JPS6376306A - High flux-density soft ferrite - Google Patents

High flux-density soft ferrite

Info

Publication number
JPS6376306A
JPS6376306A JP61220035A JP22003586A JPS6376306A JP S6376306 A JPS6376306 A JP S6376306A JP 61220035 A JP61220035 A JP 61220035A JP 22003586 A JP22003586 A JP 22003586A JP S6376306 A JPS6376306 A JP S6376306A
Authority
JP
Japan
Prior art keywords
solution
soft ferrite
iron
dispersed
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61220035A
Other languages
Japanese (ja)
Other versions
JPH0587122B2 (en
Inventor
Tatsuo Ito
伊藤 辰夫
Naomi Hayashi
林 直美
Mineo Kosaka
岑雄 小坂
Takeshi Takayanagi
高柳 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61220035A priority Critical patent/JPS6376306A/en
Publication of JPS6376306A publication Critical patent/JPS6376306A/en
Publication of JPH0587122B2 publication Critical patent/JPH0587122B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To increase the saturation flux-density of a soft ferrite without deteriorating the high-frequency characteristic by a method wherein fine particles of an independent magnetic metal, e.g. high-purity iron, are dispersed in the continuous soft ferrite and are molded. CONSTITUTION:Iron powder is heated up to 530 deg.C in a flow of hydrogen, and impurity and oxide are removed from the particle surfaces. Then, water vapor is added to the hydrogen, and a thin film compsoed of Fe3O4 is formed on the surfaces of the iron particles. Then, an operation for co-precipitation is carried out at 70 deg.C by means of three solutions, i.e. a solution A whose mol ratio of nickel chloride, zinc chloride and ferric chloride are 0.5, 0.5 and 2.0, respectively, a solution B which contains sodium hydroxide at a concentration of 8 mol/1, and a dispersed solution C where the prepared and surface-treated iron powder is immersed and dispersed in a small amount of the solution B and kept for about one hour. Then, the ferrite component contained in the solution A is precipitated completely. Through an operation to add the dispersed solution C at the beginning, a sediment whose nucleus component is individual iron particles is precipitated. Through this constitution, it is possible to simultaneously satisfy the flux density and the high-frequency characteristic (this can be improved with the increase in the electric resistance) of a magnetic material.

Description

【発明の詳細な説明】 (a)技術分野の説明 本発明は高磁束密度を有するソフトフェライトの製法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Description of the Technical Field The present invention relates to a method for producing soft ferrite having a high magnetic flux density.

(b)従来技術の説明 ”/7 )7エライ)とは(Mn、Zn)Fe204と
トは1932年に本邦の加熱・武井によって発明され、
第二次大戦後は間材の(Mn、Zn)系フェライトの開
発が続き、今日の工業的生産に途が開かれた。本邦のフ
ェライト生産は世界最大の規模に達し、重要な輸出品目
となっている。
(b) Explanation of the prior art"/7) What is (Mn, Zn) Fe204 and t were invented by Takei in Japan in 1932,
After World War II, the development of (Mn, Zn)-based ferrites continued, paving the way for today's industrial production. Ferrite production in Japan has reached the largest scale in the world and has become an important export item.

しかし最近の電子機器の急速な小型化・高密度化によっ
て、磁性材料の性能に対する要求はますます高度化して
おり、酸化物系材料の限界を越えるような高い磁束密度
と良好な高周波特性が同時に求められている。従来のソ
フトフェライト製品ではこれらの技術要求に対応しえな
いため、飛躍的な新技術の出現が待望されている。
However, with the recent rapid miniaturization and high density of electronic devices, the requirements for the performance of magnetic materials are becoming increasingly sophisticated. It has been demanded. Conventional soft ferrite products cannot meet these technical requirements, so the emergence of dramatic new technologies is eagerly awaited.

(c)本発明の目的 み込まれ、その小型化と高性能化に大いに寄与できると
考えられる。
(c) It is considered that the purpose of the present invention is incorporated and it can greatly contribute to the miniaturization and high performance of the present invention.

することである。このような構造の磁性材料におΩ副、
鉄では一、=10−50cr1))とが、合理的かつ有
効に組み合わされ、磁束密度と高周波特性(電気抵抗が
高いほど向上する)とを同時に満足させることができる
。第1図の基地部を非磁性の有機物ヤガラスなどの無機
物とする提案もあるが、これでは磁束密度が低下するの
で適当でない。基地部をすべて軟磁性フェライトで構成
することは、従来製品より優れた磁性材料を製造する上
で肝要である。
It is to be. In magnetic materials with such a structure, Ω sub,
In iron, 1,=10-50 cr1)) are combined rationally and effectively, and magnetic flux density and high frequency characteristics (the higher the electrical resistance, the better) can be satisfied at the same time. Although there is a proposal to make the base portion of FIG. 1 an inorganic material such as a non-magnetic organic material, such as porphyry, this is not suitable because the magnetic flux density will decrease. Constructing the entire base portion from soft magnetic ferrite is essential for producing a magnetic material superior to conventional products.

本発明は第1図のような構造のソフトフェライトの製法
に関するものである。
The present invention relates to a method for producing soft ferrite having a structure as shown in FIG.

(f3)発明の作用 第1図に例示するような構造を実現するにあたシ、当面
の課題としてに)いかにして鉄粒子側々の独立性を確保
するか、(ロ)いかにして焼結中に起こる鉄/フェライ
ト間の反応を防止または軽減するか。等々が考えられる
(f3) Function of the invention In order to realize the structure illustrated in Fig. 1, the current issues are:) how to ensure the independence of the iron particles; and (b) how to ensure the independence of the iron particles. Prevent or reduce iron/ferrite reactions that occur during sintering? etc. are possible.

前者(イ)について述べるならば従来のソフトフェライ
ト製造には、構成成分の酸化物粉末を別々に調製してお
き、これを機械的に混合・成形した後、高温で反応・焼
結させる乾式法が多用されていた。
Regarding the former (a), conventional soft ferrite production involves a dry method in which the component oxide powders are prepared separately, mechanically mixed and shaped, and then reacted and sintered at high temperatures. was widely used.

しかし、本発明目的に乾式法を適用すると、いかに機械
的混合を行っても、添加した鉄粉末の団塊化が起こり、
第1図のような理想的分散状態を得るのは困難であった
。団塊化した鉄粒子群は局所的に低抵抗となって渦電流
を起こし、高周波特性を低下させる。
However, when the dry method is applied for the purpose of the present invention, no matter how mechanically mixed, the added iron powder will agglomerate.
It was difficult to obtain the ideal dispersion state as shown in FIG. The agglomerated iron particles locally have low resistance, causing eddy currents and deteriorating high frequency characteristics.

そこで本発明においては、後述するような表面処理した
鉄粒子を核として用いる湿式共沈法を適用して、たとえ
ば第2図に示すように、個々の鉄粒子がフェライト組成
の酸化物層に包埋された(逆に言えば鉄粒子の表面がフ
ェライト相に覆われた)構造の前駆粉末をあらかじめ調
製した。このことによシ、個々の鉄粒子間の連結は完全
にしゃ断され、全体として高電気抵抗が保証されるよう
になる。
Therefore, in the present invention, by applying a wet co-precipitation method using surface-treated iron particles as nuclei as described later, individual iron particles are encapsulated in an oxide layer having a ferrite composition, as shown in FIG. A precursor powder with a buried structure (in other words, the surface of iron particles is covered with a ferrite phase) was prepared in advance. As a result, the connections between the individual iron particles are completely cut off, ensuring a high electrical resistance as a whole.

次に後者(ロ)について述べる。従来、ソフトフェライ
トの焼結には1800℃程度の高温が用いられていた。
Next, I will discuss the latter (b). Conventionally, a high temperature of about 1800° C. has been used for sintering soft ferrite.

・しかしこのような高温では鉄粒子とフェライト間に化
学反応が進行し、金属鉄が酸化、消失して第1図のよう
な構造を実現し難かった。
-However, at such high temperatures, a chemical reaction progresses between the iron particles and ferrite, causing the metal iron to oxidize and disappear, making it difficult to achieve the structure shown in Figure 1.

そこで本発明においては、上記化学反応が急速に進行し
ないような温度と条件をえらび、HIP(高温等方圧プ
レス)処理によシ気孔率が小さく、十分な機械的強度を
有する磁性体を得た。
Therefore, in the present invention, a magnetic material with low porosity and sufficient mechanical strength is obtained by selecting a temperature and conditions under which the above chemical reaction does not proceed rapidly, and by HIP (high temperature isostatic pressing) treatment. Ta.

このような本発明の作用によシ、はじめて第1図の構造
を有するソフトフェライトが実現されたものである。
Due to the effects of the present invention, a soft ferrite having the structure shown in FIG. 1 was realized for the first time.

(f)発明の実施例 実施例1 ここでは金属微粒子としてカルボニル鉄粉を用いる場合
の操作について説明する。鉄粉はまず水素気流中で53
0℃に加熱し、不純物および表面の酸化物を除去する。
(f) Embodiments of the Invention Example 1 Here, the operation when carbonyl iron powder is used as the metal fine particles will be explained. Iron powder is first heated in a hydrogen stream at 53
Heating to 0°C removes impurities and surface oxides.

次いで水素中に水蒸気を添加し、鉄粒子の表面にF e
 304からなる薄膜を形成させる。この表面処理は後
述の各段階で鉄粒子が酸化されるのを効果的に防止する
のに不可欠である。一方、塩化ニッケル、塩化亜鉛およ
び塩化第二鉄を0.5,0.5および2.0モルの割合
[:(0,5した分散液Cを用意する。Cには最大10
0PPmのプロパルギルアルコ−pと分散剤を添加しで
ある。これらA、BおよびCを用いて共沈操作を次のよ
うに行った。水溶液Aの一定量をピー力にとシ、70℃
に保温しながら強攪拌を与える。この中にさきに用意し
である分散液C(70℃に保温)を手ばやく添加して攪
拌を続ける。5〜15m1n後、さらに水溶液B(70
℃に保温)を添加して攪拌を続け、Aが含有していたフ
ェライト成分を完全に沈殿とする。分散液Cを最初に添
加する上記の操作によって、個々の鉄粒子を核として沈
殿が析出するため、第2図のような構造がえられる。
Next, water vapor is added to the hydrogen to form Fe on the surface of the iron particles.
304 is formed. This surface treatment is essential to effectively prevent the iron particles from being oxidized in each step described below. On the other hand, prepare a dispersion C containing nickel chloride, zinc chloride, and ferric chloride in ratios of 0.5, 0.5, and 2.0 moles [:(0,5).
0 PPm of propargyl alcohol-p and a dispersant were added. A coprecipitation operation was performed using these A, B, and C as follows. A certain amount of aqueous solution A was heated to 70°C.
Stir vigorously while keeping warm. The previously prepared dispersion C (kept at 70°C) was quickly added to this and stirring was continued. After 5 to 15 m1n, aqueous solution B (70 m
℃) and continued stirring to completely precipitate the ferrite component contained in A. By the above-mentioned operation of first adding dispersion liquid C, a precipitate is precipitated with individual iron particles as nuclei, so that a structure as shown in FIG. 2 is obtained.

ここに共沈操作を70℃で行うことは、後述する水洗の
容易化とフェライトの性能向上のために有意義である。
Here, carrying out the coprecipitation operation at 70°C is significant for facilitating water washing and improving the performance of ferrite, which will be described later.

ここで得られる沈殿とは多量に水分を含むペースト状の
水和物であるが、60℃以下で操作するとペーストの粘
度が高すぎ、後の戸別や水洗が非常に困難となる。また
go’c以上になると水溶液A中の成分が分解して、フ
ェライトの性能が低下する。ここに水溶液Bの添加量は
共沈後の混合液のpHが約1)となるように調節される
。また分散液Cに用いられる鉄粉量は、最終製品中の金
属量が5〜45容積%となるように、適切に調節される
。生成した沈殿(鉄粒子を包含した)を含む混合液はそ
のまま70℃に保温を続け、少なくとも8h以上放置、
熟成させる。この熟成は水和物沈殿中の極微結晶の凝集
を助長し、後のp過分離を容易にする。熟成後の混合液
を吸引濾過器または遠心分離器にかけ、沈殿物を戸別、
採取するが、この中にはまだ多量に、共沈操作によって
生じた塩や水酸化ナトリウムが含まれる。
The precipitate obtained here is a paste-like hydrate containing a large amount of water, but if operated at temperatures below 60°C, the viscosity of the paste will be too high, making it extremely difficult to wash the paste from door to door or with water. Moreover, when the temperature exceeds go'c, the components in the aqueous solution A decompose, and the performance of the ferrite deteriorates. The amount of aqueous solution B added here is adjusted so that the pH of the mixed solution after coprecipitation is approximately 1). Further, the amount of iron powder used in the dispersion C is appropriately adjusted so that the amount of metal in the final product is 5 to 45% by volume. The mixture containing the generated precipitate (including iron particles) was kept at 70°C for at least 8 hours.
Let it mature. This ripening promotes agglomeration of ultrafine crystals in the hydrate precipitate and facilitates subsequent p overseparation. After aging, the mixture is passed through a suction filter or centrifugal separator, and the precipitate is removed from door to door.
However, it still contains a large amount of salt and sodium hydroxide produced by the coprecipitation process.

蒸溜水による水洗と戸別をくシ返し行ってもこれらの不
純物を完全に除去するのはかなシ困難がともなうが、以
下のようにすれば比較的簡単に不純物の除去ができる。
Although it is difficult to completely remove these impurities even by washing with distilled water and combing from door to door, the impurities can be removed relatively easily in the following manner.

沈殿の主体をなしていた水和物や水酸化物はその水分を
失ない、(N i 、 Z n ) F e 204な
るスピネル構造を取υはじめる。それと同時に沈殿中に
含まれていた塩やアルカリがたとえばN a C1やN
 a 2 COa  の比較的大きな結晶となって沈殿
の表面付近に析出するに至る。このように加熱ずみの 
、沈殿を再び水洗・戸別にかければ、容易に不純物実施
例2 上記した前駆粉体は、これに少量の樹脂等を加え、熱硬
化させて所要の形状を与えることもできるが、ここには
HIP(高温等方圧プレス)を用いる場合を開示する。
The hydrates and hydroxides that formed the main part of the precipitation do not lose their water content and begin to take on a spinel structure of (N i , Z n ) Fe 204. At the same time, the salts and alkalis contained in the precipitate, such as N a C1 and N
This results in relatively large crystals of a 2 COa being deposited near the surface of the precipitate. In this way, heated
By washing the precipitate again with water and subjecting it to each door, impurities can be easily obtained.Example 2 The above-mentioned precursor powder can be given the desired shape by adding a small amount of resin, etc. to it and heat-curing it. A case using HIP (high temperature isostatic press) is disclosed.

上述したように従来法のごとく、1300℃もの高温に
よって焼結を進めると、鉄粒子とソフトフェライト間に
化学反応を生じ、FeOが生成するので不都合である。
As mentioned above, proceeding with sintering at a high temperature of 1300° C. as in the conventional method is disadvantageous because a chemical reaction occurs between the iron particles and soft ferrite, producing FeO.

FeOを発生させず磁性体に十分な機械的強度と所要形
状を与える目的でI(IP法を採用した。まず前駆粉体
を通常の油圧プレス法によって、円柱形(−例HIPに
かけるが、HIPの原理・構造等については周知なので
省略する。
In order to give the magnetic material sufficient mechanical strength and the required shape without generating FeO, the I (IP method) was adopted. First, the precursor powder was pressed into a cylindrical shape (for example, HIP) using a normal hydraulic press method. Since the principles and structure of HIP are well known, they will be omitted.

ここで肝要であるのは、HIPの昇温または昇圧の条件
であった。
What was important here was the conditions for increasing the temperature or pressure of HIP.

一般に560℃以下の温度では、鉄粒子とソフトフェラ
イト基地の反応によるFeOの発生はみられなかった。
Generally, at temperatures below 560°C, no FeO generation due to the reaction between iron particles and soft ferrite base was observed.

しかし480℃以下の温度では磁性体の強度が低下した
。550℃の加熱では1〜2hの保持で十分に圧密化が
行なわれた。しかしHIPでは温度と圧力が独立には変
化しないため、時として圧力不足による圧密不良を生ず
ることがおる。その対策としてはHIPの初期にできる
だけ急速に600〜650℃の温度に到達させ、短時間
保持後に550℃まで温度低下させ、ここで1〜2h保
持すればよいことが知られた。
However, at temperatures below 480°C, the strength of the magnetic material decreased. When heating at 550°C, sufficient compaction was achieved by holding for 1 to 2 hours. However, in HIP, since temperature and pressure do not change independently, poor compaction may sometimes occur due to insufficient pressure. It has been found that a countermeasure against this problem is to reach a temperature of 600 to 650°C as quickly as possible at the beginning of HIP, hold it for a short time, then lower the temperature to 550°C, and hold there for 1 to 2 hours.

このような操作条件下では事実上、FeOの発生は無視
することができ、十分な機械的強度が得られる。なお、
HIP後の降温はできるだけゆっくりとするのが好まし
い。本実施例で製作された二・三の試作磁性につき、飽
和磁束密度Bsと電気抵抗ρの試験成績を第1表にまと
めて示す。
Under such operating conditions, the generation of FeO can be practically ignored and sufficient mechanical strength is obtained. In addition,
It is preferable to lower the temperature after HIP as slowly as possible. Table 1 summarizes the test results of saturation magnetic flux density Bs and electrical resistance ρ for a few prototype magnets manufactured in this example.

第1表 本発明による試作磁性体の性能※鉄粒子を含ま
ないソフトフェライト ※※純鉄ならば=10−8 実施例8 ソフトフェライトを(Mn%Zn)Fe204成分とし
、金属微粒子としてFe−8i系合金を用いて、実施例
1%実施例2と同様に操作して磁性体を試作したところ
、第1表と同等に満足すべき結果が得られた。
Table 1 Performance of prototype magnetic material according to the present invention * Soft ferrite containing no iron particles ※ * If pure iron = 10-8 Example 8 Soft ferrite with (Mn%Zn) Fe204 component and Fe-8i as metal fine particles When a magnetic material was experimentally produced using the alloy of Example 1% in the same manner as in Example 2, satisfactory results equivalent to those shown in Table 1 were obtained.

(g)発明の効果 以上で述べたように、本発明を適用することによシ、ソ
フトフェライトの飽和磁束密度BSを、その高周波特性
を損うことなく、従来品よシ大幅に向上させうる。この
ことは各種磁芯材料の寸法をそれに応じて小型化させる
ことを可能とするため、今後高周波電子機器の高性能・
小型化に大いに寄与するものと考えられる。
(g) Effects of the Invention As stated above, by applying the present invention, the saturation magnetic flux density BS of soft ferrite can be significantly improved compared to conventional products without impairing its high frequency characteristics. . This makes it possible to reduce the size of various magnetic core materials accordingly, which will lead to high-performance and high-performance high-frequency electronic equipment in the future.
This is thought to greatly contribute to miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、第2図は本発明によシ調製さ
れた前駆粉体粒子の断面図を示す。図中1は連続したソ
フトフェライトよシなる基地、2は独立した金属、たと
えば高純度鉄微粒子、3は目的とするフェライト組成の
酸化物層、4はFe3O4層。
FIG. 1 shows the principle of the present invention, and FIG. 2 shows a cross-sectional view of precursor powder particles prepared according to the present invention. In the figure, 1 is a base made of continuous soft ferrite, 2 is an independent metal such as high-purity iron fine particles, 3 is an oxide layer with the desired ferrite composition, and 4 is a Fe3O4 layer.

Claims (3)

【特許請求の範囲】[Claims] (1)連続したソフトフェライト基地中に、独立した磁
性金属、たとえば高純度鉄、の微粒子を分散性よく配置
、成形したことを特徴とする高磁束密度ソフトフェライ
ト。
(1) A high magnetic flux density soft ferrite characterized in that fine particles of independent magnetic metal, such as high-purity iron, are arranged and molded with good dispersion in a continuous soft ferrite base.
(2)表面処理された磁性金属、たとえば鉄微粒子を核
として、70℃で湿式共沈法を行うことにより、あらか
じめ鉄粒子表面にソフトフェライトを形成された前駆粉
体を用いることを特徴とする特許請求の範囲第(1)項
に記載の高磁束密度ソフトフェライト。
(2) It is characterized by using a precursor powder in which soft ferrite is formed on the surface of iron particles in advance by performing a wet co-precipitation method at 70°C using a surface-treated magnetic metal, such as iron fine particles, as a core. A high magnetic flux density soft ferrite according to claim (1).
(3)前駆粉体を所要の形状に成形するにあたり、加圧
圧力を少くとも1000Kg/cm^2以上、主たる加
熱温度を500℃〜560℃とする、HIP(高温等方
圧プレス)法を用いることを特徴とする特許請求の範囲
第(1)項に記載の高磁束密度ソフトフェライト。
(3) When molding the precursor powder into the desired shape, the HIP (high temperature isostatic pressing) method is used, in which the pressure is at least 1000 kg/cm^2 or more and the main heating temperature is 500°C to 560°C. A high magnetic flux density soft ferrite according to claim (1), which is used.
JP61220035A 1986-09-18 1986-09-18 High flux-density soft ferrite Granted JPS6376306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61220035A JPS6376306A (en) 1986-09-18 1986-09-18 High flux-density soft ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220035A JPS6376306A (en) 1986-09-18 1986-09-18 High flux-density soft ferrite

Publications (2)

Publication Number Publication Date
JPS6376306A true JPS6376306A (en) 1988-04-06
JPH0587122B2 JPH0587122B2 (en) 1993-12-15

Family

ID=16744902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220035A Granted JPS6376306A (en) 1986-09-18 1986-09-18 High flux-density soft ferrite

Country Status (1)

Country Link
JP (1) JPS6376306A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391397A (en) * 1977-01-21 1978-08-11 Hitachi Ltd Material with high permeability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391397A (en) * 1977-01-21 1978-08-11 Hitachi Ltd Material with high permeability

Also Published As

Publication number Publication date
JPH0587122B2 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
JP5574395B2 (en) Composite material and manufacturing method thereof
JP7033071B2 (en) Epsilon type iron oxide magnetic particles and their manufacturing method, magnetic powder composed of magnetic particles, magnetic paint and magnetic recording medium
Verma et al. Low temperature processing of NiZn ferrite by citrate precursor method and study of properties
WO2008059789A1 (en) Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP4094480B2 (en) Chain metal powder, method for producing the same, and conductivity imparting material using the same
JP6471015B2 (en) Fe-Co alloy powder and antenna, inductor and EMI filter
CN112846196A (en) Preparation method for preparing flaky iron-silicon-chromium soft magnetic composite material
CN105798319B (en) Preparation method of silver-tungsten electrical contact material, electrical contact material and electrical contact
CN104741602B (en) A kind of electrical contact material including metal and metal oxide and preparation method thereof
JPS6376306A (en) High flux-density soft ferrite
KR100709822B1 (en) Method for Surface treatment of Ni particle with Acid solution
JP2005524249A (en) Method and apparatus for making a product of ferrite material and product produced thereby
CN116391052A (en) Method for producing iron (Fe) -nickel (Ni) alloy powder
CN105170996A (en) Preparation method of ultrafine copper powder for chip multilayer ceramic capacitors
CN106634828A (en) Preparation method of graphene/Y3Fe5O12/CoFe2O4 wave-absorbing material
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
KR101379751B1 (en) Particulate alloy thin film and their manufacturing method
JP6423705B2 (en) Metal magnetic powder, method for producing the same, and device
JP2004327762A (en) Composite soft magnetic material
JP6043397B2 (en) Method for synthesizing heterogeneous copper-nickel composites
JPH07315844A (en) Production of ferrite powder
JP3399970B2 (en) Method for producing copper monodisperse particles
CN111584178B (en) Enhanced material for magnetic beads, preparation method of enhanced material and preparation method of laminated magnetic beads
JP7272883B2 (en) Magnetic powders, composite magnetic materials and magnetic parts
CN109896541A (en) A kind of preparation method of ultrafine cuprous oxide powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term