JPS6376686A - Adaptation type difference encoding system - Google Patents

Adaptation type difference encoding system

Info

Publication number
JPS6376686A
JPS6376686A JP61221639A JP22163986A JPS6376686A JP S6376686 A JPS6376686 A JP S6376686A JP 61221639 A JP61221639 A JP 61221639A JP 22163986 A JP22163986 A JP 22163986A JP S6376686 A JPS6376686 A JP S6376686A
Authority
JP
Japan
Prior art keywords
quantization
quantization error
allowable
color
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61221639A
Other languages
Japanese (ja)
Inventor
Migaku Yamagami
山上 琢
Makoto Takayama
眞 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61221639A priority Critical patent/JPS6376686A/en
Publication of JPS6376686A publication Critical patent/JPS6376686A/en
Priority to US07/413,954 priority patent/US5072290A/en
Priority to US08/132,687 priority patent/US5428394A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/004Predictors, e.g. intraframe, interframe coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

PURPOSE:To suppress the deterioration of a picture quality caused by a quantization error and to raise the efficiency of quantization by setting an allowable quantization error every component expressing a color picture according to the estimated value of the component expressing the brightness of colors and adaptively selecting the quantization characteristic of a differential signal of each component according to the size of the allowable quantization error. CONSTITUTION:In case of quantizing a difference when a color signal changes, the allowable quantization errors deltaY', deltaRY' and deltaBY' of the respective parameters depend on a former value yi-1 and it is desirable that the absolute value of the difference is as large as possible. The minimum values of the allowable quantization errors are deltaY, deltaRY and deltaBY and they are decided with the former value yi-1. The allowable quantization error is decided with yi-1 and the value of alteration quantity. The non- linear quantization characteristic based on the allowable quantization error curve is decided, for example, by the intersecting point between a polygonal line which passes an origin, alternates between the allowable quantization error curve and a quadrature axis and intersects the quadrature axis with the angle of forty-five degrees and the allowable quantization curve. Thus the deterioration of the picture quality caused by the quantization error is not recognized and the compressibility of data can be raised.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラー画像信号を圧縮するための適応形差分
符号化方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an adaptive differential encoding method for compressing color image signals.

〔従来の技術〕[Conventional technology]

近年、TV会議システムやフルカラー静止画像伝送を実
用化するために、ディジタル画像情報の圧縮伝送方式の
開発が活発化しており、狭帯域伝送路による画像情報の
ディジタル伝送に有効な方法として、差分パルス・コー
ド変調(DPCM)方式が注目されている。DPCM方
式は、基本的には、入力信号と予測信号との差分を量子
化し、符号化して伝送する方式である。カラー画像の表
色系には、YIQ、Y−R−Y−B−Y、CIELAB
、CIELUB等があるが、例えばRGBやYIQのよ
うに、3つのパラメータを用い、色彩を表現する。DP
CMによる従来の予測符号化方式では、これら表色系の
3つのパラメータ毎に、個々に差分をとり量子化してい
た。
In recent years, in order to put TV conference systems and full-color still image transmission into practical use, the development of compressed transmission methods for digital image information has become active, and differential pulse is an effective method for digitally transmitting image information using narrowband transmission channels.・The code modulation (DPCM) method is attracting attention. The DPCM method is basically a method in which the difference between an input signal and a predicted signal is quantized, encoded, and transmitted. Color systems for color images include YIQ, Y-R-Y-B-Y, and CIELAB.
, CIELUB, etc., but colors are expressed using three parameters, such as RGB and YIQ. DP
In the conventional predictive encoding method using CM, differences are individually taken and quantized for each of these three parameters of the color system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこれらの表色系は、人間の視覚特性から考えて
必ずしも均一な空間ではない。即ち、同一のノルムを持
つ色彩の変化に対し人間が知覚する色差は、表色系に占
める位置によって大きく異なる。従って従来の予測符号
化方式方式では、人間の視覚特性に適合したデータ圧縮
を行っておらず、適切なものでは無かった。
However, these color systems are not necessarily uniform spaces considering human visual characteristics. That is, the color difference that humans perceive when a color has the same norm varies greatly depending on its position in the color system. Therefore, conventional predictive encoding methods do not perform data compression that is compatible with human visual characteristics, and are not appropriate.

そこで本発明は、カラー画像を表現している表色糸の各
成分に対する人間の視覚特性の許容量子化誤差を考慮し
、簡単な回路構成でカラー画像信号のが良く、且つ画質
劣化の少ない適応形差分符号化方式を提示することを目
的とする。
Therefore, the present invention takes into account the permissible quantization error of human visual characteristics for each component of the color representation thread that expresses a color image, and provides an adaptation method that provides a good color image signal with a simple circuit configuration and reduces image quality deterioration. The purpose of this paper is to present a differential encoding method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る適応形差分符号化方式は、カラー画像信号
を標本化して標本化信号を得て、前記標本化信号から差
分信号を形成し、前記差分信号を量子化して符号化する
方式であって、カラー画像を表現する各成分毎の許容量
子化誤差を色彩の明るさを表す成分の予測値に従い設定
し、設定された前記許容量子化誤差の大きさに応じて適
応的に各成分の差分信号の量子化特性を調定する方式で
ある。
The adaptive differential encoding method according to the present invention is a method in which a color image signal is sampled to obtain a sampled signal, a difference signal is formed from the sampled signal, and the difference signal is quantized and encoded. Then, the allowable quantization error for each component representing the color image is set according to the predicted value of the component representing the brightness of the color, and the allowable quantization error for each component is adaptively set according to the size of the set allowable quantization error. This method adjusts the quantization characteristics of the differential signal.

〔作用〕[Effect]

上述の方式によりカラー画像を表現する各成分毎に許容
量子化誤差に応じて量子化特性を調定し、量子化を行う
ことにより、量子化誤差による画質劣化を抑え、また量
子化効率を高めることが出来る。
By adjusting the quantization characteristics according to the allowable quantization error for each component expressing a color image using the above method and performing quantization, image quality deterioration due to quantization error is suppressed and quantization efficiency is increased. I can do it.

〔実施例〕〔Example〕

先ず、表色系に対する人間の視覚特性について検討する
。画像データを量子化する場合、量子化雑音が視覚特性
にどのような影響を与えるかが重要な問題である。量子
化とは、ある値範囲内にある値をその範囲内の特定の値
で代表させ、連続量を離散化することであり、その離散
化の幅乃至は最小単位が量子化雑音と呼ばれ、平坦で制
限された振幅の一様雑音と考えることが出来る。従って
量子化雑音が人間の視覚特性に与える影響は、表色系の
パラメータに対し振幅の制限された一様雑音を予め加算
し、その振幅に対する検知限を調べればよく、それによ
り、色調によってどの程度の量子化誤差が許容可能かを
知ることが出来る。
First, we will consider human visual characteristics regarding color systems. When quantizing image data, an important issue is how quantization noise affects visual characteristics. Quantization is the process of discretizing a continuous quantity by making values within a certain value range represented by a specific value within that range, and the width or minimum unit of this discretization is called quantization noise. , can be thought of as a flat, limited amplitude, uniform noise. Therefore, the influence of quantization noise on human visual characteristics can be determined by adding uniform noise with limited amplitude to the parameters of the color system in advance and examining the detection limit for that amplitude. It is possible to know whether a certain degree of quantization error is acceptable.

例えば、Y−R−Y−B−Y空間において、一つの色彩
を設定し、この色彩の各成分をyi  ry、byとす
る。これに対し、最大振幅をa、とする一様雑音をyに
加え、yiay、ry 、byとして観察し、雑音を検
知出来るか否かの検知限を調べる。この検知限を67と
する。この調査から、成る色彩3’、ry、byにおい
て、Y信号に対し誤差として認識されないレベルδ、を
知ることが出来る。同様にして、R−Y信号およびB−
Y信号に対しても、雑音の検知限δRV+  δmyを
知ることが出来る。
For example, in the Y-R-Y-BY space, one color is set, and each component of this color is yi ry, by. On the other hand, uniform noise with maximum amplitude a is added to y and observed as yiay, ry, and by, and the detection limit of whether or not the noise can be detected is examined. This detection limit is set to 67. From this investigation, it is possible to know the level δ that is not recognized as an error for the Y signal in the colors 3', ry, and by. Similarly, the R-Y signal and the B-
The noise detection limit δRV+δmy can also be determined for the Y signal.

これらδ7.δIIV+  δBYはそれぞれ色彩の変
数(y、  rF+  by)に依存したが、3つのパ
ラメータの内、明るさに大きく依存することが判明した
。即ち、Y、R−Y、B−Y空間では、それぞれのパラ
メータの許容量子化誤差は、色(R−Y。
These δ7. Although δIIV+ δBY each depended on the color variables (y, rF+ by), it was found that out of the three parameters, it was largely dependent on brightness. That is, in the Y, R-Y, B-Y space, the allowable quantization error for each parameter is the color (R-Y).

B−Y)よりは輝度(Y)の値に大きく依存し、第2図
に示すような特性を示した。但し、第2図は、色パラメ
ータ(R−Y、B−Y’)の全範囲における一様雑音の
検知限の最小値を示し、図示の曲線より小さい誤差は基
本的に許容されることを意味する。
It depended more on the value of luminance (Y) than B-Y), and exhibited the characteristics shown in FIG. However, Figure 2 shows the minimum detection limit for uniform noise in the entire range of color parameters (R-Y, B-Y'), and it is understood that errors smaller than the curve shown in the diagram are basically acceptable. means.

人間の視覚にはまた、画像の変化の激しい部分では振幅
誤差が画像データに生じていても検知され難いというマ
スキング現象がある。即ち、信号が急激に変化している
部分と、あまり変化せず平−5= 坦な部分とでは、誤差の許容レベルが異なり、急激に信
号強さが変化する部分ではかなり大きな誤差が許容され
る。
Human vision also has a masking phenomenon in which it is difficult to detect amplitude errors even if they occur in image data in parts of the image where there are rapid changes. In other words, the allowable level of error is different between a part where the signal changes rapidly and a part where the signal does not change much and is flat -5, and a considerably large error is allowed in a part where the signal strength changes rapidly. Ru.

この視覚特性から次のことが分かる。即ち、前値予測の
符号化方式において、前値との差分を量子化する場合に
、画像の変化の激しい部分、つまり差分値の大きな部分
では量子化誤差が大きくても人間にはその誤差が認識さ
れず、従って、差分値の大きな部分では量子化範囲幅を
広くする非線形量子化を採用出来る。
The following can be understood from this visual characteristic. In other words, in the previous value prediction encoding method, when quantizing the difference from the previous value, even if the quantization error is large in areas where the image changes rapidly, that is, in areas where the difference value is large, the error is difficult for humans to perceive. Therefore, non-linear quantization that widens the quantization range width can be adopted for portions where the difference value is large.

色彩信号が、第3図図示の如く時点i−1における( 
3’ i−1+   yi−1+  bIT!−1)か
ら、それに連続する時点iにおける(yt 、ryt+
  t)yi)に変化したとする。この場合に差分を量
子化するとき、各パラメータの許容量子化誤差δ7゛、
δR%” +δmy”は、前値yi−+に依存するが、
基本的に、第4図のように、差分の絶対値が太き(なる
程大きくでもよい。許容量子化誤差の最小値が上述のδ
Y、δItV+  δB7であり、前値yi−+によっ
て決まる。第4図の特性は、V+−+及びそれぞれの変
化量について許容できる誤差を調べることにより得るこ
とが出来、第4図に示す如く、許容量子化誤差はy、−
1及び変化量の値によって定められる。
As shown in FIG. 3, the color signal is (
3' i-1+ yi-1+ bIT! −1) to (yt , ryt+
Suppose that it changes to t)yi). In this case, when quantizing the difference, the allowable quantization error of each parameter δ7゛,
δR%”+δmy” depends on the previous value yi−+,
Basically, as shown in Figure 4, the absolute value of the difference is large (it can be as large as possible.
Y, δItV+ δB7, which is determined by the previous value yi-+. The characteristics shown in Fig. 4 can be obtained by examining the allowable errors for V+-+ and their respective variations, and as shown in Fig. 4, the allowable quantization errors are y, -.
1 and the value of the amount of change.

この許容量子化誤差曲線に基づく非線形量子化特性は例
えば、原点を通り許容量子化誤差曲線と横軸との間で交
互し且つ横軸に45度で交差する折れ線を引き、その折
れ線と許容量子化曲線との交点によって決定される。こ
の方法で設計した非線形量子化特性は例えば第5A図や
第6A図に示すような量子化特性となる。なお、第5B
図及び第6B図はそれぞれ第5A図及び第6A図の零点
付近の拡大図である。
The nonlinear quantization characteristic based on this permissible quantization error curve can be obtained by, for example, drawing polygonal lines that pass through the origin and alternate between the permissible quantization error curve and the horizontal axis and intersect the horizontal axis at 45 degrees, and then determined by the intersection with the curve. The nonlinear quantization characteristic designed by this method becomes, for example, the quantization characteristic shown in FIGS. 5A and 6A. In addition, 5th B
5A and 6B are enlarged views of the vicinity of the zero point in FIGS. 5A and 6A, respectively.

このように表色パラメータ毎に許容量子化誤差を考慮す
ると、量子化誤差による画質劣化は人間には認識されず
、また、必要最小限の量子化でよいのでデータ圧縮率を
高めることが出来る。個々の色彩に対し許容量子化誤差
を決定する際に、本来的には全て3つの表色パラメータ
の予測値を考慮すべきであるが、本発明では、色彩の明
るさに関するデータから各表色パラメータの許容量子化
誤差を決定するので、その決定用回路を簡易に構成する
ことが出来る。
In this way, when the permissible quantization error is considered for each color specification parameter, image quality deterioration due to quantization error is not noticeable to humans, and the data compression rate can be increased because the minimum necessary quantization is sufficient. When determining the allowable quantization error for each color, originally the predicted values of all three color parameters should be considered, but in the present invention, each color parameter is determined based on data regarding the brightness of the color. Since the allowable quantization error of the parameter is determined, a circuit for determining the parameter can be easily configured.

以下、図面を参照して、本発明の方式を実施する回路構
成例を図示した図面を参照・説明することにより、本発
明の詳細な説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings, which illustrate an example of a circuit configuration for implementing the method of the present invention.

第1図は、本発明に係る方式を実施する回路の送受信系
を示す。主に輝度信号Yの系列で説明するが、R−Y信
号系列及びB−Y信号系列においてY信号系列の回路要
素に対応する要素には、数値符号の後ろに、Yの代わり
にそれぞれR及びBを付した。送信系Aにおいて、加減
算器10Yは、標本化されたyiと予測器12Yからの
前画素の量子化された値(予測値)yt−+”との差を
計算する。量子化器14Yは、加減算器10Yからの差
分値Y !  3’ =−+°を量子化する。量子化器
14Yは、予測器12Yからの予測値y4−+”によっ
て非線形量子化特性を設定し、入力信号を量子化する。
FIG. 1 shows a transmitting/receiving system of a circuit implementing the method according to the present invention. The explanation will mainly be based on the luminance signal Y series, but in the R-Y signal series and the B-Y signal series, elements corresponding to the circuit elements of the Y signal series have R and Y instead of Y after the numerical code, respectively. I gave it a B. In the transmission system A, the adder/subtractor 10Y calculates the difference between the sampled yi and the quantized value (predicted value) yt-+'' of the previous pixel from the predictor 12Y.The quantizer 14Y The quantizer 14Y quantizes the difference value Y! become

符号化器16Yは、量子化器14Yからの量子化信号(
代表値)を二進符号化する。例えば、出現頻度の高い代
表値には短い符号を割り当て、出現−8= 頻度の低い代表値には長い符号を割り当てる。
The encoder 16Y receives the quantized signal (
(representative value) is binary encoded. For example, a short code is assigned to a representative value that appears frequently, and a long code is assigned to a representative value that occurs less frequently (-8=occurrence).

量子化器14Rは、予測器12Yからの予測値V i−
+’によってδ、17゛ による非線形量子化特性を設
定し入力信号を量子化する。もう一つの量子化器14B
は、予測器12Yの予測値yi−1゛によってδB7゛
 による非線形量子化特性を設定し入力信号を量子化す
る。
The quantizer 14R receives the predicted value V i- from the predictor 12Y.
+' sets the nonlinear quantization characteristic of δ, 17゛, and quantizes the input signal. Another quantizer 14B
quantizes the input signal by setting a nonlinear quantization characteristic of δB7' based on the predicted value yi-1' of the predictor 12Y.

量子化器14Yの出力である代表値は、予測器12Yに
も印加され、次の画素の予測に利用される。予測器14
Y、14R,14Bは、一般的に、差分量子化代表値に
前値を加算する加算器と、当該加算器の出力を1画素分
遅延させる遅延回路とからなり、当該遅延回路の出力が
予測器の出力となり、また当該遅延回路の出力は前値と
して当該加算器にも印加され、差分信号の復元に利用さ
れる。
The representative value that is the output of the quantizer 14Y is also applied to the predictor 12Y, and is used for predicting the next pixel. Predictor 14
Y, 14R, and 14B generally consist of an adder that adds the previous value to the differential quantization representative value, and a delay circuit that delays the output of the adder by one pixel, and the output of the delay circuit is predicted. The output of the delay circuit is also applied as a previous value to the adder and used to restore the difference signal.

符号化器16Y、16R,16BのDPCM出力は、伝
送路20Y、20R,20Bを介して、受信系Bに送ら
れる。受信系Bでは、復号器30Y、30R,30Bが
、伝送路20Y、2OR。
The DPCM outputs of encoders 16Y, 16R, and 16B are sent to receiving system B via transmission lines 20Y, 20R, and 20B. In receiving system B, decoders 30Y, 30R, 30B are transmission lines 20Y, 2OR.

20BのDPCM信号を復号し、加算器32Y。The adder 32Y decodes the DPCM signal of 20B.

32R,32Bに送る。加算器32Y、32R。Send to 32R and 32B. Adders 32Y, 32R.

32Bは、送信系Aでの予測器12Y、12R。32B are predictors 12Y and 12R in the transmission system A.

12Bと同様の予測器34Y、34R,34Bからの予
測値”! i−1’+  r yi−、+ +  by
i−+”をそれぞれ復号器30Y、30R,30Bの出
力に加算し、色彩の各成分信号3’!’+  yi’+
b□°を出力する。加算器32Y、32R,32Bの出
力はそれぞれ連係する予測器34Y、34R,34Bに
も印加され、加算器32Y、32R,32Bでの信号復
元に利用される。
Predicted values from predictors 34Y, 34R, and 34B similar to 12B "! i-1'+ r yi-, + + by
i-+" to the outputs of the decoders 30Y, 30R, and 30B, respectively, to obtain each color component signal 3'!'+yi'+
Output b□°. The outputs of the adders 32Y, 32R, and 32B are also applied to associated predictors 34Y, 34R, and 34B, respectively, and are used for signal restoration in the adders 32Y, 32R, and 32B.

受信系Bの各復号器30Y、30R,30Bの復号特性
は、予測器34Yの出力y、−1”により、送信系Aの
量子化及び符号化特性に対応するものに選択・設定され
る。
The decoding characteristics of each of the decoders 30Y, 30R, and 30B of the receiving system B are selected and set to correspond to the quantization and coding characteristics of the transmitting system A based on the output y, -1'' of the predictor 34Y.

受信側での前値予測値は送信側での前値予測値と同じ値
であるため、このアルゴリズムにより受信系Bにおいて
完全な復元を実現出来る。
Since the predicted previous value on the receiving side is the same as the predicted previous value on the transmitting side, complete restoration can be achieved in the receiving system B using this algorithm.

Y信号、R−Y信号及びB−Y信号で符号化及び復号の
アルゴリズムは同じであるが、前述の如く、成分毎に許
容量子化誤差が異なるので、量子化器14Y、14R,
14B及び復号器30Y。
The encoding and decoding algorithms are the same for the Y signal, R-Y signal, and B-Y signal, but as described above, the allowable quantization error differs for each component, so the quantizers 14Y, 14R,
14B and decoder 30Y.

30R,30Bの伝達特性は、当然ながら個々に異なる
Naturally, the transmission characteristics of 30R and 30B are different from each other.

図示例では、Y信号、R−Y信号及びB−Y信号を別々
の伝送路で伝送するように説明したが、現実の構成では
、Y、R−Y、B−Yのそれぞれの符号化が行われた後
でこれらをシリアル信号に変換して伝送路に送出し受信
系Bでこれを3つに分解して復号する。但し、本発明で
は復号のために輝度情報が必要であるので、先ずY信号
の処理を行い、その後R−Y、B−Yの処理を行う。
In the illustrated example, the Y signal, R-Y signal, and B-Y signal are transmitted through separate transmission paths, but in the actual configuration, each of Y, R-Y, and B-Y is encoded. After that, these signals are converted into serial signals and sent out to the transmission line, where the receiving system B divides them into three parts and decodes them. However, since the present invention requires luminance information for decoding, the Y signal is processed first, and then the RY and BY signals are processed.

以上の説明では、Y−R−Y−B−Y表色系での例を示
したが、本発明の方法は、他の表色系、例えばYIQ、
La*b*、Lu*v’に表色系では、それぞれY、L
、Lが明るさを表現しているので、そのY、L、Lの予
測値を用いて最適の量子化特性を設定出来る。また、R
GB系ではG信号が明るさを近似的に表しているので、
G信号の予測値で本発明の方式を実現出来る。
In the above explanation, an example was given using the Y-R-Y-B-Y color system, but the method of the present invention can also be applied to other color systems, such as YIQ,
In the color system, La*b* and Lu*v' are Y and L, respectively.
, L express brightness, so the optimal quantization characteristics can be set using the predicted values of Y, L, and L. Also, R
In the GB system, the G signal approximately represents brightness, so
The method of the present invention can be implemented using the predicted value of the G signal.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によれば、簡単な回路構
成でカラー画像信号を表現している表色系の各成分に対
する人間の視覚特性の許容量子化誤差に応じて適応的に
差分符号化を行うので、カラー画像信号に対して、画質
劣化の少ない差分符号化を行うことができ、カラー画像
信号の圧縮効率を高くすることができる適応形差分符号
化方式を提示することができる。
As described above, according to the present invention, a differential code is adaptively applied according to the permissible quantization error of human visual characteristics for each component of a color system expressing a color image signal using a simple circuit configuration. Therefore, it is possible to perform differential encoding on color image signals with less image quality deterioration, and it is possible to present an adaptive differential encoding method that can improve the compression efficiency of color image signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る適応形予測符号化方式を実施す
るための送受信回路構成例、第2図はY。 R−Y、B−Y表色系における各成分信号の許容量子化
誤差と輝度信号Yとの関係を示す図、第3図は、連続時
点i−1,iの各色彩成分の説明図、第4図は第3図の
時点iのカラー画像信号を差分量子化する際の各成分の
許容量子化誤差を示す図、第5A図、第5B図、第6A
図及び第6B図は第4図の特性により決定される非線形
量子化特性を例示する図である。
FIG. 1 shows a configuration example of a transmitting/receiving circuit for implementing the adaptive predictive coding method according to the present invention, and FIG. A diagram showing the relationship between the permissible quantization error of each component signal and the luminance signal Y in the R-Y, B-Y color system, FIG. 3 is an explanatory diagram of each color component at consecutive time points i-1, i, FIG. 4 is a diagram showing the allowable quantization error of each component when differentially quantizing the color image signal at time i in FIG. 3, FIG. 5A, FIG. 5B, and FIG. 6A.
6B and 6B are diagrams illustrating nonlinear quantization characteristics determined by the characteristics shown in FIG. 4.

Claims (1)

【特許請求の範囲】[Claims] カラー画像信号を標本化して標本化信号を得て、前記標
本化信号から差分信号を形成し、前記差分信号を量子化
して符号化する方式であって、カラー画像を表現する各
成分毎の許容量子化誤差を色彩の明るさを表す成分の予
測値に従い設定し、設定された前記許容量子化誤差の大
きさに応じて適応的に各成分の差分信号の量子化特性を
調定することを特徴とする適応形差分符号化方式。
A method in which a color image signal is sampled to obtain a sampled signal, a difference signal is formed from the sampled signal, and the difference signal is quantized and encoded, and the tolerance for each component representing the color image is determined. A quantization error is set according to a predicted value of a component representing the brightness of a color, and a quantization characteristic of a difference signal of each component is adaptively adjusted according to a size of the set allowable quantization error. Features an adaptive differential encoding method.
JP61221639A 1986-09-19 1986-09-19 Adaptation type difference encoding system Pending JPS6376686A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61221639A JPS6376686A (en) 1986-09-19 1986-09-19 Adaptation type difference encoding system
US07/413,954 US5072290A (en) 1986-09-19 1989-09-28 Color image signal encoding device
US08/132,687 US5428394A (en) 1986-09-19 1993-10-07 Adaptive type differential encoding method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61221639A JPS6376686A (en) 1986-09-19 1986-09-19 Adaptation type difference encoding system

Publications (1)

Publication Number Publication Date
JPS6376686A true JPS6376686A (en) 1988-04-06

Family

ID=16769926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61221639A Pending JPS6376686A (en) 1986-09-19 1986-09-19 Adaptation type difference encoding system

Country Status (1)

Country Link
JP (1) JPS6376686A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033789A (en) * 1983-08-03 1985-02-21 Matsushita Electric Ind Co Ltd Method for transmitting picture to be coded

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033789A (en) * 1983-08-03 1985-02-21 Matsushita Electric Ind Co Ltd Method for transmitting picture to be coded

Similar Documents

Publication Publication Date Title
US5245436A (en) Method and apparatus for detecting fades in digital video sequences
EP0479510B1 (en) Image signal coding/decoding system using adaptive quantization
US5072290A (en) Color image signal encoding device
JPS6376687A (en) Adaptation type difference encoding system
JP2741696B2 (en) Adaptive differential coding
US4320416A (en) Technique for optimally encoding digitally encoded video signals
JPS6376686A (en) Adaptation type difference encoding system
KR100387229B1 (en) Apparatus for encoding images
JP2005522957A (en) Coding / decoding method and coding / decoding apparatus
JP2682296B2 (en) Image coding device
JP3769770B2 (en) Quantizer and quantization method
JP3060376B2 (en) Image encoding / decoding device and image decoding device
KR20040091667A (en) Method and device for coding and decoding a digital color video sequence
JP2741695B2 (en) Adaptive differential coding
JPH02159185A (en) System and device for picture encoding
JPH1028274A (en) Stereoscopic image encoding device
JPS6374268A (en) Color picture data compression system
JP2005086226A (en) Imaging unit
JPH05227441A (en) Digital picture signal compression device
JPH1118109A (en) Image coder, image-coding method, image decoder, image-decoding method, transmission medium and transmission method
JPH07121121B2 (en) Decryption device
JPH0799853B2 (en) Image data compression / decompression method for printing
JPS63184478A (en) Color picture processing unit
JPS62283776A (en) Color picture input/output device
JPH02306769A (en) Method and apparatus for coding picture signal