On the other hand, when performing such heat exchange, the following method is cited as an effective means for increasing the heat exchange efficiency.

(1)壁の伝熱面積を大きくする。(1) Increase the heat transfer area of the wall.

(2)流体の核沸騰を起こしやすくする。(2) Make it easier to cause nucleate boiling of the fluid.

(3)流体に乱流を発生させやすいようにする。(3) Make it easier to generate turbulence in the fluid.

そして、これらの方法のうち、前記(2)の核沸騰を積
極的に利用することが最も効果的であるとされている。
Of these methods, actively utilizing the nucleate boiling described in (2) above is said to be the most effective.

そこで従来では、核沸騰の核を生成しやすくするために
、前記壁の表面、特に、加熱流体が接触させられる側の
面に、焼結あるいは鑞付は等により多孔質層を形成する
ことが行われている。
Conventionally, in order to facilitate the generation of nucleate boiling nuclei, a porous layer is formed on the surface of the wall, particularly on the side that is brought into contact with the heated fluid, by sintering, brazing, etc. It is being done.

「発明が解決しようとする問題点」 本発明は、前述した従来の技術における次のような問題
点を解決仕んとするものである。
"Problems to be Solved by the Invention" The present invention aims to solve the following problems in the conventional technology described above.

すなわち、金属壁の表面に、鑞付けや焼結によって多孔
質層を形成するに際して、前記金属壁の表面が平面であ
る場合には比較的容易に実施可能であるが、例えば、伝
熱管の内面のように小径な管状物の内面への適用が困難
であり、したがって、適用可能な範囲が制限されてしま
うといった問題点である。
That is, when forming a porous layer on the surface of a metal wall by brazing or sintering, it is relatively easy to form a porous layer when the surface of the metal wall is flat. The problem is that it is difficult to apply it to the inner surface of a small-diameter tubular object such as, and therefore, the range of applicability is limited.

このような問題点に鑑み、本願出願人は、金属製基体の
表面に疎水性の薄膜を形成し、該金属製基体を鍍金液中
に浸すとと乙に、該金属製基体を陰極として、前記鍍金
液中に配設された不溶性金属からなる陽極とのuMで電
気鍍金を行うことにより、前記金属製基体の表面に多孔
質層を形成する方法を既に提案した。
In view of these problems, the applicant of this application formed a hydrophobic thin film on the surface of a metal substrate, immersed the metal substrate in a plating solution, and used the metal substrate as a cathode. A method has already been proposed in which a porous layer is formed on the surface of the metal substrate by performing electroplating using uM with an anode made of an insoluble metal disposed in the plating solution.

この技術は、面述した条件のもとに電気鍍金を行うこと
により、鍍金液中の水分を分解して酸素の微細気泡を生
成するとともに、該微細気泡を金属製基体の表面に付着
さ仕、該微細気泡を包み込むように鍍金液中の析出金属
を金属製基体の表面に成長させることにより、前記金属
製基体の表面に、微小径の空孔を有する多孔質層を形成
するようにしたものである。
This technology decomposes water in the plating solution to produce microscopic oxygen bubbles by electroplating under the conditions described above, and the microscopic bubbles are attached to the surface of the metal substrate. By growing the precipitated metal in the plating solution on the surface of the metal substrate so as to enclose the microbubbles, a porous layer having microscopic pores is formed on the surface of the metal substrate. It is something.

これによって、小径管の内面といった狭隘部へ多孔質層
を容易に形成することができ、かつ、高い伝熱効率を得
ることができるようになったが、さらなる伝熱効率の向
上が要望されている。
Although this has made it possible to easily form a porous layer in a narrow part such as the inner surface of a small diameter pipe and to obtain high heat transfer efficiency, there is a demand for further improvement in heat transfer efficiency.

「問題点を解決するための手段」 本発明は、面述した要望のらとになされたらので、特に
、疎水性を有する薄膜が形成された金属製基体の表面を
鍍金液中に浸し、該鍍金液中に発泡物質を混入して微細
気泡を生成するとともに、該微細気泡を前記金属製基体
の表面近傍に供給し5、  つつ、該金属製基体を陰極
として、前記鍍金液中に配設した陽極との間で電気鍍金
を行うことを特徴とする。
"Means for Solving the Problems" The present invention has been made in accordance with the above-mentioned needs, and in particular, the surface of a metal substrate on which a hydrophobic thin film is formed is immersed in a plating solution. Mixing a foaming substance into the plating solution to generate microbubbles, and supplying the microbubbles near the surface of the metal substrate 5, while disposing the metal substrate in the plating solution as a cathode. It is characterized by performing electroplating between the anode and the anode.

「作用」 本発明に係わる方法によって金属表面に多孔質層が形成
される機構は、次のように考えられる。
"Operation" The mechanism by which a porous layer is formed on a metal surface by the method according to the present invention is thought to be as follows.

金属製基体は、その表面に形成された疎水性のることか
ら、該金属製基体の近傍に供給された微細気泡が金属製
基体の表面に付着する。そして、電気鍍金の進行に伴っ
て、金属製基体の表面に電析金属が成長するが、前述し
たように金属製基体の表面に気泡が付性しているために
、前記電析金属は気泡を包み込むように成長し、これに
よって金属製基体の表面に微細な狭口空孔が形成される
Since the metal substrate has hydrophobicity formed on its surface, microbubbles supplied near the metal substrate adhere to the surface of the metal substrate. Then, as the electroplating progresses, the deposited metal grows on the surface of the metal substrate, but as mentioned above, since air bubbles are attached to the surface of the metal substrate, the electrodeposited metal grows with air bubbles. The metal substrate grows to envelop it, and as a result, fine narrow pores are formed on the surface of the metal substrate.

また、前記微細気泡が発泡物質によって生成されること
から、高密度の微細気泡が金属製基体の表面に供給され
て、面述した狭口空孔が効率よく形成される。
Furthermore, since the microbubbles are generated by the foaming material, high-density microbubbles are supplied to the surface of the metal base, and the narrow pores described above are efficiently formed.

「実施例」 以下、本発明を伝熱管に適用した一実施例に基づき説明
する。
"Example" Hereinafter, the present invention will be described based on an example in which the present invention is applied to a heat exchanger tube.

まず、本発明を実施するための装置について説明する。First, an apparatus for implementing the present invention will be described.

該装置は、第1図に示すように、鍍金液貯蔵容器Iと、
伝熱管2の両端部に液密状態で取り付けられるとともに
、該伝熱管2の内部に連通させられたチセンバ3・4と
、Tu 山チセンバ3・4)−前記鍍金液貯蔵容器1と
を連絡する鍍金液供給管5および鍍金液回収管6と、前
記鍍金液供給管5に取り付けられた圧送ポンプ7と、該
圧送ポンプ7の下流側に設けられたフローメータ8と、
前記伝熱管2の内部に配設された電極棒9と、該電極棒
9と伝熱管2とに電気的に接続された直流電源10と、
前記鍍金液貯蔵容器1に連設され、該鍍金液貯蔵容器l
内の鍍金液中に発泡物質を添加するホッパ11と、前記
鍍金液回収管6の途中に設けられたフィルタ12と、鍍
金液貯蔵容器1に取り付けられて、その内部の鍍金液を
攪拌する攪拌装置13とを備えている。
As shown in FIG. 1, the apparatus includes a plating solution storage container I;
The heat exchanger tubes 3 and 4 are attached to both ends of the heat exchanger tube 2 in a liquid-tight manner and are communicated with the inside of the heat exchanger tube 2, and the metal tubes 3 and 4) communicate with the plating solution storage container 1. A plating solution supply pipe 5, a plating solution recovery pipe 6, a pressure pump 7 attached to the plating solution supply pipe 5, a flow meter 8 provided on the downstream side of the pressure pump 7,
an electrode rod 9 disposed inside the heat exchanger tube 2; a DC power source 10 electrically connected to the electrode rod 9 and the heat exchanger tube 2;
The plating solution storage container L is connected to the plating solution storage container 1.
a hopper 11 for adding foaming material into the plating solution inside; a filter 12 provided in the middle of the plating solution recovery pipe 6; and an agitator attached to the plating solution storage container 1 for stirring the plating solution inside. A device 13 is provided.

前記伝熱管2は、本実施例では鋼管が用いられ、また、
鍍金液として硫酸銅溶液、さらに、発泡物質として炭酸
銅が用いられている。
In this embodiment, a steel pipe is used as the heat exchanger tube 2, and
A copper sulfate solution is used as the plating solution, and copper carbonate is used as the foaming material.

前記電極棒9は、本実施例ではTi表面に白金被覆加工
した不溶性電極が用いられており、図示してないが、伝
熱管2の内面に介装される電気絶縁材料によって形成さ
れたスペーサにより、あるいは、両端部に張力が加えら
れることにより、前記伝熱管2の中心軸線上に保持され
ている。
In this embodiment, the electrode rod 9 is an insoluble electrode whose Ti surface is coated with platinum. Although not shown, the electrode rod 9 is formed by a spacer formed of an electrically insulating material interposed on the inner surface of the heat exchanger tube 2. Alternatively, the heat exchanger tube 2 is held on the central axis by applying tension to both ends.

前記直流電源10は、前記伝熱管2を陰極とし、かつ1
.前記電極棒9を陽極とするように電流を供給するよう
になっており、この電流は、単純な直流電流、断続電流
、通常のパルス電流、PR電流等が用いられる。
The DC power supply 10 has the heat exchanger tube 2 as a cathode and 1
.. A current is supplied so that the electrode rod 9 serves as an anode, and this current may be a simple direct current, an intermittent current, a normal pulse current, a PR current, or the like.

次いで、前述した構成を有する装置の作用とともに、本
発明方法を説明する。
Next, the method of the present invention will be explained along with the operation of the apparatus having the above-described configuration.

まず、油、塗料等の疎水性物質を溶媒に分散あるいは溶
解させて形成した溶液を、伝熱管2の内面全面に付着さ
せて疎水性の薄膜を形成したのちに、該伝熱管2の内部
に電極棒9を挿入位置決めし、また、伝熱管2の両端部
に、鍍金液供給管5および鍍金液回収管6が取り付けら
れたチャンバ3・4を取り付け、さらに、伝熱管2と電
極棒9との間に直流電源■0を接続する。
First, a solution formed by dispersing or dissolving a hydrophobic substance such as oil or paint in a solvent is applied to the entire inner surface of the heat exchanger tube 2 to form a hydrophobic thin film. The electrode rod 9 is inserted and positioned, and the chambers 3 and 4 to which the plating solution supply pipe 5 and the plating solution recovery pipe 6 are attached are attached to both ends of the heat exchanger tube 2, and the heat exchanger tube 2 and the electrode rod 9 are Connect DC power supply ■0 between.

前記疎水性の薄膜の厚さは、疎水性物質の種類によって
も異なるが、好適な範囲は0.1μm〜5μmである。
The thickness of the hydrophobic thin film varies depending on the type of hydrophobic substance, but a suitable range is 0.1 μm to 5 μm.

この範囲以下であると後述する空孔の生成率が低下し、
以上であると絶縁性が高くなって均一な鍍金層が得られ
なくなるおそれがある。
Below this range, the generation rate of pores, which will be described later, will decrease,
If it is more than that, there is a possibility that the insulation becomes high and it becomes impossible to obtain a uniform plating layer.

これより、鍍金液貯蔵容器l内の鍍金液を攪拌装置13
によって均一に攪拌したのちに、該鍍金液を圧送ポンプ
7によって一方のチャンバ3へ向けて送り出して、第1
図に矢印(イ)で示すように、鍍金液を、鍍金液貯蔵容
器1から、鍍金供給管5、一方のチャンバ3、伝熱管2
内部、他方のチャンバ4、鍍金液回収管6を経て、再度
鍍金液貯蔵容器Iに戻るように循環させる。
From this, the plating solution in the plating solution storage container l is stirred by the stirring device 13.
After stirring the plating solution uniformly, the plating solution is sent to one chamber 3 by a pressure pump 7, and
As shown by the arrow (A) in the figure, the plating solution is transferred from the plating solution storage container 1 to the plating supply pipe 5, one chamber 3, and the heat transfer tube 2.
The liquid is circulated inside, through the other chamber 4, through the plating liquid recovery pipe 6, and back to the plating liquid storage container I again.

この操作とともに、鍍金液貯蔵容器1において、ホッパ
11から、発泡物質である炭酸銅を鍍金液としての硫酸
銅溶液中に混入して攪拌するとともに、硫酸銅溶液とと
もに循環させる。
Along with this operation, in the plating solution storage container 1, copper carbonate as a foaming substance is mixed into the copper sulfate solution as the plating solution from the hopper 11, stirred, and circulated together with the copper sulfate solution.

このようにして硫酸銅溶液中に炭酸銅が混入されると、
該炭酸銅が硫酸銅溶液中において溶解する際に、銅イオ
ンが形成されるとともに、炭酸ガスによる微細気泡が生
成され、前記銅イオンは、硫酸銅溶液中の銅イオンの補
充に供され、また、前記微細気泡は、伝熱管2の内部に
運ばれるか、玉■]筈9のrj:1面+j J↓十社の
1謹^く邦箭六ハアhることから、該内面に均一に付着
する。
When copper carbonate is mixed into the copper sulfate solution in this way,
When the copper carbonate is dissolved in the copper sulfate solution, copper ions are formed, and microbubbles are generated by carbon dioxide gas, and the copper ions are used to replenish the copper ions in the copper sulfate solution, and , the microbubbles are carried into the inside of the heat transfer tube 2, or the bubbles are uniformly distributed on the inner surface. adhere to.

こののちに、前記直流電源12により伝熱管2を陰極と
して電極棒9との間に電流を印加する。
Thereafter, a current is applied between the heat exchanger tube 2 and the electrode rod 9 by using the DC power source 12 as a cathode.

この印加電流は、陰極電流密度が1.5A/dm”以上
に設定することが好ましく、また、単純な直流電流より
も、断続電流、通常のパルス電流、さらに、PR電流を
用いることが好ましい。
The applied current is preferably set to a cathode current density of 1.5 A/dm'' or more, and it is preferable to use an intermittent current, a normal pulsed current, or a PR current rather than a simple direct current.

このPR電流は、伝熱管2を陰極とする正電流と、伝熱
管2を陽極とする逆電流とを交互に印加するしのである
か、正電流の印加時間を逆電流のそれに比して大きくし
て、全体として伝熱管2を陰極に保持するような71X
流である。
This PR current is generated by alternately applying a positive current with the heat exchanger tube 2 as the cathode and a reverse current with the heat exchanger tube 2 as the anode, or the application time of the positive current is longer than that of the reverse current. 71X that holds the heat exchanger tube 2 as a cathode as a whole.
It is a flow.

そして、断続II流やパルス電流を用いると、単純な直
流電流に比して、伝熱管2の内面に形成される空孔内へ
の金属イオンの搬送を容易なものとすることができ、こ
れによって、TL析速度を大きくすることが期待できる
とともに、局部的な析出を抑制して均一な電析膜の形成
を可能にする。また、PR電流を用いると逆電流が周期
的に印加されることによって、前述した電析膜の均一化
が促進される。
When using an intermittent II current or a pulsed current, metal ions can be easily transported into the pores formed on the inner surface of the heat exchanger tube 2, compared to a simple direct current. By doing so, it is expected that the TL deposition rate will be increased, and localized deposition will be suppressed, making it possible to form a uniform electrodeposited film. Further, when a PR current is used, a reverse current is periodically applied, thereby promoting the uniformity of the deposited film as described above.

このように、電流が印加されると、前記伝熱管2の内面
でri折金金属成長させられるが、前述したように、伝
熱管2の内面には微細気泡が付着していることから、電
析金属の成長が前記微細気泡を包み込むように行われ、
この結果、伝熱管2の内面に、狭口空孔が形成されて、
多孔質層が形成される。
In this way, when an electric current is applied, ri-bond metal is grown on the inner surface of the heat exchanger tube 2, but as mentioned above, since microbubbles are attached to the inner surface of the heat exchanger tube 2, the electric current The growth of the deposited metal is carried out so as to envelop the microbubbles,
As a result, narrow holes are formed on the inner surface of the heat exchanger tube 2,
A porous layer is formed.

また、本実施例では、陽極として、不溶性陽極を用いて
いることから、鍍金液中の水分が電気分解されて酸素ガ
スが陽極において発生させられ、該酸素ガスの一部が、
気泡を形成して、前述したように供給される炭酸ガスの
気泡とともに伝熱管2の内面に付着さけられるから、鍍
金液中の気泡密度が高められて、狭口空孔が一層容易に
形成される。
Further, in this example, since an insoluble anode is used as the anode, water in the plating solution is electrolyzed and oxygen gas is generated at the anode, and a part of the oxygen gas is
Since bubbles are formed and are prevented from adhering to the inner surface of the heat transfer tube 2 together with the bubbles of the carbon dioxide gas supplied as described above, the density of the bubbles in the plating solution is increased and narrow holes are formed more easily. Ru.

次いで、以下に具体例を示す。Next, specific examples will be shown below.

(具体例) 外径9.52mm、肉厚0.35mm1長さ1000m
mの銅管を抽伸により形成して伝熱管2とし、該伝熱管
2にトリクレン洗浄を施して内面を清浄化し、シリコン
オイルをエタノールで3倍に希釈した溶液を鋼管の内部
に通したのちに、エタノールを蒸発させて除去こて、伝
熱管2の内面に疎水性薄膜を形成し、さらに、該伝熱管
2の内部に、樹脂製のスペーサを取り付けるとともに、
該スペーサによって、前記伝熱管2の内部に白金被覆加
工されたTiワイヤからなる電極棒9を位置決めして陽
極を取り付ける。
(Specific example) Outer diameter 9.52mm, wall thickness 0.35mm, length 1000m
A heat transfer tube 2 is formed by drawing a copper tube of 500 m in diameter, the inner surface of the heat transfer tube 2 is cleaned by trichlene cleaning, and a solution of silicone oil diluted 3 times with ethanol is passed through the inside of the steel tube. , evaporate and remove ethanol, form a hydrophobic thin film on the inner surface of the heat exchanger tube 2, and further attach a resin spacer inside the heat exchanger tube 2,
An electrode rod 9 made of a platinum-coated Ti wire is positioned inside the heat exchanger tube 2 using the spacer, and an anode is attached thereto.

そして、硫酸銅200g/12、硫酸50g/(2の割
合で混入された硫酸銅溶液を流速 2 m/sにて強制
循環させ、この硫酸銅溶液中に、炭酸銅を6 g/mi
nの割合で混入し、前記伝熱管2を陰極として、陰極電
流密度50人/dm”の条件で、約10分間電気鍍金を
施した。
Then, a copper sulfate solution mixed at a ratio of 200 g/12 copper sulfate and 50 g/2 sulfuric acid was forced to circulate at a flow rate of 2 m/s, and 6 g/mi of copper carbonate was added to the copper sulfate solution.
Using the heat exchanger tube 2 as a cathode, electroplating was performed for about 10 minutes at a cathode current density of 50 people/dm''.

この結果、孔径100μ〜150μの均質な空孔が、空
孔率で28%形成された、厚さ150μの多孔質層が得
られた。
As a result, a porous layer with a thickness of 150 microns was obtained, in which homogeneous pores with a pore diameter of 100 microns to 150 microns were formed at a porosity of 28%.

そして、前記多孔質層の比表面積率を画像解析により測
定し、陰極電流密度との関係を見てみたところ、第2図
にaで示すような結果が得られた。
Then, when the specific surface area ratio of the porous layer was measured by image analysis and the relationship with the cathode current density was examined, the results shown by a in FIG. 2 were obtained.

一方、比較のために、前述した鍍金処理過程において発
泡物質である炭酸銅の供給を停止した状態で、鍍金液中
の水分の分解によって形成される気泡のみにより多孔質
層を形成した場合の比表面積率を測定したところ、第2
図にbで示す結果が得られた。
On the other hand, for comparison, when the supply of copper carbonate, which is a foaming substance, is stopped in the plating process described above, a porous layer is formed only by air bubbles formed by decomposition of water in the plating solution. When the surface area ratio was measured, the second
The results indicated by b in the figure were obtained.

この結果から明らかなように、本実施例に示す方法によ
って形成された多孔質層は、比表面積率において、例え
ば、陰極電流密度50A/dm”で、比較例に対し30
%以上の向上が図られる。
As is clear from this result, the porous layer formed by the method shown in this example has a specific surface area ratio of 30% compared to the comparative example at a cathode current density of 50 A/dm''.
This will result in an improvement of more than %.

さらに、前述したように製作した伝熱管2について、第
3図に示す熱特性試験装置により、熱特性を測定した。
Furthermore, the thermal characteristics of the heat exchanger tube 2 manufactured as described above were measured using the thermal characteristics testing apparatus shown in FIG.

第3図中、Tは温度センサ、Pは圧力計、PDは差圧計
、14はポンプ、15はパルプ、16は流量計、17は
膨張弁、18はコンプレッサ、19はサブコンデンサ、
20はサブエバポレータ、21は恒温水槽であり、22
か試供管としての鋼管である。
In Fig. 3, T is a temperature sensor, P is a pressure gauge, PD is a differential pressure gauge, 14 is a pump, 15 is a pulp, 16 is a flow meter, 17 is an expansion valve, 18 is a compressor, 19 is a sub-condenser,
20 is a sub-evaporator, 21 is a constant temperature water tank, 22
Or a steel pipe as a sample pipe.

汰M4り混トtt6灸七ζコフ?−七々1)プ訃士偏苧
ン99tnrjs窪r(1,−コンプレッサ18から供
給される冷媒が流され、外部には恒温水槽21からの温
水が、前記冷媒に対向して流されるようになっている。
汰M4 りmixed tt6 moxibustion 7ζ cough? - Nanana 1) Pump 99tnrjs hollow (1, - Refrigerant supplied from the compressor 18 is flowed, and hot water from the constant temperature water tank 21 is flowed outside opposite to the refrigerant. It has become.

また、恒温水の温度は、各冷媒流量に対応して、冷媒系
が安定するように制御されている。
Further, the temperature of the constant temperature water is controlled in accordance with each refrigerant flow rate so that the refrigerant system is stabilized.

なお、第3図中、矢印A、A’は、それぞれ、蒸発試験
の場合の冷媒および水の流れの方向を示し、矢印B、B
’は、凝縮試験の場合の冷媒および水の流れの方向を示
している。
In addition, in FIG. 3, arrows A and A' indicate the flow directions of refrigerant and water, respectively, in the case of the evaporation test, and arrows B and B
' indicates the direction of refrigerant and water flow in case of condensation test.

そして、試験条件は次表のとおりとした。The test conditions were as shown in the table below.

この試験結果、本実施例に示す方法によって多孔質層が
形成された銅管22における陰極電流密度と沸騰熱伝達
率との関係は、第4図にCで示す値となり、同図にdで
示すところの、前記比較例の鋼管のそれに対し、例えば
陰極電流密度50A/dm’において、約22%の性能
向上が見られた。
As a result of this test, the relationship between the cathode current density and the boiling heat transfer coefficient in the copper tube 22 in which the porous layer was formed by the method shown in this example is the value shown by C in FIG. 4, and the value shown by d in the same figure. As shown, a performance improvement of about 22% was observed at a cathode current density of 50 A/dm', for example, compared to that of the steel pipe of the comparative example.

但し、前記試験時における冷媒循環量は、60kg/h
rとした。
However, the refrigerant circulation amount during the above test was 60 kg/h.
It was set as r.

なお、前記実施例は一例であって、各工程における処理
条件等は、目的とする金属製基体の諸特性等に対応して
種々変更可能である。
It should be noted that the above-mentioned embodiments are merely examples, and the processing conditions in each step can be changed in various ways depending on the characteristics of the intended metal substrate.

また、前記実施例において示したような管体への摘要の
みならず、平板への摘要も当然可能である。
Furthermore, it is of course possible to apply not only the outline to the tubular body as shown in the above embodiment, but also the outline to the flat plate.

「発明の効果」 以上説明したように、本発明に係わる金属表面における
多孔質層の形成方法は、疎水性を有する薄膜が形成され
た金属製基体の表面を鍍金液中に浸し、該鍍金液中に発
泡物質を混入して微細気泡を生成するとともに、該微細
気泡を前記金属製基体の表面近傍に供給しつつ、該金属
製基体を陰極として、前記鍍金液中に配設した陽極との
間で電気鍍金を行うことを特徴とするもので、平板のみ
ならず、管状の金属の内面にも均一な狭口空孔を存する
多孔質層を容易に形成することができ、したがって、核
沸騰を利用した伝熱特性の良好な伝熱体を効率よく製造
することができるとともに、製造装置の繁雑化を抑制し
て、製造コストの低減を図ることができる等の優れた効
果を奏する。
"Effects of the Invention" As explained above, the method of forming a porous layer on a metal surface according to the present invention involves immersing the surface of a metal substrate on which a hydrophobic thin film is formed in a plating solution. A foaming substance is mixed into the plating solution to generate microbubbles, and while the microbubbles are supplied near the surface of the metal substrate, the metal substrate is used as a cathode and the anode disposed in the plating solution is connected. This method is characterized by performing electroplating between the metal plates and the inner surface of the tubular metal, making it possible to easily form a porous layer with uniform narrow pores not only on the flat plate but also on the inner surface of the tubular metal. It is possible to efficiently manufacture a heat transfer body with good heat transfer characteristics using the method, and also has excellent effects such as suppressing the complexity of manufacturing equipment and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を実施するための装置を示す
概略図、第2図は本発明の一実施例によって製造された
鋼管の比表面積率と陰極電流密度との関係を示す図、第
3図は伝熱特性の試験を行うための装置の一例を示す概
略図、第4図は本発明の一実施例によって製造された鋼
管の伝熱特性を示す沸騰熱伝達率と陰極?It流密度と
の関係を示す図である。 2・・・・・・伝熱管(金属製基体)、7・・・・・・
圧送ポンプ、9・・・・・・電極棒(陽極)、   1
0・・・・・・直流電源、11・・・・・・ホッパ。
FIG. 1 is a schematic diagram showing an apparatus for implementing an embodiment of the present invention, and FIG. 2 is a diagram depicting the relationship between specific surface area ratio and cathode current density of a steel pipe manufactured by an embodiment of the present invention. , FIG. 3 is a schematic diagram showing an example of an apparatus for testing heat transfer characteristics, and FIG. 4 is a diagram showing the boiling heat transfer coefficient and cathode? showing the heat transfer characteristics of a steel pipe manufactured according to an embodiment of the present invention. It is a diagram showing the relationship with It flow density. 2... Heat exchanger tube (metal base), 7...
Pressure pump, 9... Electrode rod (anode), 1
0...DC power supply, 11...Hopper.

Claims (7)

【特許請求の範囲】[Claims] (1)疎水性を有する薄膜が形成された金属製基体の表
面を鍍金液中に浸し、該鍍金液中に発泡物質を混入して
微細気泡を生成するとともに、該微細気泡を前記金属製
基体の表面近傍に供給しつつ、該金属製基体を陰極とし
て、前記鍍金液中に配設した陽極との間で電気鍍金を行
うことを特徴とする金属表面における多孔質層の形成方
法。
(1) The surface of a metal substrate on which a hydrophobic thin film is formed is immersed in a plating solution, a foaming substance is mixed into the plating solution to generate microbubbles, and the microbubbles are transferred to the metal substrate. A method for forming a porous layer on a metal surface, the method comprising performing electroplating using the metal substrate as a cathode and an anode disposed in the plating solution while supplying the plating solution near the surface of the plating solution.
(2)電気鍍金をパルス電流によって行うことを特徴と
する特許請求の範囲第1項記載の金属表面における多孔
質層の形成方法。
(2) A method for forming a porous layer on a metal surface according to claim 1, wherein the electroplating is performed using a pulsed current.
(3)前記金属製基体が銅製であり、かつ、前記鍍金液
が硫酸銅溶液であることを特徴とする特許請求の範囲第
1項および第2項記載の金属表面における多孔質層の形
成方法。
(3) The method for forming a porous layer on a metal surface according to claims 1 and 2, wherein the metal substrate is made of copper, and the plating solution is a copper sulfate solution. .
(4)前記発泡物質が炭酸銅であることを特徴とする特
許請求の範囲第3項記載の金属表面における多孔質層の
形成方法。
(4) The method for forming a porous layer on a metal surface according to claim 3, wherein the foamed material is copper carbonate.
(5)前記金属製基体が管体であることを特徴とする特
許請求の範囲第1項ないし第3項記載の金属表面におけ
る多孔質層の形成方法。
(5) The method for forming a porous layer on a metal surface according to any one of claims 1 to 3, wherein the metal substrate is a tube.
(6)前記金属製基体と鍍金液とを相対移動させること
を特徴とする特許請求の範囲第1項ないし第3項および
第5項記載の金属表面における多孔質層の形成方法。
(6) A method for forming a porous layer on a metal surface as set forth in claims 1 to 3 and 5, characterized in that the metal substrate and the plating solution are moved relative to each other.
(7)前記陽極が不溶性金属であることを特徴とする特
許請求の範囲第1項ないし第6項記載の金属表面におけ
る多孔質層の形成方法。
(7) The method for forming a porous layer on a metal surface according to any one of claims 1 to 6, wherein the anode is an insoluble metal.
JP61221065A 1985-11-11 1986-09-19 Method for forming porous layer on metal surface Expired - Lifetime JPH0765230B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61221065A JPH0765230B2 (en) 1986-09-19 1986-09-19 Method for forming porous layer on metal surface
FI864554A FI85060C (en) 1985-11-11 1986-11-10 Heat transfer material and process for making the same
EP86115606A EP0224761B1 (en) 1985-11-11 1986-11-11 Heat-transfer material and method of producing same
DE8686115606T DE3677338D1 (en) 1985-11-11 1986-11-11 HEAT TRANSFER MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
US07/221,999 US4826578A (en) 1985-11-11 1988-07-20 Method of producing heat-transfer material
US07/221,990 US4879185A (en) 1985-11-11 1988-07-20 Heat transfer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61221065A JPH0765230B2 (en) 1986-09-19 1986-09-19 Method for forming porous layer on metal surface

Publications (2)

Publication Number Publication Date
JPS6376895A true JPS6376895A (en) 1988-04-07
JPH0765230B2 JPH0765230B2 (en) 1995-07-12

Family

ID=16760939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61221065A Expired - Lifetime JPH0765230B2 (en) 1985-11-11 1986-09-19 Method for forming porous layer on metal surface

Country Status (1)

Country Link
JP (1) JPH0765230B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854754B2 (en) 2006-02-22 2010-12-21 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US8275442B2 (en) 2008-09-25 2012-09-25 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9844461B2 (en) 2010-01-25 2017-12-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US9861520B2 (en) 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US10092346B2 (en) 2010-07-20 2018-10-09 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US10524956B2 (en) 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210296A (en) * 1985-07-08 1987-01-19 Matsushita Refrig Co Production of heat-transfer pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210296A (en) * 1985-07-08 1987-01-19 Matsushita Refrig Co Production of heat-transfer pipe

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337539B2 (en) 2006-02-22 2012-12-25 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US7854754B2 (en) 2006-02-22 2010-12-21 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US11395760B2 (en) 2006-09-26 2022-07-26 Zeltiq Aesthetics, Inc. Tissue treatment methods
US11219549B2 (en) 2006-09-26 2022-01-11 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US10292859B2 (en) 2006-09-26 2019-05-21 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US11179269B2 (en) 2006-09-26 2021-11-23 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US11291606B2 (en) 2007-05-18 2022-04-05 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US10675178B2 (en) 2007-08-21 2020-06-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US11583438B1 (en) 2007-08-21 2023-02-21 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8275442B2 (en) 2008-09-25 2012-09-25 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US9861520B2 (en) 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US11224536B2 (en) 2009-04-30 2022-01-18 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US11452634B2 (en) 2009-04-30 2022-09-27 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9844461B2 (en) 2010-01-25 2017-12-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
US10092346B2 (en) 2010-07-20 2018-10-09 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10575890B2 (en) 2014-01-31 2020-03-03 Zeltiq Aesthetics, Inc. Treatment systems and methods for affecting glands and other targeted structures
US10806500B2 (en) 2014-01-31 2020-10-20 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US10912599B2 (en) 2014-01-31 2021-02-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10201380B2 (en) 2014-01-31 2019-02-12 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US11819257B2 (en) 2014-01-31 2023-11-21 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US10524956B2 (en) 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics

Also Published As

Publication number Publication date
JPH0765230B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
JPS6376895A (en) Formation of porous layer on metal surface
RU2745644C1 (en) Basic evaporator with coating film-containing silicon substrate for electronic cigarette coating film and method for its production
CN110724992B (en) Method for preparing corrosion-resistant super-hydrophobic film on surface of aluminum alloy
EP0224761B1 (en) Heat-transfer material and method of producing same
US4120994A (en) Method of preparing heat-transfer members
US3884772A (en) Method for producing a heat exchanger element
CN104651899A (en) Anodizing process of metal substrate for carbon nanotube growth
US4018264A (en) Boiling heat transfer surface and method
JPS6376894A (en) Formation of porous layer on metal surface
US4311733A (en) Method of preparing a capillary heat-pipe wicking structure
US4136427A (en) Method for producing improved heat transfer surface
Gelchinski et al. Electrochemical and Metallurgical Aspects of Laser‐Enhanced Jet Plating of Gold
EP0226861A1 (en) Heat-transfer material and method of producing same
US4200674A (en) Method of preparing heat-transfer members
JPH0213038B2 (en)
Haak et al. Evaluation of agitation within circuit board through—holes
JPH03230094A (en) Heat transfer medium
CN114086229B (en) Groove liquid for preparing liquid absorption core and preparation method of liquid absorption core
JPH0240752B2 (en)
JPH0565789B2 (en)
JPS63243297A (en) Production of heat transfer tube
RU2793671C2 (en) Heat transfer wall of a heat exchanger and method for forming of the coating to intensify heat transfer of a heat transfer wall of a heat exchanger
JPS6210296A (en) Production of heat-transfer pipe
CN106048705B (en) Foam chromium and preparation method thereof
JP4174888B2 (en) Anodized film