JPS6374917A - Reutilization of hydrogen in uranium hexafluoride production process - Google Patents

Reutilization of hydrogen in uranium hexafluoride production process

Info

Publication number
JPS6374917A
JPS6374917A JP61218044A JP21804486A JPS6374917A JP S6374917 A JPS6374917 A JP S6374917A JP 61218044 A JP61218044 A JP 61218044A JP 21804486 A JP21804486 A JP 21804486A JP S6374917 A JPS6374917 A JP S6374917A
Authority
JP
Japan
Prior art keywords
hydrogen
reduction
reduction process
recovered
uranium hexafluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61218044A
Other languages
Japanese (ja)
Other versions
JPH0253373B2 (en
Inventor
Mitsukazu Yui
油井 三和
Toshiro Mochiji
持地 敏郎
Takatoshi Ogawa
孝寿 小川
Harunobu Takeda
晴信 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Japan Steel Works Ltd
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Power Reactor and Nuclear Fuel Development Corp filed Critical Japan Steel Works Ltd
Priority to JP61218044A priority Critical patent/JPS6374917A/en
Publication of JPS6374917A publication Critical patent/JPS6374917A/en
Publication of JPH0253373B2 publication Critical patent/JPH0253373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To effectively utilize by-produced hydrogen and to simplify reduction process, by occluding hydrogen produced by the electrolysis of HF in a hydrogen-occlusion alloy, introducing the hydrogen into a reduction step, occluding and recovering unreacted hydrogen in the reduction process and recycling the recovered hydrogen. CONSTITUTION:In the production of uranium hexafluoride, fluorine generated by the electrolysis of HF is used in the UF6 conversion process. At the same time, HF accompanied by the produced hydrogen is removed and the hydrogen gas is recovered by occluding in a hydrogen-occlusion alloy and introduced to the reduction step. Excess unreacted hydrogen discharged from the reduction process is recovered by occluding in a hydrogen-occlusion alloy and recycled to the reduction step. The by-produced hydrogen can be effectively utilized by this process and the apparatuses such as exhaust gas treatment apparatus can be made labor-saving.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、六フッ化ウラン製造方法における水素ガス
の回収及び再利用の方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for recovering and reusing hydrogen gas in a method for producing uranium hexafluoride.

[従来の技術] UO5から原子炉板純度のU F sを製造する従来゛
の六フッ化ウラン製造工程は第2図におけるフローチャ
ートに示すように、下記の各工程からなる。
[Prior Art] The conventional uranium hexafluoride production process for producing U Fs of reactor plate purity from UO5 consists of the following steps, as shown in the flowchart in FIG.

(1)還元工程 粉砕、分級したウラン粉末に前処理を施した後、UO3
を還元塔内で水素(F2)ガスと反応させてUOlをU
O2に還元する。このときのF2ガスはアンモニアガス
を分解し還元塔内に導入するが、反応効率の向上のため
には過剰のF2ガスを必要とする。従って、かなり多量
の過剰分の未反応F2ガスは還元塔から出たのち安全の
ためバックアップフィルターを介してF2バーナーで燃
焼させて大気へ廃棄される。
(1) Reduction process After pretreatment of the crushed and classified uranium powder, UO3
is reacted with hydrogen (F2) gas in a reduction tower to convert UOl to U
Reduces to O2. At this time, F2 gas decomposes ammonia gas and is introduced into the reduction tower, but an excess of F2 gas is required to improve reaction efficiency. Therefore, after a considerable amount of excess unreacted F2 gas comes out of the reduction tower, it is burned in an F2 burner via a backup filter for safety and disposed of into the atmosphere.

(2)HFフッ化工程 還元工程で生成したU O2と外部供給源からのHFと
を、HFフッ化塔内で反応させてtJ O2はtJ F
 4に変換される。このときもHFフッ化塔内から出て
来る未反応HFガスはHF除去プロセス(HFコンデン
サー→HF吸収塔→アルカリスクラバー)を経て環境基
準で定められた濃度まで低下させたのち、大気へ廃棄さ
れる。
(2) HF fluorination process The U O2 produced in the reduction step and HF from an external source are reacted in the HF fluorination tower, and tJ O2 is reduced to tJ F
Converted to 4. At this time as well, the unreacted HF gas coming out of the HF fluoridation tower goes through the HF removal process (HF condenser → HF absorption tower → alkaline scrubber), reduces the concentration to the level specified by environmental standards, and is then disposed of into the atmosphere. Ru.

(3)転換工程 HFフッ化工程で得られたUFjをF、と反応させてU
F6に転換する工程である。このときのF2は(2)の
HFフッ化工程で使用したHF供給源からのHFの一部
を電解生成したものを用いる。この転換工程のフッ化種
から排出する未反応F2はF、除去プロセスく活性アル
ミナトラップ−アルカリスクラバー)により低濃度にし
た後大気中へ廃棄される。
(3) Conversion step UFj obtained in the HF fluorination step is reacted with F to convert U
This is the process of converting to F6. At this time, F2 is produced by electrolytically generating a part of HF from the HF source used in the HF fluorination step (2). The unreacted F2 discharged from the fluorinated species in this conversion process is reduced to a low concentration by an F removal process (activated alumina trap - alkaline scrubber) and then disposed of into the atmosphere.

[発明が解決しようとする問題点] 前記転換工程で用いられるF、はHFの電解によって得
られているが、その際に副生される水素は従来大気中に
廃棄されていた。また、前記還元工程からの未反応水素
ガスが燃焼され無駄に廃棄されているなどの問題点があ
った。 この発明はかかる問題点を解決することを目的
とする。
[Problems to be Solved by the Invention] The F used in the conversion step is obtained by electrolysis of HF, but the hydrogen produced as a by-product at that time has conventionally been discarded into the atmosphere. Further, there were other problems such as unreacted hydrogen gas from the reduction step being burned and wasted. This invention aims to solve such problems.

[問題点を解決するための手段] この発明は水素貯蔵合金がHFを含む混合水素ガスから
選択的に水素を吸蔵・放出できるとの知見に基づくもの
である。すなわち、この発明は・L103と水素ガスと
を反応させてUO3をUO2に還元する還元工程と、還
元工程で得られたU 02とHFとを反応させてUO2
をLIF、にするHFフッ化工程と、HFフッ化工程で
得られたU F 4をF。
[Means for Solving the Problems] The present invention is based on the finding that a hydrogen storage alloy can selectively absorb and release hydrogen from a hydrogen gas mixture containing HF. That is, this invention includes a reduction step in which L103 and hydrogen gas are reacted to reduce UO3 to UO2, and U02 obtained in the reduction step is reacted with HF to produce UO2.
HF fluorination process to convert UF4 into LIF, and UF4 obtained in the HF fluorination process to F.

と反応させてLIF、をLIF、に転換する転換工程と
からなる六フッ化ウラン製造方法において、HFの電解
により水素及びフッ素を生成させ、生成した水素に同伴
するHFをHF除去プロセスにより除去し、この水素ガ
スを水素貯蔵合金により水素を選択的に吸蔵回収して還
元工程に導入してU OsをUO□に還元し、還元工程
の未反応の水素を水素貯蔵合金により回収して還元工程
にリサイクルさせることを特徴とする六フッ化ウラン製
造プロセスにおける水素再利用の方法に係る。
In the method for producing uranium hexafluoride, which consists of a conversion step of converting LIF into LIF by reacting with LIF, hydrogen and fluorine are generated by electrolysis of HF, and HF accompanying the generated hydrogen is removed by an HF removal process. This hydrogen gas is selectively occluded and recovered using a hydrogen storage alloy and introduced into a reduction process to reduce UOs to UO□, and unreacted hydrogen in the reduction process is recovered using a hydrogen storage alloy to complete the reduction process. The present invention relates to a method for reusing hydrogen in a uranium hexafluoride production process, which is characterized by recycling hydrogen into uranium hexafluoride.

[作 用] この発明によれば、HFの電解によりフッ素を発生させ
てこれをtJ F a転換工程に使用し、且つ同時に生
成する水素を還元工程で使用して、従来技術で使用して
いたアンモニア変成装置の設置を不要とし、且つ還元工
程での未反応水素を水素貯蔵合金の使用によってH2バ
ーナによる焼却設備を不要とすることにより還元工程を
を簡略化し、且つ安全性を向上させ、また、還元工程へ
の水素の供給源として水素貯蔵合金を使用して供給水素
量の調節を行い、更に還元工程での未反応水素を再び水
素貯蔵合金により吸蔵して還元工程にリサイクルするこ
とにより未反応水素の有効利用を図ることができる。
[Function] According to the present invention, fluorine is generated by electrolysis of HF and used in the tJFa conversion process, and simultaneously generated hydrogen is used in the reduction process, which was used in the conventional technology. It simplifies the reduction process and improves safety by eliminating the need to install an ammonia converter, and by using a hydrogen storage alloy to store unreacted hydrogen in the reduction process, eliminating the need for incineration equipment using an H2 burner. A hydrogen storage alloy is used as a hydrogen supply source to the reduction process to adjust the amount of hydrogen supplied, and unreacted hydrogen in the reduction process is stored again by the hydrogen storage alloy and recycled to the reduction process. Reaction hydrogen can be used effectively.

(実施例] 以下に図を参照してこの発明の実施例をさらに詳細に説
明する。第1図によれば、まず、HFの電解により還元
工程に使用する水素と、UF、のUFsへの転換工程に
使用するフッ素とを生成する。
(Example) Examples of the present invention will be explained in more detail below with reference to the figures.According to Figure 1, first, hydrogen and UF used in the reduction process are converted into UFs by electrolysis of HF. fluorine used in the conversion process.

生成した水素には一部HFを含有しているので、HF除
去プロセスによHFを除去し、更にこの水素ガスを水素
貯蔵合金を内臓する水素吸蔵プロセスを通すことにより
水素を選択的に吸蔵し、この吸蔵した水素を還元工程へ
供給する。この水素吸蔵プロセスは少なくとも2個の水
素貯蔵合金を内蔵し、その一方が水素を吸蔵し他方は水
素を放出するように構成される。水素を製造するHF電
解槽は、同時に生成するフッ素ガスの転換工程でのフッ
素所要量に合わせて稼動されなければならない、転換工
程が稼動していて還元工程が稼動していないときは還元
工程前段に設置された水素吸貯蔵プロセスにより水素の
貯蔵のみが行なわれる。
Since the generated hydrogen contains some HF, the HF is removed by an HF removal process, and this hydrogen gas is then passed through a hydrogen storage process that incorporates a hydrogen storage alloy to selectively store hydrogen. , this occluded hydrogen is supplied to the reduction process. This hydrogen storage process incorporates at least two hydrogen storage alloys, one of which is configured to store hydrogen and the other to release hydrogen. The HF electrolyzer that produces hydrogen must be operated in accordance with the amount of fluorine required in the conversion process of the fluorine gas that is produced at the same time.When the conversion process is in operation and the reduction process is not, Only the storage of hydrogen will be carried out by the hydrogen absorption and storage process installed at.

また還元工程が稼動しているのにHF電解槽がフッ素ガ
スの消費情況やその他の要因により停止しているときに
は水素ガスを供給するため前段の水素吸蔵プロセスに吸
蔵されている水素を還元工程に供給する。従って、前段
水素吸蔵プロセスの設置により還元工程は影響されずに
単独で運転される。
In addition, if the HF electrolyzer is stopped due to fluorine gas consumption or other factors while the reduction process is in operation, the hydrogen stored in the previous hydrogen storage process is transferred to the reduction process in order to supply hydrogen gas. supply Therefore, by installing the first stage hydrogen storage process, the reduction process is operated independently without being affected.

還元工程の還元効率を高めるためには還元工程へ過剰の
水素量を供給することが必要である。この水素量の調節
は前段水素吸蔵プロセスにより行なわれるが、還元工程
から排出される過剰の未反応水素は還元工程後段に水素
吸蔵プロセスを設!して回収し、還元工程にリサイクル
することによって再利用し、水素分離後の不純物ガス、
例えば湿気等はフードから廃棄される。
In order to increase the reduction efficiency of the reduction process, it is necessary to supply an excess amount of hydrogen to the reduction process. This amount of hydrogen is adjusted by a hydrogen storage process in the first stage, but a hydrogen storage process is installed in the latter stage of the reduction process to remove excess unreacted hydrogen discharged from the reduction process. The impurity gas after hydrogen separation is recovered and reused by recycling it in the reduction process.
For example, moisture is disposed of through the hood.

上記前段および後段の水素吸蔵プロセスに内臓される水
素貯蔵合金としては既知のCa−Ni系合金を使用した
が、その性能は下記の通りであった。
A known Ca-Ni alloy was used as the hydrogen storage alloy incorporated in the hydrogen storage process in the first and second stages, and its performance was as follows.

すなわち、種々の濃度でHFを含む混合水素ガスの吸蔵
、放出試験を行なった。混合したHF濃度は11000
ppから10(体積)%までとした。第3図にHFを含
む混合水素ガスの72℃におけるPCT曲線(圧力−組
成一温度曲線)を示す、試験の結果、この合金は常温、
常圧で多量の水素を容易に吸蔵、放出し、HFを最高1
0%含む混合水素ガスでも水素を優先的に吸蔵した。こ
の場合、HF濃度の高いものほど合金の水素貯蔵量は低
下するが、10%HFのときでも合金1g当たりに約1
00ccの水素を吸蔵している。 ”また、第4図に示
すように、HFを含む混合水素ガスによる吸蔵、放出の
繰り返し回数と放出水素量との関係を求めた。吸蔵は2
1℃において平衡水素圧10気圧まで行ない、放出は6
0℃において平衡水素圧1気圧まで行なった。水素ガス
中−のHF濃度が高くなるにつれて、混合ガスの吸蔵、
放出の繰り返し特性すなわち合金の耐久性は低下する。
That is, storage and release tests of mixed hydrogen gas containing HF at various concentrations were conducted. The mixed HF concentration is 11000
pp to 10 (volume)%. Figure 3 shows the PCT curve (pressure-composition-temperature curve) of mixed hydrogen gas containing HF at 72°C. As a result of the test, this alloy was
Easily absorbs and releases large amounts of hydrogen at normal pressure, and stores up to 1 HF of hydrogen.
Even in a mixed gas containing 0% hydrogen, hydrogen was preferentially occluded. In this case, the higher the HF concentration, the lower the hydrogen storage capacity of the alloy, but even at 10% HF, approximately 1
It stores 00cc of hydrogen. ``Also, as shown in Figure 4, we determined the relationship between the number of repetitions of occlusion and desorption by mixed hydrogen gas containing HF and the amount of hydrogen released.
The process was carried out at 1°C up to an equilibrium hydrogen pressure of 10 atm, and the release was 6
The reaction was carried out at 0°C up to an equilibrium hydrogen pressure of 1 atm. As the HF concentration in hydrogen gas increases, the absorption of mixed gas,
The cyclic nature of the release, ie the durability of the alloy, is reduced.

1000pp鋤HFの場合は500回繰り返した後の吸
蔵量は初期の63%であり、工業的にも充分利用できる
が、合金の耐久性の面からは極力HF濃度を下げるのが
望ましい、500回の耐久性は、システムの経済性、メ
ンテナンス等を考慮した目標回数である。
In the case of 1000pp plow HF, the storage capacity after 500 repetitions is 63% of the initial value, which is sufficient for industrial use, but from the viewpoint of the durability of the alloy, it is desirable to reduce the HF concentration as much as possible, after 500 repetitions. The durability of is a target number of times considering the economic efficiency of the system, maintenance, etc.

なお、前記実施例では、水素貯蔵合金にCa−Ni系合
金を使用したが、Ca−Ni系合金以外の水素貯蔵合金
を使用しても、混合ガスからH2を選択的に吸蔵する合
金であれば前記と同様な効果を奏する。
In the above example, a Ca-Ni alloy was used as the hydrogen storage alloy, but any hydrogen storage alloy other than the Ca-Ni alloy may be used, even if it is an alloy that selectively absorbs H2 from the mixed gas. The same effect as described above can be obtained.

[発明の効果] 以上のように、この発明によれば、水素貯蔵合金を使用
することによって、六フッ化ウラン製造プロセスにおけ
る副生水素の有効利用が可能となり、還元工程が簡略化
し、排気ガス処理などの設備の省力化が可能となり安全
性が向上し、且つ還元工程で生ずる水素の再利用を図る
ことが可能となった。
[Effects of the Invention] As described above, according to the present invention, by using a hydrogen storage alloy, it becomes possible to effectively utilize by-product hydrogen in the uranium hexafluoride production process, simplify the reduction process, and reduce exhaust gas. It has become possible to save labor in treatment equipment, improve safety, and reuse hydrogen generated in the reduction process.

【図面の簡単な説明】 第1図はこの発明の一実施態様による六フッ化ウラン製
造工程のフローチャート、第2図は従来法による六フッ
化ウラン製造工程のフローチャート、第3図はCa−N
i系水素貯蔵合金によるHFを含む混合水素ガスの72
℃におけるPCT曲線、第4図はCa−Ni系水素貯蔵
合金によるHFを含む混合水素ガスによる吸蔵、放出の
繰り返し回数と放出水素量との関係を示す図である。
[Brief Description of the Drawings] Fig. 1 is a flowchart of the uranium hexafluoride production process according to an embodiment of the present invention, Fig. 2 is a flowchart of the uranium hexafluoride production process according to the conventional method, and Fig. 3 is a Ca-N
72 of mixed hydrogen gas containing HF by i-based hydrogen storage alloy
FIG. 4 is a diagram showing the relationship between the number of repetitions of occlusion and desorption of mixed hydrogen gas containing HF by a Ca--Ni hydrogen storage alloy and the amount of released hydrogen.

Claims (1)

【特許請求の範囲】 UO_3と水素ガスとを反応させてUO_3をUO_2
に還元する還元工程と、 還元工程で得られたUO_2とHFとを反応させてUO
_2をUF_4にするHFフッ化工程と、HFフッ化工
程で得られたUF_4をF_2と反応させてUF_4を
UF_6に転換する転換工程とからなる六フッ化ウラン
製造方法において、 HFの電解により水素及びフッ素を生成させ、生成した
水素に同伴するHFをHF除去プロセスにより除去し、
この水素ガスを水素貯蔵合金により選択的に吸蔵回収し
て還元工程に導入してUO_3をUO_2に還元し、 還元工程の未反応の水素を水素貯蔵合金により回収して
還元工程にリサイクルさせることを特徴とする、六フッ
化ウラン製造プロセスにおける水素再利用の方法。
[Claims] By reacting UO_3 with hydrogen gas, UO_3 is converted to UO_2.
A reduction step in which UO_2 obtained in the reduction step is reacted with HF to form UO
In a method for producing uranium hexafluoride, which consists of an HF fluorination step to convert _2 into UF_4, and a conversion step in which UF_4 obtained in the HF fluorination step is reacted with F_2 to convert UF_4 to UF_6, hydrogen is produced by electrolysis of HF. and fluorine is generated, and HF accompanying the generated hydrogen is removed by an HF removal process,
This hydrogen gas is selectively absorbed and recovered by a hydrogen storage alloy and introduced into the reduction process to reduce UO_3 to UO_2, and unreacted hydrogen in the reduction process is recovered by the hydrogen storage alloy and recycled to the reduction process. A method of reusing hydrogen in the uranium hexafluoride manufacturing process.
JP61218044A 1986-09-18 1986-09-18 Reutilization of hydrogen in uranium hexafluoride production process Granted JPS6374917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218044A JPS6374917A (en) 1986-09-18 1986-09-18 Reutilization of hydrogen in uranium hexafluoride production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218044A JPS6374917A (en) 1986-09-18 1986-09-18 Reutilization of hydrogen in uranium hexafluoride production process

Publications (2)

Publication Number Publication Date
JPS6374917A true JPS6374917A (en) 1988-04-05
JPH0253373B2 JPH0253373B2 (en) 1990-11-16

Family

ID=16713767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218044A Granted JPS6374917A (en) 1986-09-18 1986-09-18 Reutilization of hydrogen in uranium hexafluoride production process

Country Status (1)

Country Link
JP (1) JPS6374917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505927A (en) * 1992-12-04 1996-04-09 Atomic Energy Corporation Of South Africa Limited Production of uranium hexafluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505927A (en) * 1992-12-04 1996-04-09 Atomic Energy Corporation Of South Africa Limited Production of uranium hexafluoride

Also Published As

Publication number Publication date
JPH0253373B2 (en) 1990-11-16

Similar Documents

Publication Publication Date Title
US3766027A (en) Method and apparatus for co{11 {11 conversion to methane
JP2001316110A (en) Ammonia recovery method from gas mixture
US3850593A (en) Apparatus and process for the separation of inert gases from gas mixture containing carbon dioxide
EP0270040A2 (en) Process for removing carbon dioxide from a gas
MY116814A (en) Ethylene recovery system
JPS6374917A (en) Reutilization of hydrogen in uranium hexafluoride production process
CA1126685A (en) Concentration of tritium hydroxide and/or di-tritium oxide and electrolysis
EP0014077B1 (en) Continuous process for recycling deuterium/tritium from a fusion reactor for reuse in such a reactor
JPS62255894A (en) Method and device for decontaminating waste gas of fuel cycle of fusion reactor
IL45832A (en) Multi-step chemical and radiation process
US4045546A (en) Process for the preparation of hydrogen
JPS56108816A (en) Conversion recovery method of exhaust gas of refining furnace
JPS56146883A (en) Recovering method for hydrogen
JPS57204223A (en) Method for separating and enriching tritium from hydrogen isotope
GB1578272A (en) Producing deuterium-enriched products
KR102183802B1 (en) Method and system for recovering silver from silver scrap
RU2126362C1 (en) Method of recovery of anhydrous hydrogen fluoride from depleted uranium hexafluoride
EP0032827B1 (en) Process for removing helium and other impurities from a mixture containing deuterium and tritium especially from a fusion reactor
US2974006A (en) Direct conversion of uranium turnings to uranium tetrafluoride
SU1490074A1 (en) Method of producing carbon oxide
US3451790A (en) Method of separating neptunium and uranium values
JP2003149390A (en) Processing method for radioactivated graphite
US3974257A (en) Process for removing sulfur dioxide contained in a gas
JPH0159005B2 (en)
JPS60172331A (en) Recovering method of mechanical power

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term